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Abstract: Primordial black holes are nowadays one of the most attractive and fascinating research 1

areas in cosmology for their possible theoretical and observational implications. In this paper we 2

present a review of different mechanisms for generating PBHs,and approaches to study their evolution 3

via mass accretion. 4
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1. Introduction 6

The idea of primordial black holes (PBH) formation in early universe was suggested 7

in 1967 by Zeldovich and Novikov [1], and also by Hawking and Carr [2–4]. PBHs have 8

been a subject of interest for fifty years. In particular, only PBHs by construction can be 9

light enough for the so-called Hawking radiation to be essential to change the mass of a 10

black hole. Today, the primordial origin of some discovered black holes (quasars at small z 11

[5,6], BHs of intermediate masses detected by gravitational-wave observatories [7]) is hotly 12

discussed [8,9]. It is also worth noting that black holes of primordial origin can be the dark 13

matter candidate [10]. At the moment, constraints are imposed on a wide range of masses 14

of PBH as a dark matter candidate [11]. Mechanisms of primordial formation possibly are 15

able to form clusters of PBHs and then some constraints imposed on black holes as dark 16

matter candidate should be reconsidered [12–14]. 17

Many different mechanisms for the formation of PBHs have been proposed: density 18

fluctuations [2,3], first order phase transitions [4,15], cosmic string collapse [16], appearance 19

of PBHs in hybrid inflation models [17], second order phase transitions [18,19], reviews of 20

PBH formation mechanisms are given in [20,21]. Recently a new mechanism of formation 21

of PBHs discovered in the multidimensional modified gravity model [22,23], containing 22

tensor and quadratic to scalar curvature corrections, will be considered. The possibilities 23

of f (R)-gravity are widely studied [24,25], they offer solutions to many cosmological 24

problems [26–29]. 25

The next aspect to be discussed is accretion process. Accretion is the process in which 26

a black hole can capture particles from a nearby source of fluid and there is increase 27

in mass as well as angular momentum of the accreting object, see e.g. [30]. There are 28

different approaches to study this process and some of them are reviewed here. The most 29

common assumption to calculate accretion rate is sphrerical symmetry. This assumption 30

is used in such papers like [31–34]. There are also numerical estimations with relativistic 31

hydrodynamics [35] and their results indicate that mass growth through radial accretion 32

might be significant. It is also necessary to note accretion disk models. The first realistic 33

model of accretion disks around black holes was formulated in 1973 by Shakura and 34

Sunyaev [36]. They approach is based on consideration of matter rotating in circular 35

Keplerian orbits around the compact object and loses angular momentum because of the 36

friction between adjacent layers and spirals inwards. In this process gravitational energy is 37

released, the kinetic energy of the plasma increases and the disk heats up, emitting thermal 38

energy into space. For relativistic analysis see e.g. [37]. Various models of accretion disks 39

are considered in [38]. 40
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2. Production mechanisms 41

2.1. First order phase transitions 42

Let us consider the mechanism for producing PBHs by means of scalar field dynamics. 43

First order phase transition as a mechanism to produce black holes was proposed in 1999 44

[39]. For realization of this mechanism it is necessary that the field potential has at least 45

two minima, one of them must be false. Let the field be in a false vacuum ϕ1 at the initial 46

moment of time, and denote the true vacuum by ϕ0 (Figure 1). As a result of quantum 47

tunneling, in one region of space the field will have a value of ϕ1 and in another region 48

of space — ϕ0. These regions are called bubbles. In this formulation, the free energy of a 49

bubble consists of two parts — volume and surface energy. We denote the surface energy 50

density µ and the difference of potential values at minima ∆V = E(ϕ0)− E(ϕ1). In this 51

case the free energy of a bubble with radius R can be written as 52

F(R) = 4πR2µ −
4π

3
R3∆V. (1)

Figure 1. Schematic representation of a scalar field potential in which phase transitions of the first
kind are possible.

Obviously, the dependence (1) has a maximum at the point Rcr = 2µ/∆V, after 53

which it becomes energetically advantageous for the bubble to expand infinitely. Then 54

expansion of bubbles of true vacuum in the region of false vacuum becomes possible, while 55

potential energy of false vacuum is converted into kinetic energy of the walls, which leads 56

to ultra-relativistic speed of expansion in short time. 57

When a pair of bubbles of true vacuum collide, a new bubble of false vacuum can arise 58

in the region of false vacuum. If its size is smaller than its gravitational radius, it becomes a 59

black hole for a distant observer. However, if the bubble shrinks to a size comparable to 60

the wall thickness d ∼ δ > rg, the collapse in the PBH will not occur, since the bubble will 61

oscillate and lose energy and finally will decay by tunneling. 62

2.2. Second order phase transitions 63

In contrast to first order phase transitions, the medium’s parameters change contin- 64

uously, instead of jumping. These phase transitions involve cosmological inflation. For 65

realization of this mechanism it is necessary that the field potential possesses at least one 66

nodal point. 67

Let the field be near the maximum of the potential at the initial moment of time. 68

Classical motion of the field would lead to the field rolling into one of the minima, however, 69
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as a result of quantum fluctuations at the inflationary stage and "freezing" of the classical 70

motion, the field can tunnel through the barrier and eventually in one region of space rolls 71

into one minimum and in another region, respectively, into another minimum. These two 72

minima will be connected by a domain wall. 73

Characteristic scale of non-vanishing fluctuation on inflationary stage is H−1
inf . If it is 74

formed at the moment t′ during inflation so by the end of inflaton domination it would 75

be eNinf−Hinft′ times bigger. Its further evolution depends on the relation between two 76

timescales — tσ = 1/2πGσ, where σ is surface energy density of the wall, and moment at 77

which wall crosses the cosmological horizon — tH . 78

If tσ ≫ tH the wall is called subcritical and black hole forms much earlier before wall 79

could become dominant in the Universe. But in case tσ ≲ tH wall called supercritical and 80

there is a wormhole formation as a way to "export" problem of wall domination to baby 81

universe. 82

See [13,40–42] and references therein for detailed analysis. 83

2.3. PBH production in f (R)−gravity 84

The idea of the proposed mechanism is based on the known possibility of formation 85

of domain walls during cosmological inflation followed by their collapse into primordial 86

black holes [13,43]. The formation of such domain walls requires a scalar field with a 87

nontrivial potential containing several vacuums. It is this effective scalar field that arises in 88

multidimensional f (R)-models in Einstein frame [23,44,45]. This field controls the size of 89

compact additional space, and its different vacuums correspond to different universes. In 90

the paper the parameters of the domain walls formed by the field are calculated and we 91

conclude that, having appeared at the stage of inflation, they will immediately collapse 92

into PBH during rehitting. For a distant observer in the Jordan frame the appearance of 93

such BHPs is interpreted as a manifestation of nontrivial f (R)−gravitational dynamics of 94

multidimensional space. 95

The model considered contains quadratic and tensor corrections to scalar curvature: 96

S[gµν] =
mD−2

D
2

∫
d4+nx

√
|gD|

[
f (R) + c1RABRAB + c2RABCDRABCD

]
,

97

f (R) = a2R2 + R − 2ΛD , (2)

Multidimensional space is represented as a direct product M = M4 ×Mn, where M4 is a 98

four-dimensional space, Mn is a compact extra space with n dimensions: 99

ds2 = gµνdxµdxν − e2β(t)dΩ2
n . (3)

One can obtain scalar curvature: 100

R = R4 + Rn + Pk , Pk = 2n ∂2β + n(n + 1)(∂β)2 ,

where R4, Rn — scalar curvature for M4,Mn. As shown in [23] in the limit of effective field 101

theory: 102

R4, Pk ≪ Rn , (4)

one obtain effective field theory where scalar curvature of extra space is considered as 103

scalar field. 104

S =
m2

4
2

∫
d4x
√
−g4 sign( f ′)

[
R4 + K(ϕ)(∂ϕ)2 − 2V(ϕ)

]
, (5)

where effective 4-dimensional Planck mass in Einstein frame: m4 =
√

2π
n+1

2 /Γ( n+1
2 ) and 105

gµν
4 — observable 4-dimensional metric. 106
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Effective potential V(ϕ) occured to be appropriate for domain wall formation. Kinetic 107

term and potential are given by expressions [45]): 108

K(ϕ) =
1

4ϕ2

[
6ϕ2
(

f ′′

f ′

)2

− 2nϕ

(
f ′′

f ′

)
+

n(n + 2)
2

]
+

c1 + c2

f ′ϕ
, (6)

V(ϕ) = − sign( f ′)
2( f ′)2

[
|ϕ|

n(n − 1)

]n/2[
f (ϕ) +

c1 + 2c2/(n − 1)
n

ϕ2
]

. (7)
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Figure 2. Graphs of potential (7) and kinetic term (6) with parameters chosen in [22]: n = 6, c1 =

−8000, c2 = −5000, a2 = −500.

Right minimum of potential (7) corresponds to observable Universe [44,45]. While left 109

minimum corresponds to the case of macroscopic extra dimensions, but due to non-trivial 110

kinetic term (6) it is impossible to reach left minimum of potential in finite time. 111

One can simplify the Lagrangian (5) by substituting 112

ψ = m4

ϕ∫
ϕ0

√
K(ϕ′) dϕ′ , Ṽ(ψ) = m2

4 V(ϕ(ψ)), K(ϕ′) > 0 , (8)

and obtain differential equation for field evolution in simple form. As mentioned above 113

due to non-trivial kinetic term (6) field ϕ and consequently ψ are not able to reach left 114

minimum, so lower limit in (8) is set to be ϕ0 ≪ ϕmin, where ϕmin corresponds to right 115

minimum of potential. 116

Assuming spherical symmetry and static configuration: 117

ψuu +
2ψu

u
− Ṽ′(ψ) = 0 . (9)

It is assumed that cosmological inflation is an external process, so there are inflationary 118

constraints on presented mechanism. As a result of repeated quantum fluctuations during 119

cosmological inflation, the field ψ (ϕ) can be flipped from the rolling down to the right 120

minimum to the region of rolling down to the left minimum in some area of the inflationary 121

Universe [43]. During inflation the ψ field is frozen near the potential maximum. After the 122

end of inflation, the field tends to one minimum inside the bubble and another minimum 123

outside it. Increasing energy density gradually forms the domain wall around the bubble. 124

It is important to calculate the value of tσ for this mechanism. For this reason it is nessesary 125

to calculate surface energy density: 126

σ =

∞∫
0

εψ(u) du =

ψmin∫
0

2Ṽ(ψ)

ψu
dψ =

ψmin∫
0

√
2Ṽ(ψ) dψ ≈ 5 · 10−9m3

D, (10)
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where ψmin corresponds to right minimum of potential Ṽ(ψ) We assume Jordan frame 127

as physical one, so the relevant values would be calculated in this frame. Following the 128

standart procedure of conformal mapping [46] and results of [22] we have Ω ∼ 108. The 129

relation between frames in terms of surface energy density is: σE = Ω−3σJ , so tσ = 130

1/2πG JσJ ∼ 10−8 GeV−1 ∼ 10−32 s, so in this theory we are dealing with supercritical 131

domain walls and according to [41] there is wormhole formation. 132

3. Mass accretion mechanisms 133

3.1. Bondi accretion 134

One of the first solutions to the accretion problem was that of Hoyle and Littleton [47], 135

but the analytical formula was derived by Bondi [31]. Below is an overview of Bondi’s 136

solution. 137

Figure 3. Schematic representation of the problem statement. ζ — impact parameter, v∞ — velocity
of the test particle at large distance from the accreting object.

Bondi accretion is a spherically symmetric accretion on a compact object. The accretion 138

rate is assumed to be Ṁ ≈ πR2ρv, where R — the capture radius or impact parameter, ρ — 139

the density of the surrounding matter, and v — the relative speed. The capture radius can 140

be determined from the equality of the escape velocity and some characteristic velocity of 141

matter. It is usually assumed to be equal to the speed of sound in the surrounding matter 142

and then the accretion rate is obtained: Ṁ ≈ πρG2M2/c3
s , where cs is the speed of sound 143

in the matter surrounding the compact object. 144

The obvious drawback of the model is that it does not take into account possible
relativistic effects, it (the model) is Newtonian. However, it is possible in this approach to
take into account the expansion of the Universe [48]. The Bondi problem can be posed as
follows:

Ṁ = 4πr2ρv, (11)

v
dv
dr

= −
1
ρ

dp
dr

−
GM(< r)

r
− β(z)v, (12)

p = Kργ (13)

where β(z) — the viscosity coefficient of the plasma around the accretor due to the interac- 145

tion of electrons with photons, basically the Compton effect. The viscosity is given by the 146

expression β(z) = 2.06 · 10−23 xe(1+ z)4 c−1, where xe — the electron fraction in the plasma 147

and z — the redshift. If we go to coordinates r = a(t)x, the Hubble expansion is added to 148

the viscosity and the effective viscosity is βe f f = β(z) + H. Thus, the rapid expansion of 149

the Universe reduces the accretion rate and hence the accretor cannot significantly increase 150

its mass. 151

It is necessary to note that Bondi solution is designed to describe stationary non- 152

relativistic accretion. There are also approaches to take into account the luminosity of 153

accreting object if one radiate [49] and consideration of supermassive black holes accretion 154

within the Bondi solution [50]. 155
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3.2. Accretion inside neutron star 156

In [51] considered accretion by a small black hole trapped inside a neutron star. With 157

this mechanism it is possible to give constraints on the population of small-mass black holes, 158

i.e. to use neutron stars as "dark matter detectors". The observed population of neutron 159

stars imposes constraints on the mass range of PBHs: 10−15M⊙ ≲ MPBH ≲ 10−9M⊙. 160

As stated above, it is assumed that a black hole is trapped inside a neutron star and 161

begins to absorb it. The equation of state of matter inside the star is chosen in the form 162

P = KρΓ, which gives the speed of sound near the centre of the neutron star ac ≈
(

ΓPc

ρc

)1/2

. 163

Then the trapping radius of the black hole can generally be defined as: 164

rc =
m(rc) + MBH

a2
c

, (14)

If we put m(rc) ≈
4π

3
r3

c ρc, then we can write the accretion rate as: 165

Ṁ = 4πr2
c ρcac = 3a3

c

(
1 +

MBH

m(rc)

)−1

. (15)

Using (14) and (15) we can write the characteristic accretion time: 166

τacc =
MBH

Ṁ
=

MBH

3a3
c

(
1 +

MBH

m(rc)

)
. (16)

Note that in the limit m(rc) ≪ MBH it is reduced to Bondi accretion. 167

This approach is mostly dedicated to impose a constraint on specific mass range of 168

PBHs, although it has a drawback — this approach is model-dependent since in order to 169

calculate sound speed inside star one has to make an assumption about equation of state of 170

plasma inside star. 171

3.3. Accretion in Schwarzschild spacetime 172

An approach related to the general theory of relativety equations. The Schwarzschild 173

metric is given by the expression: 174

ds2 = −
(

1 −
2GM

r

)
dt2 +

dr2(
1 −

2GM
r

)+ r2dΩ2. (17)

In [32,52] the (17) metric and the associated equality to zero of the covariant derivative of 175

the energy-momentum tensor (EMT) are considered. The EMT is chosen as the EMT of an 176

ideal fluid: 177

Tµν = (ρ + p)uµuν − pgµν. (18)

Omitting the details of the derivation given in [32,52], let us write down the expression for 178

the accretion rate: 179

Ṁ = 4πAG2M2(ρ∞ + p∞), (19)

where A = const, which generally speaking depends on the parameter of the equation of 180

state ω. The equation (19) does not change its form for arbitrary ω (only the constant A 181

changes). For example, in [53] consider the RD stage and obtain the same equation, but 182

with a different constant A. 183
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The equation (19) is easily integrated if we put ρ(t) = ρ0(t0/t)2, we can get: 184

1/M = 1/M0 − 4πG2 Aρ0t0(1 + ω)

(
1 −

t0

t

)
. (20)

The obvious drawback of this model is that the Schwarzschild metric is not asymptot- 185

ically Friedmann–Robertson–Walker (FRW), which casts doubt on the effectiveness of 186

the resulting formula in the early stages of the evolution of the universe, when the char- 187

acteristic accretion time will be comparable to or greater than the Hubble time, i.e. the 188

characteristic expansion time of the universe. There is an approach to match cosmolog- 189

ical Friedmann–Robertson–Walker metric with local Schwarzschild metric in context of 190

evaluating radiation accretion in expanding Universe [54]. 191

3.4. McVittie solution 192

In 1933 McVittie studied the influence cosmic expansion on local physics [34] and 193

derived specific metric given by (21). The proposed in [22] mechanism of generation of PBH 194

within the modified gravity framework possibly allows one to produce them practically 195

immediately after the cosmological inflation. The question about growth of mass of PBH 196

with evolution of the Universe naturally arises. Since there are no observational data on this 197

distant period of evolution of the Universe, it is necessary to estimate the influence to the 198

final result of the free parameters of the problem, namely, the parameter ω, the moment of 199

the end of reheating treh. Of course, the initial mass of a black hole is also a free parameter, 200

however, taking into account the fact that the early Universe is still very rapidly expanding, 201

it is necessary to consider an accretion model of matter taking into account the expansion 202

of the Universe. In [33,55] exact solutions to the accretion problem have been considered. 203

The solution with the McVittie metric and the energy-momentum tensor of a non-ideal 204

fluid with radial flow is of most interest for the evaluation of accretion in this case. In this 205

model it is possible to calculate how many times the mass of the PBH will change, the mass 206

of the PBH grows with the Universe, depending on the state parameter ω. 207

In [33] considered the metric 208

ds2 = −
B2

A2 dt2 + a2(t)A4
(

d r2 + r2dΩ2
)

, (21)

where A = 1 +
Gm(t)

2r
, B = 1 −

Gm(t)
2r

. This metric is asymptotically FRW, and when the 209

Universe "stops" expanding, it passes into the Schwarzschild metric via radial coordinate 210

replacement. Obviously, it describes a strongly gravitational object. In this spacetime, the 211

physically relevant [56–58] mass will be the quasi-local mass mH(t) = m(t)a(t), and m(t) 212

is only the coefficient of the metric. 213

the EMT of matter around a black hole: 214

Tab = (p + ρ)uaub + pgab + qaub + qbua, (22)

in which 215

ua =

(
A
B

√
1 + a2 A4u2, u, 0, 0

)
, qc = (0, q, 0, 0), (23)
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where qc describes the radial energy flux and ua — 4-velocity of the surrounding fluid.
Then the field equations are as follows:

ṁH = −aB2A
√

1 + a2 A4u2[(p + ρ)u + q], (24)

−3

(
AC
B

)2

= −8π
[
(p + ρ)a2 A4u2 + ρ

]
, (25)

−
(

A
B

)2(
2Ċ + 3C2 +

2ṁC
rAB

)
= 8π

[
(p + ρ)a2 A4u2 + p + 2a2 A4qu

]
, (26)

−
(

A
B

)2(
2Ċ + 3C2 +

2ṁC
rAB

)
= 8πp, (27)

where A =
∫ ∫

dθdφ
√

gΣ = 4πa2 A4r2 and C =
ȧ
a
+

ṁ
Ar

. From the last two equations of the 216

system we get: 217

q = −(p + ρ)
u
2

. (28)

So we get the accretion rate: 218

ṁH = −
1
2

aB2
√

1 + a2 A4u2(p + ρ)Au. (29)

Consider the formula (29). It will be useful to find the dependence of the accretion rate 219

on cosmological parameters, to do so, following [55] let us take the r → ∞ limit for the 220

expression (29): 221

ṁH = −2πa3(p∞ + ρ∞) lim
r→∞

(ur2). (30)

It is interesting to compare this formula with others, such as the Babichev-Eroshenko- 222

Dokuchaev formula [32,52,53]: 223

dM
dt

= 4πG2 AM2[p∞ + ρ∞]. (31)

The formula (31) can be derived using the stationary Schwarzschild metric or the non- 224

stationary Schwarzschild metric [59]: 225

ds2 = −
(

1 −
2GM(t)

r

)
dt2 +

(
1 −

2GM(t)
r

)−1

dr2 + r2dΩ2. (32)

Since the metric (21) changes into (32) at "stop" expansion of the Universe (in other words 226

put ȧ = 0 in the field equations) and replace the radial coordinate, one would expect that 227

the accretion rate (29) would change into the formula (31), but in general this is not the case. 228

The reason is that in deriving this formula the assumption limr→∞(ur2) = −2AG2M2 is 229

made. 230

We continue to consider the limit r → ∞ for the equation (29). For large r, we obviously
have:

p(r; t) = p∞(t) + p1(t)/r +O(1/r2), (33)

ρ(r; t) = ρ∞(t) + ρ1(t)/r +O(1/r2), (34)

u(r; t) = u∞(t)/r2 +O(1/r3). (35)

Then, by substituting these approximations into the field equations and by combining the 231

conservation laws, one can eventually obtain the dependence of mH(t) on the scale factor. 232

See [55] for details of the derivation. 233
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For the quasi-local mass we obtain a second order differential equation: 234

ṁH + 2
ȧ
a

ṁH − 4πG[(3ω + 1)mH − 3ωm0a](p∞ + ρ∞) = 0. (36)

The last expression contains a constant of integration m0, which has not yet been assigned 235

a definite meaning. The origin of this term is as follows: the differential equation for the 236

first coefficient of the main part of the Laurent series for the density (33) can be derived 237

from conservation laws. The equation for ρ1 is as follows: 238

ρ̇1 + 3
ȧ
a
(p1 + ρ1) + 3Gṁ(p∞ + ρ∞) = 0, (37)

from which we get 239

ρ1(t) = 3G(m0 − m)(p∞ + ρ∞). (38)

Thus, an additional assumption about the value of m0 at some initial point in time is 240

required. Hence, it follows that (37) requires not two but three initial conditions to find a 241

partial solution. 242

So, the dependence of the quasi-local mass on the scale factor is as follows: 243

mH(t) = C1a1+3ω(t)− C2a−3(1+ω)/2(t) +
3(1 + ω)

3ω + 5
m0a(t), (39)

in which C1, C2 are determined from the initial mass mH(t0) and the initial accretion rate 244

ṁH(t0). Example of using (39) is given at Figure 4. 245
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Figure 4. Relation between initial mass of PBH (denoted with 0) and at time t, derived from the
formula (39). The dotted line shows the moment when the reheating ends (10−16s, chosen for
demonstration), the state parameter at the reheating stage is chosen ω = 0.

3.5. Eddington limit 246

The Eddington luminosity or Eddington limit is the maximum luminosity that an 247

object can achieve given with a balance between the gravitational force and the radiative 248

pressure force. This state is called hydrostatic equilibrium 5. 249
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Figure 5. Eddington limit schematic representation.

The gravitational force acting on the test particle FGRAV =
GMm

R2 , and the radiation 250

pressure is given by the formula PRAD =
Φ
c
=

1
c

L
f (R)

, where Φ — flux and denominator: 251

f (R) =
∫ 2π

ϕ=0

∫ π/2

θ=−π/2

∫ R

r=0
g(r, θ, ϕ) drdθdϕ, (40)

where the integrand function characterises the distribution of matter within the object. 252

Denote plasma transparency — κ, then the radiation pressure force on the test object 253

FRAD = PRADκm. Equating the radiation pressure force to the gravitational force and 254

assuming spherical symmetry and that the main component of the plasma — protons and 255

the dominant process —Thomson electron scattering, we obtain 256

Ledd =
4πcGMmp

σth
(41)

The luminosity created by accretion of matter can be represented in the following form 257

Lacc = εṀc2, where ε — radiative efficiency. Equating the Eddington limit to the luminosity 258

from accretion of matter, we obtain: 259

Lacc = εṀc2 = Ledd =
4πcGMmp

σth
(42)

It’s easy to get the dependence of mass on time: 260

M(t) = M0 exp

(
4πGmpt

εcσth

)
. (43)

The formula (43) is usually used as a marginal estimate of the mass change due to 261

accretion, but in reality this limit can be circumvented by the lack of spherical symmetry 262

[60,61]. It is also worth noting that the radiative efficiency ε is generally speaking a function 263

of the angular momentum of the accreting object. This dependence can significantly affect 264

the black hole mass growth [62], this paper has considered in some detail the influence of 265

the angular momentum on the accretion rate. 266
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4. Discussion 267

In the present paper we consider some mechanisms of the formation of PBH, including 268

the mechanism of the formation of BHP without involvement of the matter fields — by 269

the dynamics of compact extra dimensions in the model of modified gravity. Cosmological 270

consequences of models with multidimensional f (R)-gravity are rather rich and lead to 271

various exotic observational manifestations. Therefore, the confirmation of the primordial 272

origin of some classes of black holes may be evidence in favour of the multiverse. 273

The best known models of accretion of matter by black holes are also considered, 274

among which the black hole model in the expanding Universe — the McVittie model, 275

which requires, however, the introduction of a quasi-local mass, which is not a generally 276

accepted notion, is given. Accretion in the McVittie metric shows power-law growth at 277

any stage of the evolution of the Universe, it indicates that the growth of mass in the early 278

stages of Universe evolution can be very substantial. 279
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