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Presentation plan

O Introduction: Clifford algebras, spinor
modules and algebraic spinors.

O Part 1. Transformation of spinor field
operators. Spinor module over CAR algebra.

O Part 2. Reflections and P, 7, C inversions.
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Mathematical theories of spinors

O  Spinors are two-valued elements of the representation space of
the Lie algebra of infinitesimal rotations. Matrix representation:
columns and rows.

0O Algebraic spinors - theory of Clifford algebras and Clifford
modules generated by idempotents. Matrix representation: d=2m
dimensional complex space in the form of square matrices 2™ -2™

O Superalgebraic spinors — extension of the theory of algebraic
spinors. Grassmann variables and derivatives with respect to
them. CAR algebra of second quantization of fermions. CAR —
Canonical Anticommutation Relations.

Proper name: CAR-algebraic spinors.
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Real Clifford algebra and its representations

O  Physicists often say that Dirac gamma matrices generate a Clifford
algebra. This 1s not true. They generate a matrix representation of
the Clifford algebra — a linear map.

0O Real Clifford algebra:
Vector X=e, x"; e, — basis vectors.
Complex conjugation X*=e x"; e *=e , (x") *=x".

0O Matrix representation of the Clifford algebra:
Vector X=y x"; y — gamma matrices.
Complex conjugation X*=yp *x"; y *% v , (x*) *=x".

O  Each linear representation of a Clifford algebra 1s
one-to-one associated with a module over this algebra.
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Modules over Clitford algebra (Clifford
modules)

0O A module 1s an Abelian group over an operator ring. This 1s a
generalization of the concept of a vector space over a field of
real or complex numbers, when the field is replaced by a ring of
operators.

0 A module over a Clifford algebra 1s a homomorphism of this
algebra 1nto a linear vector space. A homomorphism is a
mapping that preserves basic operations and relations.

0O A module is a linear representation of the algebra. An irreducible
module 1s a module that does not contain submodules.

O Every Clifford algebra 1s a bilateral (left and right) module over
itself.

O Quantum mechanics state vectors are elements of modules. Bra
vectors <W| are elements of the right module. Ket vectors |\V>
are elements of the left module.
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Irreducible Clifford module and spinor space
as minimal left ideal

O Clifford module can be decomposed into a sum of irreducible
Clifford modules.

0O Minimal left (right) 1deal of the Clifford algebra is a spinor

space. It 1s generated by a primitive idempotent and 1s an
irreducible Clifford module.

O Clifford algebra is a reducible Clifford module. The identity
of the Clifford algebra 1s decomposed into the sum of
minimal left (right) 1deals of the algebra generated by
primitive idempotents.

O These idempotents are constructed using elements of the
Cartan subalgebra whose squares are equal to one.



Decomposition of the identity of the Clitford
algebra into a sum of minimal ideals

Let (¢,5)=(1,d —1), d —dimension of thespace;y* =iy’

Cartan subalgebra generators v’y>, 'y, v°v°, ...,y 'v?.

G =Ly =) == ) =1

=> 292 =2" orthogonal idempotents (I )* =1 :

7 _ 1iy0y3 1ii}/17/2 1iiy5y6 1J_ri7/d_1;/d
+03,£12,£56,..., 2 2 2 2

[03,12,56,..., T ]—03,12,56,..., T 103,—12,56 ..... T 1—03,—12,56 ..... +...=1
Minimal left ideals: Jy; 1,5 = CI(#,8) L3155 5

J 01256, = CUE ) 1 5155, ;
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Primitive idempotents: Dirac representation, d=4

Cartan subalgebra generatorsy"y°, iy 'y*or v°, iy'y* or y°,iy'y?

They are equivalent because y "y °y'y> = —iy°; 4 idempotents :

1+y° 1+iy'y?
IJ_rO,ilZ = > > 5 10,12 +I—0,12 +[o,—12 +]—o,—12 =1.
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Spinor spaces: chiral representation, d=4
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Problems in the theory of algebraic spinors

0O  Why Clifford algebra of the spacetime 1s real? More general
Clifford algebra of field operators is complex due to the

existence of momentum and factors exp(-i p x").
O  Element iy'y? also exists only in complex Clifford algebra.

O There are 4 spinor spaces with incomprehensible physical
meaning of these 4 spinors. Are they related to the presence
of 4 generations of spinors, 4 colors, or something else?

O There are 4 spinor spaces, but there 1s no spinor vacuum.
Idempotents are spinor components with nonzero spin. The
1dentity 1s a superposition (sum) of 4 spinor fields.

O  Conjugated spinor 1s a sum of 4 non-conjugated spinors.
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Problems in the theories of spinors — beyond
the Standard Model

O  Spinors are representations of the Clifford algebra of spacetime
— but not of the CAR algebra. (CAR 1s Canonical
Anticommutation Relations of the creation and annihilations
operators of fermions).

0O What is algebraic construction of spinor vacuum state vector?

O  The existence of a spin follows from the Clifford algebra.
What 1s the origin of momentum and electric and other charges
and hypercharges of spinors?

O  Why are P, T, C symmetries of spinors broken?
Why i1s 1t impossible to reverse the arrow of time?

O

0O  How spinors transform in the curved spacetime in d
dimensions?

Theory of CAR-algebraic spinors solves most of these problems.
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Part 1. Transformation of spinor field
operators. Spinor module over CAR algebra

1. Theory of CAR-algebraic spinors: publications.

2. Small and large Clifford algebra.

3. Lie group and Lorentz transformations.

4. Infinitesimal transformation of basis field operators.

5. Gamma operators — analogs of gamma matrices.
Two additional matrices compared to the Dirac theory.

6.  Operator of generalized Dirac conjugation. Spinor vacuum.

7. Main decomposition: general form of transformation of the
field operators. Dirac equation.
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Theory of superalgebraic (CAR-algebraic)

spinors: publications

1. M. PavsiC. A theory of quantized fields based on orthogonal and
symplectic Clifford algebras. Advances in Applied Clifford Algebras,
2012, v.22, p.449-48]1.

2. V. Monakhov. Superalgebraic representation of Dirac matrices.
Theoretical and Mathematical Physics. 2016. v. 186. p.70-82.

3. V. Monakhov. Dirac matrices as elements of superalgebraic matrix
algebra. Bulletin of the Russian Academy of Sciences: Physics, 2016, v.80,
p. 985-988.

4. V. Monakhov. Superalgebraic structure of Lorentz transformations. J. of
Physics: Conf. Series, 2018, v.1051, 012023.

5. V.Monakhov. Generalization of Dirac conjugation in the superalgebraic th
cory of spinors Theoretical and Mathematical Physics, 2019, v.200,
p.1026-1042.

6. V. Monakhov. Vacuum and spacetime signature in the theory
of superalgebraic spinors. Universe, 2019, v.5(7), 162.
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Theory of superalgebraic (CAR-algebraic)

spinors: publications

7. V. Monakhov. Spacetime and inner space of spinors in the theory of
superalgebraic spinors. Journal of Physics: Conference Series, 2020,
v.1557(1), 12031.

8. V. Monakhov. Generation of Electroweak Interaction by Analogs of Dirac
Gamma Matrices Constructed from Operators of the Creation and

Annihilation of Spinors. Bulletin of the Russian Academy of Sciences:
Physics, 2020, v. 84(10), pp. 1216—1220.

9. V. Monakhov. The Dirac Sea, T and C Symmetry Breaking, and the
Spinor Vacuum of the Universe, Universe, 2021, v. 7(5), 124.

10. V. Monakhov. A.Kozhedub. Algebra of Superalgebraic Spinors as
Algebra of Second Quantization of Fermions. Geom. Integrability &
Quantization, 2021, vol. 22, p.165-187.
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Small and large Cliftford algebra

O There are two Clifford algebras in the theory of
fermions:

1. Finite-dimensional Clifford algebra of gamma operators

(their representations are gamma matrices). We called 1t
small Clifford algebra.

2. Infinite-dimensional Clifford algebra of creation a(p)*
and annihilation a(p) operators with basis Clifford
vectors (a+a")/N2 and (a-a*)/N2. It is CAR algebra. We
called it large Clifford algebra.

0 Previously, these two algebras were thought to be
independent. We found that gamma operators can be
constructed from elements of the large Clifford algebra.



Creation and annihilation operators.
Discretization of momentum space

o
Y =)
a,(p)" =67 (p)
{a,(p),a;(p')}=6/6(p—-p").

, p=p'=0;

Quasi-continuousspectrum p = p,, 6(p, —p;) = A31
Pi
5, 1
5, ——— 5.,
ooyt P,
0 0
d : b =10"(p,),0'(p,)} =0

06" (p,)" 36" (p,)



Lie group and Lorentz transformations

Y, ¥ —>eWe e W,e . e"W e =
= (edé‘z’fl)(edé&”z)...(edé&”n) —Lie group inner automorphism
dG =[dG,e], dG¥ =[dG,¥],
e"W) = e W = (1+[dG,o))¥ =¥ +(dG¥).
1 1

dG = 1 y'y'dw,, = ZVdeuv generates

Lorentz transformation of the field operator : e’ ity
+ 1 v+ + 1 + /., V\+

G- =20 (y") do,, = —Z(V”) (y') do,,.

wyv=123=>-dG" =dG; u=0,v =123=>-dG" =-dG.



Lorentz transformation of the creation and
annihilation operators

Spacetime signature (z,s).Consider Lie group transformations :

_ ; "do,, /4
bl(p]) = edGai(O)e 4 |p:0—>p:p.: edGa'(O) |p =0—>p=p; e}/ (O) |p 0—>p=p;

bi(p)" =(e"a,(0)e )" |, pmp = (€T a,(0) "),y ey,

=>b.(p)" #(€“a,(0) e )] for boosts if ¢#0 ors # 0.

p=0-p=p;

=>b.(p)" does not transform according to the Lie groupif =0 ors = 0.

b(p)=(e“a,(0) e )|, =" “"a(0))|,, is element of the Lie group.
1. R P i 1 i
b (p):b(p))} = {a,(0),4,/0) 1™ |y ., 5,5} =6; 7,0

b (p).b(p)}=8,5(p~p') => CAR algebra



S
Second quantized Dirac theory, p=0

(al (O)\
0

p=0,p,=m, Y(0)= 0 e‘ime, a; ()Y, =0;a,(0)¥, =0

. 0 )

=>Y¥, =4a,(0)a,(0)a;(0) a,(0)...=

0 0 0 o
06" (0) 667 (0) 66°(0) 86*(0)
0

0 v 3
(0)) — ,degree(aek(o) 6" (0)) =0.

¥, 1s scalar => degree of ¥, mustbe =0 forall k.
=>Y, =a,(0)a,(0)" a,(0)a,(0)" a;(0) a;(0) a,(0)a,(0)" ...

degree(0” (0)) = +1 degree(
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Second quantized Dirac theory, p#0,

discrete momentums

Example for (t,s) = (1,3) : consider Lorentz transformation el

p:O_)p:pj9 ak(o)_)ak(pj)a Yy ->¥%,,aq, (¥, =0

¥(0) > ¥(p) =

a,(p)cosho
0

0
a,(p)sinh @

e—ipux'u _ bl (p)e—ipﬂxﬂ .

=> annthilation operator is transformed into annthilation one.
= a,(0)" = a,(p,)
=> \PV ~ H Hak(pj)ak(pj)+

Signaturet =0ors =0

p;, k=1,2,3,4



4-component spinor field operators

Spinor field operator ¥ = j d’ p(t//“( p) f +y (p)o°( p)j
00" (p)
1 0 0 0
16, 0 0 1 0 0
= 5 == = 0| |
00’ (p) |0 96%(p) |0 1 0
0 0 0 1
0'(p)=(1000), 6(p)=(0100),
f =0 01 0), f =0 00 1.
00" (p) 0" (p)

Superalgebraic spinor field operators (Grassmann variables and

their derivatives) are more general than columns and rows.



Infinitesimal transformation of basis field
operators for signature (t,s)=(4,0); ¢,,—0

0' 0 0 0
b, = 30 = ﬁ+c11 ﬁ+c12 ﬁ+01303 +C1494 +C‘1591 +C1692 e, —5tegg Py
0' 0 0 0 0
y = 802 = ﬁ—i_cﬂ w+czzﬁ+cz303 +C2484 +C2501 +CZ602 +C27 %—'_628 w
by = 0°'=0°+ Cay %+ Cso %+ 03303 +c346?4 + c3591 + 03602 + ¢y, %+ Cag %
b, = 0*'=0"* + Cu % +Cy ﬁ_i_ 04393 +c4494 + 04591 + 64692 +cy, W—F Cus %
Hermitian conjugated :
b =0"'=0 +c,,0 +c,,0 +C13?+C148 w+015ﬁ Cre Yy +c,,0° +c,0
by =0"'=0"+c,,0 +c,0 +CZ3F+6240 ﬁ+025 30 +Cpg 5 + 07 + g0
5' % % * % 8 % a * a
b3 = 803 :%4‘03101 +C3202 +C33?+C3494 % C35ﬁ Csq 682 +C3783 +C3804
b, =2 :i+c;91 +c,,07 +cz3i+cz494i+ A, i+c476?3 +cy 0"

03

Y00 06°



Equations for coefficients c,,

b (p),b,(p)} =0, {b.(p),b,(p)}=5(p-p').

b,bif =0 => ¢35 = ¢y =5y =€y = 0;
1,0y =0 => cp5 045 =0
{,,05} =0 => ¢35+ ¢;;, =0;
{b,,b;} =0 =>c,z +c,s =0;

. 0 ‘
by, by} = {ﬁael} => ¢py + ¢y =0

{b,,b;}=0=>c,, +c,, =0;



Transformation operators following from CAR

CAR: aef(p),ef(p')}=5,55<p—p'>,

{898( | 89( 51=10'().0' ()} =0
ae’?(pﬁaef@(p) =G=[dp '[ae’ipvek(p ek
: Hf(p) 0 (p), k=1 =G =[dp'[0'(p)0" (p')s],

0 (p)>0'(p)  =G=[d’p'[0 <p)89( 5!
6" (p) > —2 ),k;tl:>é::d3p'[ael(zp') wk@(p'),.].



Main decomposition: general form of
transformation of the field operators

V'=(1+iy‘do, +i77“ba’a)ab)5”,

a,b=0,1,2,3,4,6,7.
V'=(1+iy"d ! *d L 7 d ved ! Hed
=(1+iy a)ﬂ+Z;/ a)uv+5 W, +1Y a)g+zy @, +

%f%dw% + i 7 dw, W, wv=0123g=467; 7*=ip°.

Term iy“dw, — decomposition by momentums.

| .
Term —y " dw,,, — Lorentz transformations.

4

7 = i0; O —operator of electric charge. —See later.



Gamma operators (analogs of matrices):
7 basis Clifford vectors, (t,8)=(7,0)

0

—_[qa 0 0 0 0" (p),e],
7= P Uagion @ P F 5z O (D)4 553 507 (0)+ S 0" (p)-]
0 0 0
1= _j d3 —04 91 _93 92 9. o
=i P g aaicy 0 (PO (P g s 0 (PO (p) 2]

. 0 %) 0 0
2 _ d3 _ _04 01 93 02 o],
p2=[dp 30 305 PP ) S s 0 (PO (p) )
. o 0 o 0
35— _i[d? ~0%(p)0'(p)- 0% (p)0*(p) o],
7 lj p[ael(p)%g,(p) (P)0 (p) aez(p)ae4(p)+ (P)0°(p) .o
~5 [ 13 0 0 3 1 0 0 4 2
— |4 0 2, 0 0 0],
i p[ael(p)a@3(p)+ (») (p)+602(p)894(p)+ (P)O"(p) ]
7= [ [t O 02 ()0 (P)— o= 0" ()0 () o]
T T 60" (p) 0607 (p) 00°(p) 06* (p) o
0 9, 0 9,

~0%(p)0’ (p) + ~0*(p)0°(p) ,ol.

77=-i[d’p [ael(p) 80°(p) 00" (p) 06 (p)



Gamma operators for (t,s)=(1,6) : two
additional ones compared to Dirac’s theory

Q0 3 0 1 0 2 0 3 0 4 o
7=l ( [0 (D) 2m S0 (P4 o0 () o0 ()
[ 0" (p)O (D)o 07 ()0 (p) o]
7 ae( ) 00" (p) 00°(p) 90°(p) o
~2 43 0 0 _n4 1 0 0 3 2 .
7 =i[dp agl(p)w(p) 0" (PO (P)+ Sz g+ 0P ()07 (p)-e]
= [ 0 (PO (D) -4 0} ()0 (p) o]
ae( )00 (p) 00°(p) 80 (p) o
~d .5 0 0 3 1 0 0 4 2 o
pt=ip® =i[d’p o357 0 PO P+ g s+ 04 (PO () ),
0 0 9,
— 2 91 _ _04 63 o],
70 =i[d p[ae( T30 PP s i 0 (0 () o]
7= [P e O 07 ()0 ()t oo —0* ()0 (p) o]

00" (p) 00*(p) 00°(p) 00" (p)



Operator of generalized Dirac conjugation.
Spinor vacuum

0
06 (0)

b,(p;) =exp(7"p,) ooy Da(p)=exp(7%0,)0°(0)|, o,

Y =(MY¥Y)"
Signature (+ —————— ), (£,5)=(1,6) = M =7".
Y = (7).

0 0 0 9,
¥, (0) = (Asp |p=0)4

00" (0) 06°(0) 06°(0) 06*(0)

¥ (p,) = (& p) b, (p)bi(p,)by(p)b2(p,)bs(p,)b3 ()b, (p,)bs(p,)
¥, = H?’V (p;) —1tis primitive idempotent.

0'(0) 62(0) 6°(0) 0*(0)
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Fermion vacuum as primitive idempotent of
the large Clifford algebra

O W 1s primitive idempotent of the large Clifford algebra.

O The action of the annihilation operator on ¥, yields zero.

O Matrix representations of the gamma operators y*, v=0,1,2,3,5
are Dirac gamma matrices y*. Gamma operators transform the
spinor field operators of the large Clifford algebra in the same
way that the Dirac gamma matrices transform the spinor states

of the small Clifford algebra.
O ¥, is invariant under Lorentz transformations of the Lie

group. It has zero spin, 4-momentum and electric charge.

O ¥, 1s not invariant under reflections. Instead, inversions are
needed - see below.



Becompom!wn 1n momen!ums. Blrac

equation

Y= (1+i;7”da)y +i;?”vda)w +%iQAda)67)'P, u,v=0,1,2,3.

Let dw, =-mdx,, and dawg, =qA4"dx,.
If 4-vectory*dx,, is timelike we do Lorentz rotation to 7 dx,.

Define parameter p = 0 for this state. Let 4” =0.

0 0
06" (0) 06%(0)
Y (0)=(1-i7"m dx," ) (0) = exp(—ip°'dx, ¥, +exp(ip”'dx, ..

7 (0) =y vy +,0°(0)+y,0° (0) =¥, +¥..

Lorentz rotation backward to y*dx,,
=>¥(p)'=exp(=ip“dx, ¥, (p)+exp(ip” dx,)¥_(p).



Main decomposition: additional terms, no-go
theorems

¥'=(1+i7"do, +i da,, +%iQAda)67 +iy¢do, +i;?”gda)ﬂg +%;?46da)46 +

+%;?47da)47 W =(1+d&O¥, uv=0,123,g=4,67, 7*=ip°.

do, =4,, dx* = gravitational interaction (~ Lorentz transformations).

dw, = p,dx® # 0 = new dimensions of the spacetime.

No - go theorems: McGlinn - O'Raifeartaigh - Jost and Coleman - Mandula.

Generators of internal symmetries must commute with generators of the Lorentz group.

1
_ v N Hg /\ﬂv . . . .
do, =4,.dx" #0, [Z;/ dw,,7y"" 1# 0= violation of Lorentz invarianceor

rotation in new dimensions.
dw, = Ay dx’ #0 ordw,, = A, dx" #0=[dG,0]#0 =
violation of conservation of electric charge.

New vector fields 4, , 4,,, and tenzorfields 4,,,,4,,,¢,4,,, or new dimensions.



Main decomposition: d dimensions

Monakhov V., Kozhedub A. Multidimensional spinors and Dirac equation in the theory of
superalgebraic spinors. Physics of Elementary Particles and Atomic Nuclei, 2022 (in print)

d=2m=p+q, (p,q)=(1,d-1)=>

( W'
k = 2" elements of the spinor space (column) | ...
k
'4
(a,, .. a,
k> =2°" elements of the Clifford algebra
a,, .. a;
W — (1 4+ i};al da)al + yAalaz da)alaz + l-};a1...a5 da)al,,,% + 7;a1...a6 da)al...% + )Y/,
a’coal%a3 = dwa1a2a3a4 =0, a’a)alaz_._a7 = a’a)al%_na8 =0, ..;a,=12,....d.

Two nonzero terms, two zero terms, two nonzero, and so on.
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Conclusions on part 1

O The proposed theory unambiguously follows from the
transformation laws of the creation and annihilation operators
by the Lie group (Lorentz group).

O In this theory, spinors are representations of both the
spacetime Clifford algebra and the CAR algebra.

O Seven gamma operators can be constructed from the creation
and annihilation operators of spinor and antispinor.

O Five of them are analogs of the Dirac gamma matrices, and
two correspond to the internal degrees of freedom of the
spinor and generate an electric charge.

O The generalized Dirac conjugation operator is one-to-one
given by the signature of the spacetime and the internal space
of spinors.
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Conclusions on part 1, continued

O The spinor vacuum state vector ¥, has zero spin, 4-momentum
and electric charge.

O The requirement to preserve the CAR algebra under
transformations of the Lie group leads to the decomposition of
spinor field operator in terms of momentums, Lorentz rotations,
electromagnetic interaction, and as yet incomprehensible terms.
It defines a Lie group that 1s wider than the Lorentz group.

0O New possible mechanisms of violation of the Lorentz
invariance and the law of conservation of electric charge are
found.

O Due to W, the properties of discrete symmetry operations
differ significantly from the usual theory of spinors.



Part 2. Reflections and P, 7, C inversions

R-operators (reflections, rotations, reverse).

Operators of charge 0, spatial reflection P, and
spatial inversion P,

Alternative spinor vacuum.

Operators of time reflection 7, and time inversion 7.

Operator of charge conjugation C.



R-operators (retlections, rotations, reverse)

Lie group generator dG = [dG,e]
1+dGWY,. ¥, =1+[dG,V,V,.. ¥, +¥,[dG.¥,].. ¥, +...=
= (V) P,)..(e"F,)

VW, W, =(e“P,)(eW,)..(e°F,)

R, = el — operator acts on all factors simultaneously.

7072 7k v
Examples of R - operators : e " = R, e’ el

R x* - —x* ,x" = x"; complex conjugation (0) ;

X

transposition (O)T; Hermitian conjugation (0)+ = (O)T(O)*.



Clitford algebra: operators of retlection

Reflection operator A transforms Clifford vector X as
X' =AXA" =(24) X (1A)™", 1 # 0—any complex number.
Operator 4 transforms spinor ¥ as
V'=AY.

Reflection should keep norm => (¥"',¥"') = (¥,¥)

= AAl=1=>A1=¢".
A=iy° =>reflectsall 7",k #0:

7/ M=yt =9 k=1234,6,7. 7'=ip’

A=77" =7% =>reflects y* and 7".



Spinors: no phase arbitrariness

Reflection operator A transforms spinor ¥ as

V'=AY.
and transforms conjugated spinor ¥ as
P'= A,

since ¥ is transformed by the same Lie group operators as .
A=e? =>Y¥'=ePAY =AY

=> A ==l1.

0' 0

CAR algebra,0" (p)'= 10" (p), = =>
g () (p) 50 90t (»)

=> A =1=>1=+1.



Operators of charge Q, spatial reflection P, and
spatial inversion P

laN

0 =i =
0 0 0 0
d’ 0’ 0%(p) — 0°(p) - 0%(p),e

—generator of rotations in the plane y°,y".

Operator of chargein the theory of second quantization.
oY =V, OF =-V¥,

Y = N O — o

A=R,, —spatial reflection. Keeps 7°,7°,7” invariant.

Breaks Dirac equation.R__: x* — —x*,x" — x°.

P= R_nyAO 5~ spatial inversion. Keeps Dirac equation.



Alternative spinor vacuum

A1 A2 A3 A5 ~6 A7

vy LY,y .7,y .y —change¥, to'¥,,

7" —keeps ¥,
Fa (D)= 421,00 0 O) 70157 O 502 5 705 (0) 7 e )ae “(0)

¥ o (2) = (L D) bi(p)b,(p,)b2(p,)b, (p)b3(p,)bs(p,)ba(p)by(p,)

0 0

Yoy = H Yo (D))

bi( p;)—annihilation operator

b, (p,) — creation operator



Operators of time reflection 7, and time
inversion 7T

I} = R—xo Rfly“ (.)*’ v, -7,
“Rewinding the film”, annihilation operator

must become creation one, and vice versa
R = RyA05 RyA26 (O)T —reverse RY¥,..¥, =¥, .. \V,%¥,
RY¥,=¥,,, RV =¥, RV =¥
T'=RT, =R qu (o), ¥, oV,
=>T cannot be a symmetry of Nature.

Interaction of spinor with ¥ ,,, and with ¥, differs.



—!

Operator of charge conjugation C

[t 1s rigorously proven (Jost) that the P7TC operator 1s

antiunitary. P - unitary, 7' - antiunitary => C 1s unitary.
Formulas with the antiunitary operator C are correct
when using the concept of the Dirac Sea.

C, = RWA56 , ¥, > ¥, errors for multyparticle states.
Proper results for multyparticle field operators :
C=RC, =R ule)', ¥, >V,

=>( cannot be a symmetry of Nature.

Interaction of spinor with ¥ ,, and with ¥, differs.



Conclusions on part 2

P:R kRA

—x }/OQA,

v, >Y¥,,
T'=R R, ()", ¥, >V¥ , , breakssymmetry
C=R (O)T, ¥, -> ¥, breakssymmetry

CPT=R ,J,, ¥, >¥,

WL

J, =R (e]" —operator of real structure

(charge conjugation) in Krein spaces.



—!

Conclusions on part 2, continued

O Operators 7' and C are not consistent with vacuum of
the Universe.

O They can only be approximate symmetry operators.

O The symmetry breaking is small when spinor 1s
independent particle.

O Vacuum 1s similar to the Dirac Sea.

O P, TC, CPT can be exact symmetry operators of
SpINOTS.
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