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Abstract

We review our method of calculation, Gaussian Expansion Method (GEM), for bound and
scattering states of few-body systems. The method was proposed in 1988 and has been applied
to a variety of few-body systems. The understanding on the structure and the mechanisms of
reactions of those systems obtained from such applications is discussed together with some useful -
techniques for the calculations. A well-chosen set of Gaussian basis functions forms an approximate
complete set in a finite coordinate space so that it can describe accurately short-range correlations
and long-range asymptotic behavior as well as highly oscillatory character of wave functions in the
bound and the scattering states of the systems. Examples of applications of GEM include i) the
latest determination of antiproton mass by the analysis of laser spectroscopic data for antiprotonic
helium atoms, ii) predictions and experimental verifications on the structure of hypernuclei and
hyperon-nucleon interactions, iii) Coulomb three-body calculations of bound and resonant states
of muonic molecules as well as muon transfer reactions in muon catalyzed fusion cycles, iv) a new
treatment of CDCC (continuum-discretized coupled channels) method for three- and four-body
breakup processes, and v) benchmark test calculations for three- and four-nucleon bound states
using realistic interactions.
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1 Introduction

There are many examples of precision numerical calculations which have contributed to examining fun-
damental laws of physics and interactions in physical systems. One recent example is the determination
of the upper limit of the difference between the masses of proton and antiproton, m, and mg, respec-
tively. The first recommended upper limit of |m;—my|/m, by the Particle Data Group listed in Particle
Listings 2000 [1] was 5 x 10”7, which could be used for a test of C PT invariance. This number was ex-
tracted from a high-resolution laser experiment involving metastable states of antiprotonic helium atom
(He** + e~ +p) [2] by Kino et al. [3] through a theoretical analysis of the Coulomb three-body system
using Gaussian Expansion Method (GEM) of calculation developed for few-body systems [4, 5, 6, 7]
which is the present article. The ratio was improved to |[my; — mp|/m, < 6 x 1078, as listed in the
Particle Listings 2002 [8], by a later, more extensive experiment [9] and an additional calculation [10].

Many important problems in physics can be addressed by solving the Schrédinger equation with high
precision for three- and four-body systems.. It is therefore of particular importance to develop methods
for precision calculations for such problems. In the calculation of the three-body system mentioned
above, the interaction (the Coulomb potential} is precisely known. In newly developing fields of physics,
however, there are cases in which interactions are not well known. Studies of such subjects with precision
(few-body) calculations are also meaningful and important. In order to extract reliable new information
and constrain the ambiguity in the interaction being examined, the calculation must be sufficiently
rigorous.

Examples are seen in the study of hyperon(Y)-nucleon(N) and hyperon(Y )-hyperon(Y') interactions in
hypernuclear physics. The YN and YY interactions proposed so far exhibit a great deal of ambiguity,
since YN scattering experiments are extremely limited, and there are no Y'Y scattering data. One
can, however, obtain useful information on the YN and Y'Y interactions from hypernuclear structure
studies by combining theory and experiment in the following way: (1) There are candidate YN and
Y'Y interactions based on the OBE model and those based on constituent quark model. (2) There are
experimental data of v-ray spectroscopy aimed at getting information on the YNV and Y'Y interactions.
(3) Precision structure calculations with model YNV and Y'Y interactions are compared with the y-ray
data to test their quality. The few-body studies by Hiyama et al. [11, 12, 13, 14, 15, 16] using GEM are
theoretical contribution to the step (3). The work of Ref.[14] tested two types of YV spin-orbit forces,
based on meson theory [17, 18] and the other based on a quark model [19], predicting the spin-orbit
splitting energies in 3Be and 3C. Later v spectroscopy experiments [20, 21] suggested a very weak
spin-orbit splitting, which was in good agreement with the prediction using the quark-based spin-orbit
force. This detailed comparison of the theory and experiment was possible because of the precise three-
and four-body model calculations for the § Be(= 2+ A) and 3C(= 3a + A) systems taking into proper
account of the Pauli principle between nucleons [14].

Another example in hypernuclear physics is the work of Hiyama et al. [15]. They succeeded in perform-
ing difficult four-body calculations of 4H and % He, taking the A — ¥ conversion explicitly into account,
for the first time in both NNNA and NNNX channels. This enabled them to analyze precisely the
role of the A — ¥ conversion in those hypernuclei which had for a long time been a subject of investi-
gations of various authors [22, 23, 24] to see the effect of the conversion on the binding energies, the
charge-symmetry breaking, the role of ANN three-body force, etc.

The Gaussian Expansion Method was proposed by Kamimura [4, 5] some 15 years ago to carry out
non-adiabatic three-body calculations of muonic molecules and muon-atomic collisions. Those systems
are very good testing grounds for atomic and molecular models and few-body calculations since there
are more observable quantities than those in the analogous electron systems because of large muon
mass. The structure of muonic molecule dty and muon transfer reaction (du)is +t — (tp)1s + d are
of particular interest since they are the key to muon catalized fusion (uCF) (for example, the review
articles {25, 26, 27, 28]). An accuracy of up to seven significant figures in the calculated binding energy
and the accurate wave function in the tail region was required for the very weakly bound excited J =1
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state in order to derive the asymptotic normalization constant to be used for the calculation of the
molecular formation probability. The calculation using GEM satisfied this. Since the muon mass ix
207 times the electron mass, non-adiabatic treatment of the three charged particles is necessarv. This
difficulty, as well as the practical interest in the energy production by pCF has been stimulating studies
of the problems by means of various methods in nuclear physics, atomic/molecular physics and quantum
chemistry. Among the methods, GEM has made one of the best contributed to a variety of three-body
scattering and bound-state problems appearing in pCF.

In a usual variational method for three-body bound states, Hamiltonian is diagonalized in a space
spanned by a finite number of L? basis functions. Characteristics of GEM are as follows:
{i) The basis set consists of functions of Jacobian coordinates, (r,, R.}, of all the three rearrangemecit
channels (¢ = 1 — 3) shown in Fig. 1, each base being in the form ¢y (re)¥n, 1. (Re)[Yi (Fe) Y7 (Re)] s
with obvious notations for angular momenta, n. and N, specifying the radial dependence.

(ii) The radial dependence is Gaussian, ¢n(r) = ! e~ and similarly for ¢ (R), with the range

parameters forming a geometric progression, {1y, = 110" i n = 1 — Ny}
N N3 N3
R, I T2 R, R
N, N, N, NN N
c=1 c=2 c=3

Figure 1: Three Jacobian coordinates of three-body system.

Prescription (i) for preparing the basis functions in three channels makes the function space significantly
larger (even if [ and L are strongly restricted) than the case using the basis functions of a single channcl
alone but makes the non-orthogonality between the basis functions much less troublesome than in
the latter case. These types of three-channel basis functions are particularly suitable for describing
a weakly bound system along any of the R, as well as for describing strong short-range correlations
along any of the r, (c = 1 — 3). Prescription (ii) for the Gaussian ranges has been found to be very
suitable for accurately describing both the short-range correlations and the long-range tail hehavior
in the asymptotic region of few-body wave functions. The Gaussian shape of basis functions makes
the calculation of matrix elements easy even between basis functions of different channels. Thus.
prescriptions (i) and (ii) are the main reasons for the success of GEM in various types of three-hody
bound and quasi-bound states such as muonic molecules [4, 25, three-nucleon bound states (*H, *He:
[6, 7], unstable nuclei, [29, 30] antiprotonic helium atoms [3, 10, 31, 32].

As mentioned before, precision three-body calculations with GEM contributed to the determination !
the first recommended value of antiproton mass from the spectroscopic study of the antiprotonic helin:
atom (He*™ + e~ +5). The study of this system is one of the most difficult three-body problems becatuse
of the following reasons: (i) It is a Coulomb three-body problem of heavy-heavy-light system. (ii) The
total angular momenta concerned are as high as J ~ 30 — 40f. (iii) The excited states to be studied
are not true bound states but so-called Feshbach resonances. (iv) The inter-nuclear motion between
the helium nucleus (Z = +2) and the antiproton (Z = —1) is not adiabatic when they are close to
each other. (v) Correlation between the electron and antiproton should be precisely taken into account.
(vi) Accuracy of eight significant figures in the transition energy (ten digits in eigenenergy) is required
to compare with the laser experiment of the transition frequency. There have been only two groups
that succeeded in overcoming these difficulties; Kino et al. [3, 10, 31, 32] using GEM and Korobu
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[33. 7, 7, 35, 36] who employed the expansion of the atomic coordinates. Physics with the antiprotonic
helium atorms will be discussed.

When we proceed to four-body systems, calculation of the Hamiltonian matrix elements becomes much
laborious. In order to make the calculation tractable even for complicated interactions, we replace
the Gaussian basis function, rle=*"*Y},(¥), by a superposition of infinitesimally-shifted Gaussians,
lime_g E% EZ‘;“{‘ Cim.k e"’(”‘ED‘mk)Z, whose parameters {Cim k, Dimp; £ = 1 — kmax } are so determined
that the latter is equivalent to the former. We make similar replacement of the basis functions in
all the other Jacobian coordinates. Thanks to the absence of the spherical harmonics, use of the lat-
ter functional forms makes the matrix element calculation extremely easy in practice with no tedious
angular-momentum algebra. The technique of infinitesimally-shifted Gaussians [37, 38] have been ap-
plied to various three- and four-body calculations in hypernuclear physics [11, 12, 13, 14. 15, 16] as well
as four-nucleon bound states [39] and double-muonic molecules [99].

A stringent test of accuracy of GEM was made in Ref. [6] in the calculation of three-nucleon bound
states using a realistic NN interaction. The calculation of the binding energies and some properties
of the wave functions, including the asymptotic normalization constants, agreed with the results of
the 34-channel Faddeev calculations. Practicality of the infinitesimally-shifted Gaussian basis functions
was demonstrated in a benchmark test calculation [39] of the four-nucleon bound state (*He) using a
realistic NN force; in this collaboration of seven groups, agreement between the results of the seven
calculational schemes was essentially perfect. Recently, the same method was applied to the second
0" state of the *He nucleus by Hiyama et al. [40]; a four-body calculation of “He(e, e')*He (03} using a
realistic NN force was performed for the first time. The observed electron scattering form factor was
reproduced well.

An advatage of GEM is as follows. Diagonalization of Hamiltonian automatically yields not only the
lowest eigenstate but also many excited eigenstates having the same spin and parity, J™. Some of
the excited eigenstates are supposed to correspond to observed bound and/or resonance states, and
the others are considered to be so-called pseudo-states representing non-resonant continuum states in
discretized form. A good example is the four-nucleon GEM calculations [39, 40] mentioned above with
a simultaneous calculation of the ground state, the second 0% state, and the distribution of monopole
strengths in the discretized 0% continuum states. In the' case of two-body systems, we tested and
confirmed that such eigenstates form an approximate complete set in a sufficiently wide finite space.
We consider that a large number of eigenstates obtained by GEM constitutes an approximate complete
set also in three-body systems in a finite but sufficiently large space. This property makes it possible
to extend GEM to three-body scattering problems.

An application of GEM to scattering problems has been performed in Coulomb three-body reactions
appearing in the cycle of muon catalyzed fusion. We review the GEM calculations [41, 42] of two types
of important reactions in gCF, muon transfer reactions (dpu)1s +t — d+ (fu)15 +48eV and decay of the
muonic molecule (dHep), which have been stimulating the development of Coulomb three-body reaction
theories. Essence of the method is as follows. The total wave function is divided into two parts; one
is for describing open-channel amplitudes in a usual manner and the other is for amplitude of all the
closed channels which vanish asymptotically. The latter is expanded by the approximate complete set
of the three-body eigenstates which are obtained by diagonalzing the three-body Hamiltonian with the
Gaussian basis functions.

Another application of GEM is to the study of projectile breakup processes in combination with the
method of Continuum-Discretized Coupled Channels (CDCC) [43, 44]. CDCC has been successful in
describing nuclear reactions involving breakup processes of weakly bound projectiles [43, 44, 45, 46, 47,
48, 49, 50, 51, 52] and of unstable nuclei [53, 54]. CDCC has been attracting a great deal of attention
since the advent of experiments using radioactive beams because projectile breakup processes are in
general essential to such reactions. CDCC solves the three-body dynamics by discretizing continuous
intrinsic states of projectile into a finite number of discrete ones. So far, the projectile has been
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assumed to consist of two particles. However, reactions induced by unstable nuclei such as “He(=
a-+n+n), 5B(= a+ *He+p)," Li(= °Li + n + n) are typical examples of projectiles composed
of three particles {clusters). In such cases, it is reasonable to discretize continuum intrinsic states of
the three-body projectile in terms of the pseudo-states (eigenstates) obtained by means of GEM with
diagonalization of the projectile intrinsic Hamiltonian with the Gaussian basis functions.

In spite of many successful examples of the use of the Gaussian and infinitesimally-shifted Gaussian
basis functions in the few-body calculations as mentioned above, it was hard to describe accurately
highly-oscillatory wave functions having more than several nodes, since the Gaussians themselves had
no radial nodes. In this paper we propose an improvement to overcome this difficulty by introducing new
types of functions each of which has radial oscillations, namely, Gaussians multiplied by trigonometric
functions, ! e™*"*cos av,r? and ' €=’ sin avnr? (n = 1 — nmax). They are respectively rewritten as
r(e=™* 4 e~r*) /2 and vl (e~ — ") /2% with complex sizes 1, = (Y +ia) 1, and ) = (1—ia) v,

We refer to these oscillating functions as complex-range Gaussians. To take o ~ 7/2 is recommendable.
We shall show later that use of these basis functions makes it possible to represent oscillating functions
having more than 20 radial nodes accurately. Calculations of the Hamiltonian matrix elements between
the complex-range Gaussians can be performed with essentially the same computer program for the
real-size Gaussians with some real variables replaced by complex ones; this is anothér advantage of
adopting the complex-range Gaussians. Use of these new types of Gaussians makes the applicability of
GEM much wider than hitherto.

Construction of this paper is as follows: In Section 2, the basis functions mentioned above are described
precisely and tested for two-body systems. GEM is presented and tested for three-body systems in
Section 3 and on four-body systems in Section 4. Section 5 shows an application of GEM to the
three-body problems in the muon catalyzed fusion cycles. In Section 6, we present a precision three-
body analysis of the laser spectroscopy of antiprotonic helium atowns and the latest determination of
antiproton mass by GEM. Section 7 demonstrates successful application of GEM with infinitesimally-
shifted Gaussian basis functions to the study of three- and four-body structure of light hypernuclei. In
Section 8, Coulomb three-body reactions are studied. An extension of the CDCC method with GEM to
four-body breakup processes is discussed in Section 9. Summary is given in Section 10. In Appendix,
we present some details of calculational method for Gaussian and infinitesimally-shifted Gaussian basis
functions.

2 Gaussian Basis Functions: Test for Two-body Systems

We consider how to solve the Schrodinger equation for bound states of a few-body system with the total
angular momentum J and the z-component M

(H—E)\IJJM:() {1

using the variational method. In what follows, the other quantum numbers such as parity and isospi
are omitted for simplicity. We expand the total wave function in terms of a set of L%-integrable basis
functions {@yprnin = 1 ~ Nmax} as

Tmax

\I/JM = z C’V(IJ) ¢JM,n- 12

n=1

The Rayleigh-Ritz variational principle leads to a generalized matrix eigenvalue problein

Nmax
S (HY) -ENHCY =0, (:

n'=1

oo

where the energy and overlap matrix elements are given by

J
Hr(m) = (‘I’JM,n I H l CbJM,n’ >

J) \ .
17\/"r(Ln)’ <®J1W,Tt l 1 ‘ ®JM,71/ 7. i 1)

If
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By solving the eigenvalue problem, we can obtain not only the lowest state but also the excited state
eigenfunctions with the same J and parity (and some other quantum numbers); this is an advantage of
the Rayleigh-Ritz variational principle.

An important issue of the variational method is how to select a good set of basis functions {® 4, ;0 =
1 — Nmaxp. There are many candidates for two-body systems. However, for systems with more than
two bodies, construction of a good set of basis functions is not easy, and calculation of the matrix
elements becomes much laborious. From this point of view, the (complex-range) Gaussian functions
written in the Jacobian coordinates of all the rearrangement channels are particularly suitable not only
for the calculation of the matrix elements but also for describing, for example, short-range correlations,
long-range tail behavior and highly oscillatory character of few-body wave functions, etc.

We shall show that resulting eigenfunctions {@%),;7 = 1 — 7ma} obtained by diagonalizing the Hamil-
tonian with (complex-range) Gaussian basis functions form an approximate orthonormal complete set
in a finite but sufficiently large space so that they can well reproduce both bound and continuum states
within that region. In this section, usefulness of the (complex-range) Gaussian basis functions will be
examined in the two-body cases.

2.1 A set of Gaussians with ranges in geometric progression

Let us consider the two-body Schridinger equation
h?
—ﬁv2 +V(r) = E | Yum(r) =0 (5)

where y is the reduced mass and V(r) is a central potential. We expand ¥, (r) in terms of a set of
Gaussian basis functions, ¢S, ,(r) = ¢5(r)Y},(F), with given range parameters:

nlm
Yinl®) = 3% a6 (1), G
P (1) = G (1) Yim (F) (7)
¢S (r) = Nurle ™ (8)
2422, )43\ ?
Ny = (m> (=1~ nmax), (9)

The constant Ny, is for normalization ( ¢S, | ¢S, ) = 1. Note that the set {¢S,;n = 1 — Nimax} is &

non-orthogonal set.

Such an expansion with high accuracy is in fact possible with little effort in the optimization of the
parameters. For our many successful experiences, it seems that the best set of Gaussian size parameters
are those in geometric progression

1
Vp = aﬁ
o= @ (=1 ) (10)

There are three parameters, {fimax, 71, Tnmax } OF {Tmax, 71, a} of which we use the former type through-
out this paper. Because of Eq. (10), the non-orthogonal basis functions ¢S (r) satisfy the condition
that the overlap between the nearest neighbors, ( ¢S | ¢%_,, ), is a constant independent of n, which is
considered to be one of the reasons why the expansion works well.

The expansion coefficients {c,;} and the eigenenergy F are determined by the Rayleigh-Ritz variational
principle, which leads to a generalized matrix eigenvalue problem:

S (T + Vi) = BN ] cn =0, (0= 1 — 7). (11)

n/=1
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The matrix elements are given by

Nuw = (68,165,
nn < nlm l Yn'lm Uy Uny

+3
.G >:(2‘/V71Vn’> 2 . Jl.)\‘

R 5 ) +3
Tow = (@8 '_ﬁ_v2'¢q Y= E_<2l+3)yﬂ’/71’ 2\/17”—’/'7) o (13
n,n Ynlm 2/J' n'lm 1 Uy + Vy Up -+ Uy )
. . oG, [y ) £
Vn,n/ = < (D%lm | V(?‘) } ¢§;flm > = l\rnl l\/'n/l 0 7'21 gt Sl v (7) ridr (14

For three explicit forms of V/(r), we have

<¢Slm \ 7‘2 l Og’lm > =

R z‘—+%
l‘f‘% (2\/z/nun«) < (15

Up + Vpr \ VUn + Uy

; e\
Y 2 2t — (2 /U Vi

G n (G n p Lo

) - ) = e+ Uy | ——— . 16
< Drien | N ‘ Dt > ﬁ (21 T 1)” T 2 ( Dt D )

— 3

¢ 2 3 2/ Up Uy 2

< le’m ‘ emH l (.Dfa,/lm > - f” - . P
Vp + v + 1

ks

|

2.2  Short-range correlation and long-range asymptotic behavior

A property which is required for a good set of variational basis functions for few-body systems is the
ability to describe accurately any rapid change of the wave function in the short-range region {short-
range correlations) and the long-range tail behavior in the asymptotic region. In this subsection, we give
two examples for two-body systems. We emphasise that the same is also true for three-body svstems
as will be shown in Section 3.

Test for *He atomic dimer

One of the very difficult two-body potential problems is to solve the Schrodinger equation for the very
shallow bound state of the *He atomic dimer in the HFDHE2 potential [55] (Fig. 2) :

iy Ce C C N :
Vir)=¢ {Aa*’“ -~ <~—I: + T‘: + ——1.118) F(.’L‘)% . e = I—.Iw)
e(Pla=bf (7 < D) }
€)= ! S100
£(z) { ! (r> DY, e

with 7, = 2.9673A, e = 106K, A = 0.5448504 x10°, o = 13.353384, Cs = 1.3732412. C\
0.4253785, Cp = 0.178100 and D = 1.241314. We adopted a value of hz/M = 1212 K A[SGL

A direct numerical calculation by the step-by-step method gives £ = —0.0008297 K and the wave
function illustrated in Fig. 3. Since this potential has a strong repulsive core accompanied by a shallow
attractive tail which results in the weak binding, one might think that it would be almost impossible for
any variational approach to accurately reproduce this result, particularly the wave function. But, diago-
nalization of the Hamiltonian using our basis functions with the set {7 = 60,7, = 0.14 A, r,, . = 700
A} gives the same energy and wave function as those with direct numerical method as shown in Fig. 3
The difference between the two wave functions is less than 0.01 % for » ~ 150 A and 0.1 % out to
r ~ 750 é beyond which Gaussian-damped behavior appears gradually. The r.m.s. radius is so large
as 88.20 A,

It is striking that both the short-range correlations and the exponentially-damped tail are simultaneousis
reproduced extremely accurately. This owes to the geometric-progression Gaussian ranges which have
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T T T T T
100 59 x10°K
at r=0

> 50

T T T T T T T T T

0.03—m——r+———r—

~.0.02F

oo

o (M(A

Y,

0.01f

Figure 3: Wave function of the He dimer with the potential in Eq. (19): (a) the short-range region
{(—o(r)); {b) the asymptotic region (7 ¥;-o(r)). The solid line is calculated using the direct numerical
method and the present variational method with the Gaussian expansion, Eq. (6), with the set {nnax =
60, r, = 0.14A, Trmax = 100 A}. V< r? > = 88.20 A. Difference between the two results is not visible
since it is less than 0.01 % up to r ~ 150 A and 0.1 % out to r ~ 750 A beyond which Gaussian-damped
behavior appears gradually.

a dense distribution in the short-range region and a coherent superposition of long-range Gaussians in
the asymptotic region. It would be difficult to reach this degree of agreement if one were to choose the

Gaussian ranges stochastically.

Test for deuteron

Next, let us examine a nuclear two-body potential problem, the deuteron ground state for the NN
potential:

V(r) = (—626.885¢7 155" 1 1438.72¢37) /r,  h/m =4147MeV (E = —2.2307MeV)  (20)
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10° r . . . " )

r(fm) r(fm)

Figure 4: Wave function of the deuteron with the potential in Eq.(20): (a)the short-range region
(11=0(r)); (b} the asymptotic region (r ¥—o(r)). The solid line is calculated using the direct numerical
method and the present variational method with the Gaussian expansion, Eq.(6), with the set {nuu. =
30, 11 = 0.02fm, 7., = 30fm }. The difference between the two results is not visible since it is
relatively less than 0.01% up to r ~ 30fm and 0.1 % out to ~ 50 fm beyond which Gaussian-damped
behavior appears gradually.

which is a slightly modified Malfliet-Tjon I-IIT model and was used for a benchmark test paper for the
three-nucleon scattering problem [57].

Diagonarization of the Hamiltonian using Gaussian basis functions with {nga. = 30,7 = 0.02fm,r,, =
30fm } gives the same energy and wave function as those with direct numerical method as shown in
Fig. 4. The difference in the wave function between the variational method and the direct numerical
method is less than 0.01 % up to r ~ 30 fm and 0.1 % out to ~ 50 fm beyond which Gaussian-damped
behavior appears gradually.

Again, the exponential-damping of the wave function in the asymptotic region is well reproduced by the
resultant superposition of the Gaussians with ranges in a geometric progression. It is straightforward
to extend the accurate asymptotic region further using additional Gaussians as needed.

2.3 Approximate complete set in a finite region

By solving the eigenvalue problem of Eq. (11), we obtain an orthonormal set of eigenstates (6), namelv
{wf,’,f(r);i =1 — Nyax }- Some of them are bound states and the others are 'pseudo-states’ representing
discretized continuum states. We consider that the set of discrete states {u);:,)l(r);/l = 1 = npyex} form
a complete set with good accuracy in a finite region of r up to some upper bound and that exact
continuum states are well expanded by the set in the finite region. This is examined below for the
continuum states of deuteron and 5Li(= a + d) [58].

Deuteron continuum states

We consider a quadrupole transition from the deuteron ground state to the [ = 2 continuum states.
A central n — p potential is employed; V;,,(r) = vg e~ (r/70)” with vy = —72.15 MeV and rp = 1.484 i1
which reproduces the radius and the binding energy of deuteron. We first solved Eq. (5), using the
direct numerical method, for the I = 0 ground state, ¥, and [ = 2 continuun states with momentun
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k, tam(k, 1), and calculated the quadrupole transition strength to the k-continuum which is defined as
BO(k) = | ($am(k) [7* Yom | gs) [* (21)

B@(k) is illustrated in Fig. 5 for k < 1.3 fm™! (Eqy < 70 MeV).

Next, taking the Gaussian basis set {¢S,,,(r); n = 1 — npax} With {Npax = 20, 11 = 0.5fm, 7, =
20.0fm }, we solved Eq. (3) for [ = 2 and obtained an orthonolmal set of discrete states {15 (r);
1 — Numax}- We then calculated the quadrupole transition strength to each pseudostates by

B = [, 2ol ) (i = 1 — ). (22)

As shown in Fig. 6, the discrete distribution of Bi(z) simulates qualitatively the continuous k-distribution
of B®(k) in Fig. 5. Assuming completeness of the pseudostate set {wg)n(r);i = 1 — Nimax . we derive
the smooth distribution B(Q)(k) approximately by

Timax

BR(k) =1 3 ( Gom (k) | 9o )b | 7 Yom [ 5.6} [* (23)
i=1
Both the exact form (21) and the approximate one (23) yield the same continuous distribution as shown
in Fig. 5. This means that, at least within the region where r? ¢, s (r) is appreciable, the discrete states
{wé’)(r);i =1 — Nipax} form a complete set with good accuracy.

5Li continuum states

The same test is repeated in the case where a resonance state exists in the continuum. We investigate
[ = 2 continuum of %Li using the o + d model hut neglecting the deuteron spin. An a — d potential of
V(r) = Voe /0% with Vy = —74.19 MeV and b = 2.236 fm generates an [ = 2 resonace at Eon = 3.0
MeV with a width 0.6 MeV.

Exact continuous distribution of the quadrupole transition strength, B¥(k), is illustrated in Fig. 7 in
the region k < 1.3fm™(E.y < 50MeV). We see a resonance and a non-resonant continuum. Figure 8
shows the discrete distribution, B!, to the pseudostates (W (x)ii=1— Nmax } Which were obtained
using the Gaussian bases with {nima. = 20, r1 = 1.0fm, 7, = 20.0fm }. Bi(Q) simulates qualitatively
the continuous distribution of B® (k) in Fig. 7.

Using (23) we calculated the approximate smooth distribution Bg)(k). As shown in Fig. 7, both the
exact form (21) and the approximate one (23) yield the same continuous distribution, not only the
non-resonant continuum but also the resonance. This means again that the discrete states {wéa(r);i =
1~ Nimax ) form a complete set with good accuracy at least within the region where r? g (r) significant.

2.4 Complex-range Gaussian basis functions

As seen in the previous section, the expansion in terms of Gaussian basis functions, Egs.(6) — (9),
is suitable for representing short-range correlations and the long-range tail behavior. However, it is
difficult to reproduce highly oscillatory functions having more than ~ 5 nodes with good accuracy.

Such oscillating functions can appear in highly excited vibrational states of few-body systems. Also,
such functions are necessary to describe the amplitude of a scattering state if one utilizes the Kohn-
type variational method for scattering of composite particles {59]. The same is true in discretizing
the breakup continuum states in the framework of the CDCC method [43, 44] for projectile breakup
reactions.
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Figure 5: Continuous distribution of the
quadrupole transition strengths B@(k) and
B;(,g)(k) in deuteron as a function of n — p rela-
tive momentum k. Difference between the two
results is invisible since it is less than 0.1 %.
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Figure 7: Continuous distribution of the
quadrupole transition strengths B®(k) and
B@) (k) in SLi as a function of a — d relative
momentum k. Difference between the two re-
sults is indistinguishable since it is less than 0.1
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Figure 6: Distribution of the quadrupole tran-
sition strength sz) to the discretized [ = 2 con-
tinuum states of deuteron.
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Figure 8: Distribution of the quadrupole trau-
sition strength Bl-(Q) to the discretized [ = 2 con-
tinuum states of Li.

Although the eigenfunctions of a harmonic oscillator Hamiltonian potential have highly oscillatory
members, they are not useful for three- and more-body systems because the calculation of the matrix
elements with them is very hard when the coordinate transformations are needed in the integration. One
needs good basis functions with highly oscillatory members which are easy to be used for calculations

of few-body systems.

Here we propose useful basis functions which satisfy the above requirement in good accuracy. They are
Gaussian functions multiplied by cosine and sine functions :

(DSICU) _ ]VG'C 7,1 6—1/,,;”2

nl

cos G, (72 =1 — Nyax) 20
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GS(r) = NSS! e " sin auyr? . (n=1— Tmax) (25)

The Gaussian sizes v, are taken to form a geometric progression in the same manner as in Eq. (10).
The parameter a is a free parameter in principle, but numerical tests suggest to take o ~ § (note that

. _ 2 _
cosavyr? =0 at e = e when o= 7).

The reason why the functions ¢S¢(r) and ¢S7(r) are easy to be used in numerical calculations is as
follows: They can be rewritten as

e (r) = Nt i—;—f—"— (n =1 = Nuas) (27)
with complex size parameters
= (1 +iq) vy, me=(1—10)vy. (28)

Calculation of the matrix elements (13)—(14) with the expressions in Eqs.(26) and (27). In this case,
the calculation can be done using essentially the same computer program as for real-range Gaussians
with some real variables replaced by complex ones. this is an advantage of adopting the complex-range
Gaussians. Note that with complex-range Gaussian basis functions, the total number of basis functions
i8S 2N max-

We have ascertained that the complex-range Gaussian basis functions can expand the deuteron and °Li
continuum states in the same (even better) quality as the Gaussian basis functions do in Figs. 5 and
7. More stringent tests are described below and in Section 2.5. From these tests, we consider that the
eigenstates obtained by diagonalizing the Hamiltonian form a complete set in a finite but sufficiently

large space where we are interested in.

Test for highly excited states in a harmonic oscillator potential

A good test of the use of complex-range Gaussian basis functions is to calculate the wave functions of
highly excited states in a harmonic oscillator potential. We take the case of a nucleon with angular
momentum [ = 0 in a potential having fiw = 15.0 MeV. Parameters of the complex-range Gaussian basis
functions are { 2nmax = 28,7 = 1.4fm, Tn,,, = 5.8fm, a = F157 = 1.09}. For the sake of comparison,
we also tested the Gaussian basis functions with the paramters {nmax = 28, r1 = 0.5fm, r,,,, = 11.3fm
}. Optimized ry and r,,,, are quite different between the two types of bases though the total numbers
of basis functions are the same. In Table 1, we compare the calculated energy eigenvalues with the
exact ones. It is evident that the complex-range Gaussians can reproduce up to much more highly
excited states than the Gausssians do. For the Gaussian basis, even if the number of basis functions is
increased, the result is not significantly improved, because the number of oscillation does not increase.
On the other hands, for the complex-range Gaussian functions, as the number is increased, the result
becomes better so long as the number of oscillation is not too large.

Figure 9 demonstrates good accuracy of the wave function of the 19-th excited state having 38 quanta.
Error is within a few %, much smaller than the thickness of the line. The figure suggests that the basis
functions is also suitable for describing scattering wave functions in a finite space. This is examined in
Section 2.5 for Kohn-type variational method for scattering states and in Section 9 for a new treatment
of projectile breakup states in the method of CDCC.

Test for highly excited states of the hydrogen atom
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Table 1: Test of accuracy of Gaussian and complex-range Gaussian basis functions for highly excited
states (I = 0, n < 23) of a harmonic oscillator potential. The number of basis functions is 28 for both
cases. Energies are listed in terms of the number of quanta, £/hw — 2

3.
Exact Gaussian complex-range Exact Gaussian complex-range
0.0 0.0000 0.0000 24.0 24.1 24.0001
2.0 2.0000 2.0000 26.0 26.4 26.0001
4.0 4.0000 4.0000 28.0 29.5 28.0003
6.0 6.0000 6.0000 30.0 32.9 30.0003
8.0 8.0000 8.0000 32.0 37.3 32.002
10.0  10.0000 10.0000 34.0 41.8 34.002
12.0  12.0000 12.0000 36.0 47.9 36.002
14.0  14.0000 14.0000 38.0 53.8 38.003
16.0 16.002 16.0000 40.0 62.3 40.1
18.0  17.998 18.0000 42.0 69.9 42.1
20.0 20.01 20.0000 44.0 82.2 44.2
220 219 22.0000 46.0 91.6 46.3
0.5 B
— - .
s B 4
g : ﬂ A ﬂ —
=) %: o
—0.5}
o 1IO 20

Figure 9: Wave function of the [ = 0, N=19 state obtained by diagonalizing the harmonic-oscillator-
potential Hamiltonian using 28 complex-range Gaussian basis functions. It is compared with the exact
wave function but the difference is invisible since the error is less than a few % everywhere. See text
for the Gaussian parameters.

We explore another typical example in which the complex-range Gaussian basis functions reproduce
highly oscillatory functions with high accuracy. Table 2 lists the calculated energy eigenvalues of the
hydrogen atom with [ = 0,n = 1 —40 compared with the exact values. Parameters of the complex-range
Gaussian basis functions are { 2nmax = 160,71 = 0.015a.u., 7y, = 2000a.u., o = 1.5}. The energy
is reproduced within a relative error of 5 x 107 up to the state with n = 30. The wave function of
the state with n = 26 is illustrated in Fig. 10, both for the exact solution aud the calculated one.
The relative error of the calculated wave function is 1077 — 107 up to r = 1500 a.u.. If one does not
need such a high precision in the energies and wave functions, the number of basis functions can be
significantly reduced.

As an example of using atomic wave functions with such large n, a full four-body GEM calculation is
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Table 2: Calculated energy eigenvalues of the hydrogen atom with [ = 0,n = 1 — 40 compared with
the exact values. Parameters of the complex-range Gaussian basis functions are taken to be { nyax =

80, rq = 0.015&.11., T rmax

=2000a.u., a=15}

n Ee (au) FEexaet (a.0.) relative error
1 -4.999999845x 10~ -5.000000000x 1071 3.1x1078
2 -1.249999980x 101 -1.250000000x 1071 1.6x10°8
3 -5.555555494%x 1072 -5.555555556% 10~2 1.1x10°8
4 -3.124999974x1072 -3.125000000x 102 8.4x107°
5 -1.999999986x 1072 -2.000000000x 10~2 6.8x107°
10 -4.999999983x1073 -5.000000000% 103 3.5x107°
14 -2.551020402x1073 -2.551020408x 1073 2.5x107°
18 -1.543209873x1073 -1.543209877x10~3 2.0x10~°
22 -1.033057849x 1072 -1.033057851x 1073 2.2x10™°
26 -7.396449686x107* -7.396449704x 10~* 2.4x107°
30 -5.555555323x107¢ -5.555555556x 1074 4.2x1078
32 -4.882807341x107¢ -4.882812500x1074 1.1x10°8
34 -4.325109595%x 1074 -4.325259516x 10~ 3.5%x107°
36 -3.856834714x107* -3.858024691x10~* 3.1x107*
38 -3.461488509x107% -3.462603878x107* 3.2x107¢
40 -3.106429115x 10 -3.125000000% 10~4 5.9%x1073
0.016
* ., '
0014 | . .
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Figure 10: Wave function of the [ = 0, n = 26 state of the hydrogen atom. The solid line is the exact
one, and the dots are given by the complex-range Gaussian basis functions with the same parameters
as in Table 2. Relative error of the latter is 1077 — 107 up to r = 1500 a.u. at which absolute value of
the wave function is four-order of magnitude smaller than that at r = 0.

underway by the authors on hydrogen-antihydrogen collisions at very low energies (< 1 K) taking into
account the coupling between (pe™)1s + (Pet)1s and (pp)n + (e~ €™ )y channels; transition to the latter
channels leads to loss of antihydrogen. Here, it is necessary to prepare wave functions of (pf), with
n ~ 24 in terms of complex-range Gaussians in order to calculate Coulomb matrix elements accurately.
As was mentioned in a recent paper on this subject [60], theoretical studies of the collisions can give
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an important suggestions for experiments intending to trap and cool antihydrogen for investigating
matter-antimatter interaction [61, 62].

2.5 Gaussian expansion of scattering state wave functions

As was examined in Section 2.3, the Gaussian basis functions, ¢f,(r), forin a complete set in a finitc
space in good accuracy. We have seen that the complex-range Gaussians, ¢ge (r) and ¢fS(r), are more
suitable for describing highly oscillatory states than the Gaussians are. Thevetore, the former hasis

must form a complete set in good accuracy in much larger space than in the case of the latter basis.

In this subsection, we try to expand scattering states in the interaction region in terms of the complex-
range Gaussian bases and calculate the S-matrix using the Kohn-type variational method for reactious
between composite particles [59]. This method has been employed by many authors in the RGM (res-
onating group method) and GCM (generator coordinate method) studies of nucleus-nucleus scattering
as well as nucleon-nucleon scattering based on the constituent quark model.

We recapitulate the variational method of Ref. [59] for scattering by a sitaple potential. More compli-
cated cases including the applications in the framework of RGM and GCM are given in [59].

Variational method for scattering states

We solve the Schrodinger equation

B RLL+1
Pl e L{ + ) LU
2 dr? 2ur?

(r) - E} up(ry=— /;O Wolr ey (r'y dr 1291

under the boundary condition uz,(0) = 0 and
up{r) = u(LA)(n, kry—Sp u,(;)(r), kr), T2 T {307
Here ry, is the matching radius, and uf)(u(;) ) is the incoming (outgoing) Coulomb function given by
w (k) = Go(n, kr) £iF(n kr) . (31

Fy and G are the regular and irregular Coulomb functions, and k is the wave number and ) the
Sommerfeld parameter.

We define an operator £, by

WA RPL(L+1 . ,
Lp(r,r) = {—Eﬁ + —2(—“;—2—2 +Ur) = E| 6(r — ")+ Wr(r.7") (32}

and a symbol (f L g) by
(fLrg) = / /0 Fr)Y Lo (e, 7y g(r'ydrdr” (33)
0
where not f* but f is used in the integrand. Schrodinger equation (29) is written by L£;uy, =0 .

We introduce a trial function wu,(r) for the exact solution uz(r) and expand u,(r) as

Nmax

u(r) = 3 caun(r) (343

n=1
(in) -y
G U™ (1), < Ty -
n = - {
un(r) {u(L )(n, kr) — sn ugj')(n, kr), T Ty

o
[
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where {u{™(r);n = 1 — nyax } are L2-type basis functions to expand u.(r) for r < ry . Coefficients a,
and s, are determined by coonecting u,(r) smoothly at ry,. From (30) we have

N
Z cp =1, (36>
n=1
N
Z Cp S8y = Sz . (37)
=1

Equation (36) enables us to eliminate any of the ¢,, say ¢, and to rewrite u, as
u(r) =u(r) + D calun(r) —ui(r)]. (38)

n=2

Variational partameters are now {c,;n = 2 — Nyay}; St itself is not a variational parameter. Kohn’s
variational principle for S-matrix leads to linear equations

([t — ] Lrus) =0, (n =2 — Nyay)- (39)

to determine {¢, ;7 = 2 — nyan } and hence the S-matrix Sp by

S =5 + 2 k (ut Lru) . (40)

In order to calculate the fundamental matrix elements (uy, £ u,/) as analytically as possible, the defi-
nition (35) for uz(r) is not convenient. It may be rewritten with a trivial alternative form as

Un(r) = an[u™ () +u!™(F)],  0<r <00 (N=1—Npma) (41)
0] T
(ex) — ! i m
) = {0 k1) s ) — ), o 42)

where u™(r) is extended to the region r > ry, with the same functional form as in r < ry,. Using
integration by parts, we can rewrite (u, L un/) as

(tn L1 ) = ant ( [u + 1l ] L [0 + 0% ]) = anap { @8 £ w9) — (i £ 0y ),

where . o
(FePg)= [ £ LY glryar (44)
with 5 g2 52 (L )z 2
O B d L(L+1 aZpe®
Ly(r) = S + 27 + = E. (45)

The matrix elements (w8 £7 u(™) in (43) is the same as those appearing in bound-state calculations,
and the additional matrix elements ((u{™ Eg)) u{™)) are quite easy to calculate numerically. This is
an advantage of the present variational method; scattering problem can be solved almost in the same
manner as in the bound-state problem.

In Ref. [59], many techniques for calculating the matrix elements (uf™ £ u{) which appear in RGM
and GCM calculations for scattering between composite particles such as nucleus-nucleus scattering
and nucleon(3q)-nucleon(3q) scattering.

complex-range Gaussians as trial functions

In the work of [59], three types of trial functions u(™(r) were proposed with special attention to how
to calculate the matrix elements (u{™ W 4fM) of the non-local potential W (r, r') which appears in the
RGM and GCM calculations of scattering between complex nuclei. Among the basis functions, the
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Gaussian basis functions, rLe*”"Tz, were utilized as one of the most tractable basis in many examples.
including three-body systems. But, it was hard for the basis functions to reproduce wave functions
with more than ~ 5 nodes in the region r < ry. There are some L%-integrable basis functions which
are suitable for highly oscillatory wave functions, such as the eigenfunctions of the harmonic oscillator
potential, but they are not always convenient for systems having three- or four-body degrees of freedon:.

As shown in Section 2.4, the complex-range Gaussian basis functions (24)~(27) are just suitable for sucl
purposes. We propose here to use the basis functions u{™(r) defined below to describe the scatiering
wave functions uy(r) in the interaction region (r < ry):

L n) (o, .
Uy, (7) (,(,(,r) _’ (ﬂ =1~ M) (46)

(n = Nmax + 1 ~ 2nn1ax) . (47)

We calculate the wave function and the S-matrix of the a—'2C scattering in a test optical potential
whose parameters are Vp = —100.0 MeV, W, = ~10.0 MeV, Rg = By = Rc = 4.0fm and ag = a; = 0.5
fm for Eey = 25 — 450 MeV. The matching radius is set at r,, = 8.0 fin; the wave function should
have as many as 20 nodes for r < 1, when Fo, = 400 MeV. Parameters of the trial functions are
{20 max = 40, r; = 1.0fm, 790 = 3.6 fm, a = w/2}.

The calculated S-matrix elements, S = |S|e%? are listed in Table 3 (upper line for each E.,) i
comparison with those obtained by the direct numerical method (lower line). The agreement is very
good for Eg, < 400 MeV. The wave function (r < ry, = 8.0 fin ) at E.,, = 400 MeV is illustrated in
Fig. 11 togeter with that given by the direct numerical method. Difference between the two results is
invisible in the figure since it is within 0.005 in the units of the vertical axis.

The complex-range Gaussian basis functions are extremely good at reproducing the scattering wave
function which has some 20 radial nodes in the interaction region. Therefore, the basis functions can be
used as accurate and tractable trial functions in RGM and GCM studies of reactions between composite
particles up to rather high energies.

r{frm)

Figure 11: Wave function uy(r) (r < rn, = 8.0 fm) of the a—'?C scattering state with [ = 0 wt
E.m = 400MeV calculated by the variational method with 40 complex-range Gaussian bases and by the
direct numerical method. Difference between both results is indistinguishable since it is within 0.005 in
the units of the vertical axis both for the real part (solid line) and the imaginary part (dashed line).
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Table 3: Accuracy of the S-matrix calculated by the variational method with the complex-range Gaus-
sian basis functions for the oo —1? C elastic scattering at E.p, = 25 — 450 MeV. The calculated values
(upper) are compared with those by the direct numerical method (lower) at each energies. The number
of the basis functions is 40. S = |S|e*. k is the wave number.

Eon (MeV) k (fm™)  |S] § (deg) Een (MeV) k (fm™1)  |S] 8 (deg)
25.0 1.89 0.2245 120.53 250.0 5.99 0.4341 113.59
0.2244 120.53 0.4346 113.45

50.0 2.68 0.2624 179.41 275.0 6.28 0.4472 101.71
0.2624 179.36 0.4478 101.71

75.0 3.28 0.2950 110.70 300.0 6.56 0.4608 91.38
0.2950 110.68 0.4600 91.31

100.0 3.79 0.3226 64.05 325.0 6.83 04718 82.34
0.3228 64.03 0.4713 82.01

125.0 4.24 0.3467 29.51 350.0 7.09 0.4784 73.71
0.3469 29.48 0.4819 73.63

150.0 4.64 0.3680 2.50 375.0 7.34 0.4957 66.16
0.3683 2.48 0.4918 66.03

175.0 5.01 0.3873 160.61 400.0 7.58 0.4989 59.33
0.3874 160.59 0.5011 59.09

200.0 5.36 0.4050 142.39 425.0 7.81 0.5109 52.24
0.4047 142.36 0.5098 52.72

225.0 5.68 0.4210 126.97 450.0 8.04 0.5125 47.28
0.4203 126.86 0.5181 46.85

2.6 Infinitesimally-shifted Gaussian basis functions

In the calculations of the matrix elements of the Hamiltonian of three-body systerns, particularly when
complicated interactions are employed, integrations over all of the radial and angular coordinates become
laborious even with Gaussian basis functions. The difficulty increases when we proceed to four-body
problems. But, an important development [30, 37, 38] of our method was made by introducing the
infinitesimally-shifted Gaussian basis functions by
G !, —vr? = : 1 fa ~v(r —eD 2
(bnlm(r) = an'f' e " lm(r) = an lim 1 Z CYlm,k € ( i) - (48)
e—0 ¢ P

How to determine the parameters, {Cimk, Dimk; £ = 1 — kmax}, is described in Appendix A.2. Taking
the limit ¢ — 0 is to be carried out after the matrix elements have been calculated analytically. This
new set of basis functions makes the calculation of three- and four-body matrix elements very easy. All
the advantages of using the usual Gaussian basis functions remain with the new basis functions. With
the use of these basis functions a variety of four-body calculations have been performed [12, 14, 15, 16.
39, 99], which will be reviewed in Sections 4, 5 and 7.

Two-body matrix elements

Although the infinitesimally-shifted Gaussian basis functions are particularly useful in three- and four-
body problems, it is instructive to show an example of calculating the matrix elements of a Gaussian
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potential v e * in the two-body case. Integration over r is easily performed as
G —ure G
< ¢nlm(r) l Vo € - I @n’lm(r) >

: =1 .
= vg Ny Ny lim ee’ CinkConi €xp | —————
0 +¥n, 7 s,s’—’O( ) ‘L]; - m, m, p Un + U + 11

VnVny * f 2 . .
(eDlm.k — £ Dlm,ls:/) . \fif)}

If we take very small € and ¢’ and compute Eq. (49) using the function subprogram for the exp|- |
part, we suffer from a serious round-off error in the summation over k and k' since terms lower-order
than (e¢’)’ survive. If, instead, we expand the individual exp[ - -] with respect to ¢ and ¢/, the terms
with powers lower than (s¢')! cancel out by the summation over k& and k' due to the definition of ow
Cim and Cin . At the end of the calculation of Eq. (49) one is left only with a term proportional o
(e¢')* when ¢ and ¢ — 0. Therefore, the exp|- -] pert of Eq. (49) is replaced by

<

i
1 129%%% R
| ——"2— (2¢¢'D;, ;. - Dy
I ( e+ o +M> ( tmk " mk)

Since the (ee')! factor cancels with the ()™ in Eq. (49) , the two-body matrix element beconies
independent of ¢ and ¢’ as

< (bslm(r) I Vo 67;”‘2 [ gﬁzm(r) >

1

. 1 Unnt y * r

= oy <“‘;—;‘;> 222 CumCionse (D - D) (51)
- n n’ kK

Each term on the RHS of Eq. (51) is a product of a term which depends only on the Gaussian size
parameters and a term which is only a function of the shift coefficients. The latter can be calculated
and stored prior to the matrix element calculation. Because this separation is also possible for three-
and four-body matrix elements, the computation is very simple and efficient as shown in Appendix A.3
and A.4.

3 Gaussian Expansion method for Three-Body Systems:
Test for ‘He-Trimer and A = 3 Nuclei

The Gaussian Expansion Method (GEM) for three-body systems is described in the following in the
case of central forces alone. We consider Schrodinger equation

[T+ VW) + V() + VO (ry) ~ E] Ty =0 (52)

where T is the kinetic-energy operator. The three-body total wave function W, is described as a sum
of amplitudes of three rearrangement channels ¢ =1 — 3 (Fig. 12).

Wi = 055 (1, Ry) + @557 (k2. Ra) + @57, (15, Ry) (53]

Each amplitude is expanded in terms of the Gaussian basis functions written in Jacobian coordinates
r. and R

o, (re, Re) = > Agtcc)lc,Nch [va(ilc(rC) wchc(Rc)} iy (c=1-3), (54)
nele,NeLe
where
i (1) = SI(T) Yim (F), d)ﬁl(r) = Nyt e (0= 1 — fomax) » (95)

i
Piu(R) = Ui (R) Viu(R), YL (R) = Ny R" e A (N =1~ Npyae) (56
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Figure 12: Three Jacobian coordinates of three-body system.

The normalization constants N,; and Ny are shown in Eq.(9), and the Gaussian ranges are given by

vV, = 1/7’3 , T =171 (Ln_1 (n =1- nma.x) y <57)
A = 1/RY,  Rv=RiA"' (N=1-Np), (58)

The numbers and range parameters depend on [. and L. but the dependence is omitted for simplicity
of notation. I. and L. are restricted to 0 < . < Ipge and |J — {] < L. < J + .. Eigenenergy
E and coeflients Aicc),cy N.L, are determined by the Rayleigh-Ritz variational principle. The method of
calculation of the interaction matrix element

([ #oia(ra) ¥R, (Ra)] VO | [0 (r) 050, (R ) (59)

for arbitrary functional form of V{}(r,) is described in Appendix A.3.

If one employs the infinitesimally-shifted Gaussian functions instead of the Gaussian bases (71) and
(56) as

1 kmax ' 2
G _ ; —vn(r— Dy k)
Frin(t) = N g o 30 Cimie e : (60)
G . 1 Fasx —AN(R—eDpari)?
énim(R) = Nyp lim Do)t K2=:1 Crumi e T (61)

the matrix elements (137) are much more easily calculated without the laborious Racah algebra as
described in Appendix A.3.

3.1 Test for ‘He-trimer

As seen in Section 2.2, the interaction between two *He atoms has a very strong repulsive core with
weak attractive tail which supports a quite loosely bound state. It is a stringent test of calculational

Table 4: Three-body angular-momentum space (I, L, J) and the Gaussian range parameters for the
J =0 states of “He trimer. Lengths are in units of A.

[ Nmax  Tmin T'max Nma.x Rmin Rma.x

L
0 0 30 0.14 150.0 22 0.8 650.0
2 2 15 0.30 150.0 15 1.5 250.0
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Table 5: Calculated energies of the 07 ground and the 0% excited states of ‘He trimer by the presen
method and the Faddeev method [56]. No other excited states exist.

“He trimer E(Oh) (K) E(0F) (K)
present method —-0.114 —(.155 x 1072
Faddeev method [56] -0.11 —0.16 x 107*

0.004}
<
S 0.002}
0 e
0 0 20 40 60 80
o
r(A)

Figure 13: Two-body correlation function C(r) of (63) for the ground state (07} of *He trimer obtained
by the GEM. Left pannel for the short-range correlations. Right one for the tail which deviates from
the exponentially damped behavior for » > 80 fm.

methods to solve the bound state of three ‘He systems (*He trimer); successful methods should describe
properly both the very strong short-range correlations and the long-range tail behavior. This system
has also attracted the attention of few-body theoreticians because of Efimov states, but we do not
discuss this problem in this paper (for example see [56]).

The “He-*He potential used here is the same as in Section 2.2. So far, this three-body problem has becn
solved most accurately by Cornelius and Gloeckle [56] using the Faddeev method with s- and d-wave
pair interactions for total J = 0 (no bound state for J > 0) as shown in Table 5.

In our method, the three-body wave function is described as in (53)—(58). However, siuce the three
particles are identical bosons, <I>(f1)w in (53) has the same form for ¢ = 1 — 3, and therefore W ;3 is to be
expanded as
Uon = 3 Awse {[#500) USR]+ [0002) 08 (Ra)] o+ [65i00) wRL(Rs)] b (62)
nl,NL
Basis parameters employed in the converged calculation are listed in Table 4; the total number of basis
functions is 885. Although the wave function space is truncated, all angular momenturn components of

the interaction are fully taken into account in our variational method. Converged energies are given in
Table 5. The result of the present calculation agrees well with that of the Faddeev-method calculation.

In order to compare the two-body correlations in the trimer with those in the dimer, we calculated the
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Figure 14: Two-body correlation function C(r) of (63) for the excited state (0F) of ‘He trimer obtained
by GEM, left pannel for the short-range correlations and right pannel for the tail which deviates from
the exponential for » > 800 fm.

two-body correlation function (two-body density)
C(T) =< \I/JZQ'(S(I‘ —_ I'12)|\I’J:0 > (63)

for the ground state (07) and the excited state (03). Here ri is the distance between particle 1 and 2.
The r.m.s. distance between the pair is calculated to be 11.3 A and 116.5 A for the ground and excited
states, respectively. C(r) is shown in Figs. 13 and 14 for the ground and excited states, respectively. It
is reasonable that almost the same shape of the strong short-range correlations is seen in the ground
and excited states as in the case of the dimer (Fig. 3 for the wave function). Size of the excited state
is similar to that of the dimer, but the ground state shrinks by one order in size compared with the
dimer. Superposition of the Gaussian basis functions through the diagonalization of the Hamiltonian
results in reasonable shape of the tail out to ~ 80 fm in the ground state and ~ 800 fm in the excited
state. This behavior is not unexpected from our experiences in three-body calculations.

In conclusion, this tough three-body problem in the presence of a very strong repulsive core has been
solved very accurately by GEM for both the compactly bound ground state and the loosely bound
excited state without assuming any ad hoc two-body correlation function.

3.2 Test for the three-nucleon bound states (°H and 3He)

One of the best tests of three-body calculational method is to solve three-nucleon bound states (*H and
*He) using a realistic NN force. This test was done for GEM in Ref. [6] using the AV14 force [63]
and in Ref.[7] using the AV14 force plus the Tucson-Melborne (TM) three-body force [64]. We shortly
review them here.

The total wave function may be written as the sum of three component functions, one for each rear-
rangement channel of Fig. 12

Usmrr, = ®omrr(ry, Rh) + @oarr. (ra, Re) + Sonrrr (rs, Ra) (64)

where the ®ja 71, (r;, R;) have the same functional form for ¢« = 1 ~ 3. We expand each of them
in the Gaussian basis functions in the three-body angular-momentum channel which is specified by
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Table 6: LS coupling three-body angular-momentum space for the 1/27 ground state of *H and “He

Lengths are given in units of fn.

No. L L A s Y Pmax  Tain  Tmax Nuax  Bunin - Ruax
1 0 0 0 0 1/2 15 0.05 15.0 15 0.3 9.0
2.0 0 0 1 172 15 005 150 15 0.3 9.0
32 0 2 1 3/2 15 0.1 15.0 15 0.3 9.0
4 0 2 2 1 3/2 15 0.1 150 15 0.3 9.0
5 2 2 0 1 1/2 15 0.1 150 15 .3 9.0
6 2 2 1 1 1/2 15 0.1 150 15 0.3 9.0
7T 02 2 1 1 3/2 15 0.1 150 15 0.3 9.0
8 2 2 2 1 3/2 15 0.1 150 L5 0.3 0.0
9 1 1 0 1 1/2 10 1 10.0 10 0.3 6.0

10 1 1 1 1 1/2 10 0.1 10.0 10 0.3 6.0
11 1 1 11 3/2 10 0.1  10.0 10 0.3 6.0
12 1 1 2 1 3/2 10 0.1 10.0 10 0.3 6.0
13 1 1 0 0 1/2 10 0.1 100 10 0.3 6.0
4 1 1 1 0 172 10 0.1 10,0 10 0.3 0.0
15 2 2 0 0 1/2 10 0.1 100 10 0.3 6.0
6 2 2 1 0 172 10 0.1 10.0 10 0.3 6.0
17 1 3 2 1 3/2 10 0.1 100 10 0.3 6.0
8 3 1 2 1 3/2 10 0.1 100 10 0.3 6.0
19 3 3 0 1 1/2 10 0.1 10.0 10 0.3 6.0
2003 3 L 1 1)2 10 0.1 100 1 0.3 6.0
213 3 t 1 3/2 10 0.1 10.0 10 0.3 6.0
22 3 3 2 1 3j2 0 01 100 0] 0.3 6.0
23 3 3 0 0 172 10 0.1 100 10 0.3 6.4
24 3 3 1 0 172 10 0.1 100 10 0.3 6.0
25 2 4 2 1 3/2 10 0.1 100 10 0.3 6.0
26 4 2 2 1 3/2 10 0.1 100 10 u.3 6.0

Table 7: Calculated binding energy and the asymptotic normalization constants Cs and Cp of *H by
the present method and the Faddeev method. This table is taken from [6]

(a) Present method
number of  B(*H)
channels (MeV) Cg Cp

5 7.643 1.825  0.0733
8 7.660 1.825  0.0735
10 7.674 1.826  0.0737
12 7.678 1.827  0.0739
14 7.6818 1.828  0.0741
16 7.6820 1.827  0.0741
18 7.6836 1.827  0.0741
20 7.6840 1.827  0.0741
22 7.6843 1.827  0.0740
24 7.6843 1.827  0.0740
26 7.6844 1.827  0.0740

a={nl,NL A, s %t JM TT,}:

o (ri, Re) = (05 (F)0R L (Ra)la [ (k)X

(b) Faddeev method
number of B(*H)
channels (MeV) (g Cp
Ref. [66]
5 7.45 1.81 0.0705
18 7.58 1.82 0.0717
26 7.67 1.82 0.0730
34 7.68 1.82 0.0732
Ref. [67]
5 7.440 1.81 0.0704
18 7.576 1.81 0.0717
26 7.658 1.81 0.0729
34 7.673 1.82 0.0731
s (Ols],,, iRy D,

(63)
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Figure 15: Convergence of the binding energies of *H and 3He calculated by the present method [6, 7]
and the Faddeev method with respect to the number of the three-body channels. Interactions used are
AV14 (lower lines) and AV14+TM (upper lines). Ref.[65] for line ¢, Ref.[66] for b and e, and Ref.[67]
for a, d, f, g. This figure is taken from [6, 7].

where x and 7 are the spin and isospin functions, respectively. We consider here the case of J =T = 1/2.
The particle numbers (3, j, k) are taken in cyclic permutation. The Pauli principle between particle j and
k requires [ + s+t = odd; it is easily to see that, under this condition, ¥ s 71, is totally antisymmetric
for the exchange of any pair of particles among ¢, j and k. We take the LS coupling representation for
the sake of simplicity in the space-coordinate transformation; the jj coupling scheme is not necessary
since angular momentum truncation of the interaction is not made.

the partial-wave expansion (truncation) of the interaction is not taken in the present method. We
employ the full-wave interaction.

The total wave function is then expressed in the form

Vimrr, = 9 Aa [ Palry, Ri) + a(rs, Ra) + Pa(rs, Ra) ] . (66)

The coefficient A, and the eigenenergy E are determined by the following equations derived from the
Rayleigh-Ritz variational principle:

<‘I>a/(1‘1, R]) ’ H-F |\I/‘]]yijTz > = 0, for all a". (67)
They lead to an eigenvalue problem of the type of Eqgs.(3) and (4).

In practical calculations, we have to truncate the angular-momentum space of trial functions. In the
calculation described below we restrict the orbital angular momentua to [ + L < 6, which results in 26
types of the LS-coupling configurations. We refer to such configurations as channels (more precisely,
three-body angular-momentum channels) similarly to the terminology the Faddeev calculations. The
26 channels employed in our calculation are listed in Table 6 together with the Gaussian parameters.
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Figure 16: Convergence of the probabilities Figure 17: Deuteron—3He overlap functions,
of the S, " and D states of *H with respect to ug (Ry) for S-state and u§'(R;) for D-state. The
the number of the three-body channels. The solid curves are by the 26-channel calculation.
AV14 potential is used. The Faddeev result The dashed curves are the exact asymptotic
is taken from Ref.[66]. This figure is taken functions normalized at R; = 10 fm. This figure
from Ref.[6]. is taken from Ref.[6].

Convergence of the binding energies and the probabilities of the S, S" and D states with respect to the
number of the three-body angular-momentum channels is illustrated in Figs.15 and 16, respectivelv.
The results were those given by GEM in Refs. [6, 7] two decades ago together with those given by the
Faddeev calculations at that time. The convergence is very rapid in the GEM. Accuracy of our wave
function in the asymptotic region is examined by checking the deuteron-*He overlap functions, «§(R:)
for S-wave and u§ (R;) for D-wave. They are shown in the solid lines in Fig. 17, reproducing accurately
the exact asymptotic functions (dashed lines) up to ~ 17 fm. This wide-range agrecment is enougli
to determine reliably the asymptotic normarization constants, C§ and C§, which agree well with the
result of the Faddeev calculation [6]. Table 7 summarizes the convergence of the binding energy and
the asymptotic normarization constants with respect to the three-body angular momentum channels.

At first sight, the minimum and the maximum ranges of the Gaussians in Table 6, all round and siinilar
numbers, might not seem a result of serious optimization. However, since the number of the basis
functions is enough to give the accurate solution, slight change of parameters does not change the result
in any significant way. In other words, since the computation time needed is very short we take more
than enough number of basis functions and avoid serious effort to optimize the parameters. This i
our rule in our variational calculations of three- and four-body problems. Stochastic treatment of the
parameters might be necessary for problems involving more than four bodies as shown by the stochastic
variational method in [72, 73, 74, 75].
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4 Gaussian Expansion Method for Four-Body Systems:
Test for A = 4 Nucleus

In this Section, we test the Gaussian Expansion Method (GEM) for the four-nucleon bound state.
Calculation of the matrix elements between the four-body basis functions is quite analogous to the
three-body case. The Four-body total wave function W ;s is described as a sum of the components of
18 rearrangement channels (Fig. 18):

Ns N, N, N, N N, N, N, N, N, N, N,
R
P2 P : s A
R, Py R, s 4 P4 r ® Ps
5
Rs Rs s
r r
Ny Ny Ny o N, N N, N, N, N, N N, N,
=1 =2 c=3 c=4 =5 c=6
N, N, Ny N, N N, Ng Ny Noooo N N; r12 N,
Py Rg Po Rio
R
r Pg Ig s Puo Mo VAN P\ Rz
R, Ro
N, N, N N, N N> N, N, N, N, N, N,
C=7 C=8 c=9 C=1 O C=1 1 C=1 2
N o Ne N Ny N Ne Moo NN N, N N,
13
50 W OO
P14 P17
P13 M4 R4 P 15 P1s Ry Iz Mo 8
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13 N N Rie
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c=13 c=14 c=15 C=16 c=17 c=18

Figure 18: Jacobian coordinates for the rearrangement channel of four-body system.

18
Ui =Y 85 (re, Re,p,). (68)

c=1

If we omit the spin and isospin part for simplicity, each component function is expanded in terms of
the Gaussian basis functions of the Jacobian coordinates r., R, and p,:

(I)(JC})M(er Re p.) = > A'(CC)IC,N,;LC,IC,VC/\C [ [aﬁlc (re) ‘/’I%CLC(Rc)]IC Xi,\c(Pc)] ; (c=1-18),

ttcle,NeLede,veAe M

(69)
where we take Gaussian basis functions
¢Slm(r) = ¢SI(T) Yim(T), (bgt(r) = Ny rt et (n=1~=nma) , (70)

PSR = S, (R) Yin(R), ¢S (R) = Nyr RFe™®  (N=1-Nu). (71)
Xoau(P) = Xoa(0) Yau (D), X (p) = Nup p* e (v=1-vaa).  (72)
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The number and the range parameters of the Gaussians depend on (., L., A, and I, but the dependence
is omitted here for simplicity of notation. If some particles are identical, some channels are equivalent to
each other under the antisymmetrization (symmetrization) between the particles, and therefore should
have the same coefficients Ai)tc, NeLedowore 8 S€€N In the previous section for the case of three-body
systems.

In the GEM calculation of four-body matrix elements, Gaussian basis functions are replaced by the
infinitesimally-shifted Gaussian basis functions:

Rmax

3 - . _ = 2 o
¢S, (r) = Ny lim —- > Cimp € vnlr = Dima)? (T3
M Gy &g
Kumax )
Pniu(R) = Nyz lim T Cpag e B Drans)”, (74
=0 (Ae)t
G 1 Kmax b .
Xora(P) = Noa lm ——= 3" e €7 P D) (75
=0 (CL),,E) k=1

A technique for calculating the Hamiltonian matrix elements is presented in Appendix A4,

4.1 Benchmark test calculation of the *He ground state

Calculation of the four-nucleon bound state (“He) using realistic NN force is useful for testing the
method and the scheme of the calculation. So far, this four-nucleon problem has been solved accurately
by several efficient methods, the Gaussian expansion method (GEM) [4, 6, 7, 13, 14, 15}, Faddeev-
Yakubovsky method (FV) [68, 69, 70, 71], the stochastic variational method (SVM) [72, 73. 74, 75},
the hypersperical harmonic variational method (HH) [76, 77, 78, 79, 80], the Green’s function Monte
Carlo (GFMC) method [81, 82, 83, 84], the no-core shell model (NCSM) [85, 86, 87], and the effective
interaction hypersperical harmonic method (ETHH) [88].

The eighteen authors of Ref. [39], including the two of the present authors (E.H. and M.K.), performed
benchmark test calculations of the four-nucleon bound state of *He with the methods mentioned above
using the same NN realistic force, AV8 interaction, and compared the calculated energy eigenvalues
and some wave function properties. AV’ is derived from the realistic AV18 interaction [89] by neglecting
the charge dependence and the terms proportional to L? and (L - 5)2. In this subsection, we brieflv
review the result of the benchmark test of Ref. {39].

Na N, N3 N4
R
rk Px rH pH RH
K-type H-type

Figure 19: Jacobian coordinates for the rearrangement channel of *He. The four nucleons are antisy-
metrized.

In GEM, the total four-body wavefunction is given as sum of the component functions of all the
Jacobian-coordinate rearrangement channels within the LS coupling scheme {Fig. 19):

Uymp =Y CEIQUD 1+ 3 clthell) | (76
[e7

e



E. Hiyama et al. / Prog. Part. Nucl. Phys. 51 (2003) 223-307 251

where the anti-symmetrized basis functions are described by

800 = A{[lgn(r)enr B wr(p)]; [x:(12x;@)oxz @], [ (12m By ()]}, (77)

&) = A{[l[fu(r)en(R)]a 0 ()], [Xs(12)x (3]s [me(12)m(34)]o} (78)

JM
with @ = {nl, NL,A, v\, I,ss'S,t} . We employ the K-type and H-type configurations (Fig. 19). Due
to the four-nucleon antisymmetrizer A, K-type includes ¢ = 1 to 12 channels and H-type ¢ = 13 to 18
channels of Fig. 18. The x’s and the 7’s are the spin and isospin functions, respectively. The functions
én(r), Ywr(R) and ¢u(p) are taken to be the Gaussian basis functions but they are replaced by the
infinitesimally-shifted ones when calculating four-body matrix elements. Gaussian ranges are taken
to lie in geometrical progressions. Eigenenergies and wavefunction coefficients C,,’s are determined by
solving the Schrédinger equation with the Rayleigh-Ritz variational principle.

In the GEM, truncation is made not to the NV interaction but is only to the angular momentum of basis
functions; this makes it possible to accomplish a quick convergence of the solution within {, L, A < 2,
just as in the case of three nucleon bound states discussed in Section 3.

In Table 8, we compare the calculated value of the binding energy £ and the radius with those obtained
by the other six methods. The good agreement for F is within 3 digits or within 0.5 %. This is quite
remarkable in view of the very different techniques of calculation and the complexity of the nuclear force
chosen. Also the radius is in good agreement among seven methods. Table 8 also shws the probabilities
of finding three different total orbital angular momentum components in the 4N system. The agreement
among different groups is good.

Table 8: Calculated results for *He properties by seven methods of calculation. GEM is the present
method. Taken from [39](note that the GEM was referred to as CRC-GV in [39]).

Method E (MeV) {(r?} (fm) S (%) P (%) D (%)
FY ~25.94(5) 1.485(3) '85.71 0.38 13.91

GEM —25.90 1.482 85.73 0.37 13.90

SVM —25.92 1.486 85.72 0.368 13.91

HH —25.90(1) 1.483 85.72 0.369 13.91

GFMC ~25.93(2) 1.490(5)

NCSM —25.80(20) 1.485 86.73 0.29 12.98

EIHH ~25.944(10) 1.486 85.73 0.370(1) 13.89

As a more detailed test of the calculated wavefunctions, we show the NNV correlation function (two-body
density)

C(r) =< Wym0ld(r — r12)| ¥ =0 > (79)

where 1y, is the distance between particle 1 and 2. It is normalized as 47 [ C(r}r?dr = 1. The results
obtained by the various calculational schemes, except GFMC, are shown in Fig. 20. The agreement
among the FY, GEM, SVM, HH, and NCSM is essentially perfect.

In conclusion, the results of all schemes agree very well, showing the high accuracy of the existing
methods of calculation of the four-nucleon bound state.
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Figure 20: Correlation functions of “He in the different calculational schemes: EIHH(dashed-dotted
curves), FY, GEM, SVM, HH, and NCSM(overlapping curves). Taken from [39].

4.2 The second 01 state of ‘He

“He is the smallest nucleus that has discrete excited states. The second 0% state at Ee = 20.2 MeV
has the same spin, isospin and parity as the ground state, and therefore must have quite different
spatial structure orthogonal to that of the ground state. The can then be the smallest system to study
nuclear spatial excitation using realistic interactions. Hiyama, Gibson and Kamimura [40] performed
a full four-body calculation of the 07 and 0F states and the inelastic electron scattering form factor
between them using GEM. Both the ground and excited 0% states were obtained simultaneously by the
diagonalization of the Hamiltonian. The interaction employed was the AV8& force plus the Coulomb
force and a phenomenological 3N force which was adjusted to reproduce the binding energies of 3NV
and *He(07). We took the isospin formalism for total isospin=0 states. There were no other adjustable
parameters.

The calculated energy of the second 0% state is E.(03) = 20.3 MeV in good agreement with the
observed value. One-body densities of the ground and second 07 states are illustrated in Fig. 21 (left).
The dominant structures in the 0% excited-state wave function are 3N + N components. The size of the
excited state is significantly larger than that of the compact ground state. Transition density between
the two 0% states is shown in Fig. 21(right). Its Fourier transform with the proton size correction gives
the form factor of inelastic electron scattering which agree satisfactorily well with the experimental
data (see [40] for details). This is the first four-body calculation of the form factor using a realistic NV
interaction.

5 Three- and Four-body study of Muonic Molecules in Muon
Catalyzed Fusion Cycles

It was in the study of muonic molecules that the present coupled-rearrangement-channel Gaussian
expansion method (GEM) was first proposed in 1988 by one of the authors (M.K.). The study of
muonic molecules in the context of muon catalyzed fusion (4CF) (for example, see [25, 26, 28, 7, 27]}
stimulated very much three-body calculational methods in nuclear and atomic/molecular physics and
quantum chemistry in the 1980s. In this Section, we briefly review pCF and the application of the
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Figure 21: One-body densities of the 07 and 05 states of “He (left) and transition desity between the
states (right).

present method to it.

Muon catalyzed fusion

In the last three decades, increasing attention has been paid to uCF from the viewpoints of i) the
possibility of energy production at low temperature (< 10% K) and ii) interest in physics of the processes
involved in the fusion cycle. The d+ ¢+ u system is known to be a possible source of energy production
by uCF. Main cycle of the uCF in the Dy/T> mixture is as follows (Fig. 22): Muons are first produced
by the decay of pions which are generated in collision of intermediate-energy protons and target nuclei.
The muon injected into the D3/ Ts liquid or gas is immediately (~ 107! s) captured by the deuteron
or triton nucleus to form (du) or (tu) atom. Due to the difference of the binding energies, the muon
in the (du) atom is soon transferred to a triton. The (tu) atom, which is electrically neutral, enters a
D2 molecule and is captured by a deuteron to form a (dty) molecule. In the molecule, fusion reaction
d+1 —* He+n takes place immediately( ~ 10712 s). Muon is shaken off and becomes free again. Muon
continues to catalyze the fusion reaction until its life time is exhausted.

Unfortunately, with a small probability (< 1%), muon is captured by the « particle to form a (*Heu)
atom (called initial muon sticking to *He) and exhausts its lifetime in the atom, although there is a
probability of reactivation of the muon during the travel of the (*Heu) atom in the Dy/T, mixture.

The input energy of the cycle is estimated to be ~5 GeV which is necessary to produce one muon. If
Ny is the number of fusions catalyzed by one muon, since one d — ¢ fusion generates 17.6 MeV, we see
that Ny ~280 is necessary to reach the scientific break-even. Experiments performed so far show that
Ny increases almost linearly with the density of the Dy/T2 mixture, reaching Ny ~150 at the density
of liquid hydrogen. More extended research and development are highly desirable to increase NV; and
to decrease the cost of generating muons as well as to get deeper understanding of the mechanism of
the fusion cycle (see Ref.[25] for the recent status of experiments).

Theoretically, there are many interesting and important problems in the diy fusion cycle from the
viewpoints the physics of few-body systems. For example (see Ref.[25] for details):

1) Energy levels of the (diu) molecule.

2) Mechanism of the formation of the (dty) molecule.

4) Probability of the muon sticking to o particle in the fusion reaction.

)
3) Fusion rate of the (dtu) molecule.
)
5) Muon transfer reaction (du) +t — (tu) + d.
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Figure 22: Main cycle of muon catalyzed d—t Figure 23: Theoretically predicted energy level of
fusion. dty molecule (for example, [4]).

Various theoretical methods have been applied to the problems. The present GEM has been applied
to all the five problems; the method has so wide applicability as well as high accuracy. In this Section.
however, we concentrate on the problem 1) that the most strongly stimulated few-body theoreticians
in 1980s. A Coulomb three-body reaction, 5), is discussed in Section 8.

Precision calculation of the energy of J = v =1 level of (dti) molecule

In the Dy/T; mixture with injected muons, muonic molecules dty (exactly speaking, molecular ious)
are resonantly formed in its J = v = 1 state which is very loosely bound below the (¢4}, + d threshold
{Fig. 23) and is the key to the muon catalyzed fusion. In order to analyze the observed data of the
molecular formation rate, accuracy of 0.001 eV is necessary in the calculated energy of the J = v = 1
state. Since the (tu)1s+d threshold energy is —2711 eV from the d+t+ 4 three-body breakup threshold,
the accuracy of seven significant figures is required for the energy of the J = ¢ = 1 states in the noy
relativistic Coulomb three-body calculation. Note that precision calculation of the energies of othies
states is not difficult since they are deeply bound; many calculational methods were successful.

This difficult problem on the energy of the J = v = 1 state was challenged by many theoreticians in
nuclear and atomic/molecular physics and chemistry. The energy below the (f1)s+d threshold, ;). was
obtained as —0.64 eV by Vinitsky et al. [90] (1980) and —~0.656 eV by Gocheba et al. [91] (1985) with
the adiabatic representation. Using variational method with elliptic basis, Vinitsky et ol {92] (1986)
and Korobov et al. [93] (1987) gave —0.6589 eV and —0.65968 eV, respectively. Finally, —0.6600]
eV was obtained by Szalewicz et al. [94] (1987) with Hylleraas basis, —0.66010 ¢V by Kamimura 1
(1988) with GEM and —0.66017 eV by Alexander et al. [95] (1988) with Slater geminals. Swminarizing.
—0.660 €V was recognized in 1988 as a reliable solution to the order of 0.001 eV.

Since the muon mass is not negligibly small compared with the nucleon mass, fully non-adiabatic cul-
culations were necessary; this is a difference from ordinary molecules. All methods in atomic/molecula
physics and in chemistry cited in the above paragraph (except GEM [4] which is from nuclear physics),
suffered from the difficulty coming from this non-adiabaticity. Main trouble was the large nou-orthogonalit
between the basis functions; the diagonalization of the energy and overlap matrices (~ 2000% 2000} re-
quired quadruple-precision (~30 decimal-digit arithmetics) and the computation tine of the order o
10 hours on the computers at that time.

On the other hand, GEM taken by Kamimura [4] needed only about 2 minutes for calculations ol the
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same size. More precisely, it took about 30 sec to calculate the J = 1 matrix elements of 2000 x 2000
and about 100 sec the eigenenergies and vectors of the 10 lowest J = 1 eigenstates on a FACOM VP-
200 computer in 1988. This fast computation is because the use of the Gaussian basis functions which
spanned over the three rearrangement channels and had the ranges in geometrical progressions sufferred
little from the trouble of the linear dependence between large scale basis functions, and therefore the
method works entirely in double-precision {~14 decimal-digit arithmetics) on supercomputers.

Motivation of the proposal of Gaussian expansion method (GEM)

Motivation of the proposal of the present multi-channel GEM in 1988 was as follows: The J = v =1
state in the dty molecule is located very closely to the (tu)is — d threshold. According to Ikeda’s
threshold rule [96], the state is naturally considered to be dominantly composed of a loosely coupled
(t11)15 ~ d configuration in Channel 1. Such a configuration is difficult to describe accurately in terms of
the basis functions spanned over the (dt) — p channel (¢ = 3) only, since one would need large value of
the angular momenta I3 and L3 associated with the coordinates r3 and Rg, respectively. Therefore, for
the precise description of the J = v = 1 state which is nearly dissociating into the (tx);s — d two-body
system, it is of particular importance to employ the Jacobian coordinate (ry, Ry) of the (tu) — d channel
explicitly. Furthermore, in order to conveniently describe the d — u and d ~ t correlations, one also
needs the basis functions which span over the (dy) — t and the (dt) — p channels. The equal treatment
of all three rearrangement channels (or three particles) is natural in the sense of nuclear physics since
the muon mass is not very different from the nucleon mass. From the viewpoint of atomic/molecular
physics and quantum chemistry, however, 2 muon is analogous to an electron and is treated separately
from the nuclear motion.

c=1 c=2 c=3

Figure 24: Three Jacobian coordinates of the d + ¢ + u system.

The three-body Hamiltonian is given by

B’ h? g2 e? €?
H=——V: ~—Vi ——~—4+— (c=120r3), 80
2mc fe ZMC € ™ ) T3 ( ) ( )
where m, and M, are the reduced masses associated with the coordinates r. and R., respectively. In
Ref.[4], it was proposed to describe the total wave function W a(dtpe) as a sum of three component
functions of the coordinates of the rearrangement channels c =1 — 3.

Uynr(dip) = @537 (11, Ry) + @5 (r9, Ro) + @457 (r3, Rs) - (81)

Each component is expanded in terms of the Gaussian basis functions of the Jacobian coordinates r.
and R
q)SC)W (I‘C, R‘C) = Z Ailcc)lc,NcLC [¢)Sclc (rC) wlc\;/ch(R‘c)J JIM (C =1- 3) . (82)
ncle,NeLe
As described in Section 6, the basis functions ¢S, (r) and ¢§, ,,(R) are given by the Gaussian functions
with the ranges in a geometrical progression. Since small values of the angular momenta [ and L are
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sufficient to reach a converged solution, the present method does not sutfer irom the over-completeness

problem.

Convergence of €1, the energy of the J = v = 1 state, with respect to the number of the three-body
basis functions is shown in Table 9. In order to discuss this sort of accuracy, the employed values of the
physical constants are important; see Ref.[4] for this. Also, corrections by the relativistic effect and the
finite sizes of d and t affect the energy non-negligibly; discussion of the corrections is beyond the scope
of the present paper. See, for example, Ref.[25, 26] for it.

Table 9: Convergence of €13, energy of the J = v = 1 state of muonic molecule dtu, with respect to the
number of the three-body basis functions in the GEM [4]. (Later, it was improved to -0.66017 eV with

2748 bases [97]; see Table 10).

number of basis

ey (eV) in dip

1789 —0.660 038
1848 —0.660048
2044 —0.660070
2240 —0.660084
2438 —0.660 096
2662 —0.660 104
Table 10: Three-body angular-momentum channels and Gaussian parameters for the J = v = 1 statc of

dtu molecule. The Gaussian basis set used in the calculation of the asymptotic normalization constant
Ch is listed. The total number of basis functions is 2748 giving €17 = ~0.66017 V. The same parameters
are taken for ¢ = 1 and 2 except for the first two lines. Taken from [97].

c lc Lc Nmax  Tmin T'max ]Vma.x Rmin Rmax
1 0 1 21 0.006 12.0 40 0.8 550.0
2 0 1 21 0.006 12.0 18 0.8 280
3 0 1 10 04 6.0 10 0.4 6.0
12 1 0 15 0.2 4.0 14 1.2 18.0
3 1 0 9 04 6.0 8 0.4 6.0
1,2 1 2 10 0.2 4.0 9 1.2 16.0
3 1 2 8 04 6.0 8 04 6.0
1,2 2 1 9 02 4.0 9 1.2 120
3 2 1 8 04 6.0 7T 04 6.0
12 2 3 9 0.2 4.0 9 1.2 120
3 2 3 7 04 6.0 7T 04 6.0
12 3 2 9 04 4.0 3 1.2 12,0
3 3 2 7 04 6.0 7 0.4 6.0
12 3 4 4 08 4.0 4 1.6 3.0

Asymptotic behavior of the wave function of the J = v = 1 state of {di;) molecle
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The important issues of the study of the J = v = 1 state of (dtu) are firstly to determine the energy
€11 precisely, and secondly to determine the asymptotic normalization constant of the three-body wave
function of the state. The latter is required to calculated the formation rate of the J = v = 1 state of
{dtp) in the resonant collision of a Dy molecule with a (tu) atom in its ground state

(tir)1s + D2 — (dtu)11dee, (83)
which is one of the key reactions in the uCF cycle.

Since this is a very peripheral process, the amplitude of the (diu) wave function in the asymptotic
region is of great importance. In the asymptotic region, a (dty) molecule is separated into (¢4);s and
d, and therefore the J = v = 1 wave function, say \Ilgﬁ,),, takes the form

(1 + K:Rl)e—lin

() = Crod” (B) Yinr (Ra) 1 (), il (Ra) = = =pme ™™,
1

(84)

where k = /2M;|e11]/k with M, the reduced mass of the ¢y and d. Cyi is the asymptotic normalization
constant. On the other hand, the asymptotic behavior of Wy1p(dtu) is given by the (tu)is — (dip)
overlap function, u1,(Ry), as

un(R) = (Yinr(Rr) 682 (r1) [Wrar(dt) ), 5, (85)

In the asymptotic region, u;;(R1) is proportional to uﬁs)(Rl) as long as Wy (dtn) is accurate. The
asymptotic normalization constant C7; is then determined by the ratio

U1y Rl)
Cu = (As)( (86)
uy - (Ba)
independently of R; in the asymptotic region. Magnitude of C; is sufficient to derive the formation
rate of (dty) and no other information on Wiy (dtp) is necessary.

Paying careful attention to the asymptotic behavior of Wy (dtu), we calculated Cy; in Ref. {97]. The
Gaussian basis parameters used is listed in Table 10, which gave ¢ = —0.66017 V. Figure 25 illustrates
w1 (R1) and Cy uﬁ‘s) (R;) with C1; = 0.874. 1t is striking that, in the asymptotic region, they agree with
each other within 0.1 % in the interval 30 < R; < 140 m.a.u. (muon atomic unit) which is sufficiently
wide to determine the Cy; value reliably. The ratio, uu(Rl)/[Cnuﬁs)(Rl)] with Cy; = 0.874 is shown
in Fig. 26.

It had been difficult to get such degree of agreement as in the figures before our wave function was applied
to the problem, because the (dtu) wave functions in the literature had been poor in the asymptotic
region. For example, Aissing et al. [98] obtained C;; = 1.006 using the wave function obtained in [95]
which gave the same value of €31 = —0.66017 eV as in our case, but the ratio uu(Rl)/[Cnu{ﬁ‘s)(Rl)]
with C1; = 1.006 shown in Fig. 26 had no constant region; the strong R; dependence suggested a large
error in their Cyy value.

Here, we again emphasize that the success of our wave function in the asymptotic region owes to the
explicit use of the three rearrangement-channel component functions in the Jacobian coordinates and
the long-range Gaussian basis functions in a geometrical progression: Such basis functions have no
severe linear-dependence even for long-range basis.

Prediction of double muonic molecules

One can expect a possibility of observing, for the first time, double muonic hydrogen molecules, ppus,
ddugs, ttp, pdu, ptug and dtpp since the production of an ultra-high intensity muon beam is planned
at JHF facility at KEK-JAERI Therefore, we predicted [99] the level structure of the double muonic
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Figure 25: Asymptotic behavior of ui;(R;) Figure 26: As%'mptotic behavior of the ratio
*)(R,)]. The solid line is by [97]
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than 0.1 % in the interval 30 < R; < 140 unit.

m.a.u.. Given by [97].

molecules using our four-body calculational method based on infinitesimally-shifted Gaussian basis
functions described in Section 2.6. The Jacobian coordinates considered are given in Fig. 27 for the

ppppt (ddpp, ttup) system.

H H H H H //;1
Q o @ o O O w O
o)
Ry
e I @ _ @ -
c=1 =2
Bl B
Re L Py Ps
OO ORONN0O
c=4 CI‘=55 K‘/ e=6

Figure 27: Jacobian coordinates of the p+p+ g+ p system. Antisymmetrization is to be made between
two protons and between two muons.

The predicted energy levels of ppup, ddup and ftup are shown in Fig. 28. The number of the bound
states are similar to the cases of single muonic hydrogen molecules, ppu, ddu and tty. For the same
J™. the lowest state is lower but the excited state (if exist) is higher thau in the case of single muonic
molecules (for example, —325.1 eV for J = v = 0, and ~35.8 eV for J = 0,v = 1 in ddp). This 15
understandable since the adiabatic potentials between the two nuclei in the ground and the excited
states are respectively lower and higher than those of the single muonic molecule due to the presence of
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Figure 28: Predicted energy levels of double Figure 29: Predicted energy levels of double
muonic molecules ppup, ddup and tepp [99). muonic molecules pdup, ptupp and dtpp [99).
Energies are with respect to the threshold for Energies are with respect to the threshold for
(pr)1s+(p)rs, (duhrs+(dp)is, (Ei)rs+(Ep)1s, (puhs + (dphs, (Pi)1s + (Eu)rs, (d)ys + (Bu)1s,
respectively. respectively.

one more muoin. Since the muon to nucleon mass ratio is not so small, non-adiabatic effect is manifest
in the large isotope dependence between the three types of molecules; note that the dependence is
negligible in the case of normal molecules.

In the case of pduu, ptup and dtpp, the predicted level structure is as shown in Fig. 29. It is very
similar to Fig. 28; the difference is mainly due to the nuclear mass combination. The nuclear fusion
rate in the J = v = 0 state of dtuu, estimated in the same manner as in [100], and is found to be ~ 1012
s~7 which is an order of magnitude larger than the rate in dtyu.

6 Antiprotonic Helium Atom: Determination of Antiproton
Mass

The mass of antiproton has been believed to be the same as the mass of proton, but there was no
precise experimental information on it before 2000. In the 1998 edition of Particle Listings [101]. the
Particle Data Group gave no recommended value of it. Instead, they only cited several scattered values
obtained until that time. The reason why it is difficult to determine antiproton mass is as follows. The
charge-to-mass ratio was determined very precisely, with 9 x 107! uncertainty [102], from the periodic
motion of an antiproton in a magnetic field. Another relation between the charge and the mass is given
by the energy of the X-ray from p atoms, but the experimental error is as large as 107° to 1074

In the Particle Listings 2000 [1], a recommended value of the antiproton mass was given for the first
time; the relative deviation of the antiproton mass from the proton mass was within 5 x 1077, which
could be used for a test of C PT invariance. The 2002 edition [8] reported an order of magnitude smaller
value of upper limit, 6 x 10~8. These values were provided by a collaboration of theory and experiment
on the antiprotonic helium atoms (pHe™ =He?" + e~ + p), namely the precision three-body calculation
by Kino. Kamimura and Kudo [31, 3, 32, 10] and the high-resolution laser spectroscopy experiment at
CERN by Torii et al. [2] and by Hori et al. [9].

In this section, we review the calculation using the Gaussian basis functions for antiprotonic helium
atoms, a Coulomb three-body system. Difficult but important issues in this problem are as follows:

1) This is a Coulomb three-body problem of a heavy-heavy-light system.
ii) The total angular momentum quantum number concerned is as high as J ~ 30 — 40.
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ili) The excited states concerned are not true bound states but so-called Feshbach resonances.

iv) The inter-nuclear motion between the helium nucleus (Z = +2) and the antiproton (Z = —~1) can
not be treated adiabatically when they are close to each other.

v) The correlation between the electron and the antiproton must be accurately taken into account.

vi) Accuracy of eight significant figures in the transition energy (ten digits in eigenenergy) is required
to compare with the laser experiment of the transition frequency.

All of i) through vi) are difficult, but the calculation by Kino et al. [3, 10, 31, 32} using the Gaussian
Expansion Method (GEM) has cleared all and made it possible to determine the latest value of the
antiproton mass mentioned above.

6.1 Antiprotonic helium atoms

Antiprotons injected into matter annihilate within a picosecond. It was therefore surprising that much
delayed annihilation was observed at KEK in 1991 [103]; about 3 % of antiprotons injected into the
helium target survived as long as a few microseconds. This phenomenon was soon understood due to
be production of metastable states of antiprotonic helium atom. This exotic atom can be obtained by
replacing one of the electrons in a helium atom by an antiproton. The principal quantum number 7
of the antiproton orbit is estimated to be n & 38, highly excited states. About 3 % of the injected
antiprotons are caught in one of the nearly circular orbitals (I = n — 1) with n = 38.

Strong absorption takes place when the antiproton is in an s-state. Generally, the deexcitation processes
of an atom are the Auger decay (or auto-ionization), radioactive decay, and the Stark mixing. But,
the Stark mixing is prohibited in pHe" because a strong antiproton-electron correlation removes the
degeneracy of angular momentuin states. The radioactive lifetimes of the excited states are in the order
of microsecond, because transition energies are a few eV. The lifetitne of Auger decay is shorter than
several nanoseconds for the lower angular momentum states of the antiproton.

In the vicinity of circular states where the angular momentum quantuin number is the maxirnum value
(L; = n— 1), the Auger transitions are much suppressed, because the Auger electron needs a large
angular momentum gap (Al, > 4 ). Thus, pHe" is in a metastable state which is deexcited only by a
slow radiational decay. The first observation of this interesting phenomenon was made at KEK {103].
The longevity was measured over a wide range of the target density from solid to gas [104]. Morc
than a dozen transition frequencies between metastable states of pHe™ were mneasured with fine laser
spectroscopy in CERN (see Refs. [2, 9], and further references therein). Theoretical prediction by
Korobov [33, 34] played a crucial role in this experiment, because the band width of the wavelength of
laser was narrower than the natural width of the metastable states and the number of pHe™ was quite

small.

The observation of long-lived antiprotonic atoms motivated spectroscopic studies from the viewpoint of
the physics of antimatter: CPT(C, P, and T represent the charge conjugation, parity, and time reversal
transformations, respectively) invariance, weak equivalence principle, interaction between matter and
antimatter, etc.. In this Section, we focus on uncertainty in the determination of the antiproton imass.
The symmetry of the proton and antiproton mass is related to the CPT invariance.

6.2 Method of calculation for pHe™

In order to solve this three-body system precisely, we employ GEM which is suitable for describing the
different types of channels simultaneously and treating the electron-antiproton correlation.

The three-body total wave function W is described as a sum of three components of rearrangement
channels ¢ = 1 — 3 (Fig. 30).

Uy = 055 (r, R) + @557 (1, R) + @57, (13, R) . (87
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Figure 30: Three rearrangement channels (¢c=1, 2, and 3). Channel 1 is suitable for describing the
atomic picture of the antiprotonic helium atom. Channel 2 is suitable for describing the molecular
picture. Channel 3 is introduced to effectively describe the correlation between the electron and the
antiproton.

Channel 1 is suitable for describing the atomic picture mentioned above. Channel 2 is for describing
the molecular picture. Channel 3 is for describing the electron-antiproton correlation which plays an
essential role in long lifetime of the atoms by reducing the Stark mixing.

Each amplitude <I>E,°1)V,(rc, R) is expanded in terms of the Gaussian basis functions of the coordinates r,
and R:

e R) = > AV . [¢Sclc(r0) wIC\;ICLC<R)JJM (c=1-3), (88)
nele,NelLe

d)slm(rﬂ) = an rl e-unrg lm(fc) (Tl =1- nmax) s (89)

YSn(R) = Nyp RE e v (R) (N =1— Npa). (90)

The Gaussian ranges are chosen to lie in a geometrical progression.
vy = 1/72, =110t (n=1—nnax), 91)
A = 1/R%, Ry=R A" (N=1- Nuw) (92)

The number and range parameters of the Gaussians depend on /. and L. but the dependence is omitted
here for the simplicity of notations (though given precisely in Table 12).

The Hamiltonian is written as
202 2 2e?

R,
- Ty, — -+ & 28 93
2R Vet Tus 1 +T3 R (93)

B,

H= - 2
2#”"0

c

where p,, and pg are the reduced masses associated with the coordinates r. and R, respectively, and
the mass-polarization term of the kinetic-energy operator, T p., is given by

Ly, Vg (c=1)
Tm4p. = 0 (C = 2) (94)
%;Vl'a . VR (C = 3)

Since the electron mass is very much smaller than the other two particles, the Jacobian coordinates were
not used for Channels 1 and 3 to avoid the complexity and numerical difficulty in the rearrangement
of the high-angular momentum components. But, the mass-polarization term of the kinetic-energy
operator is exactly treated; this is crucial in the precision calculation.

Since the metastable states with J ~ 30— 40 concerned here are the Feshbach resonances, it is desirable
to treat them, for example, with the complex-coordinate-rotation (CCR) method [105] so as to take the
proper boundary condition into account. The work of Ref. {10} took this method as described below,
but in Refs. [3, 31, 32] the real-scaling method was employed.
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The work of Refs. [3, 31, 32] examined the importance of taking the three rearrangement channels a
the same time and convergence of the eigenenergy with respect to the number of basis functions. Table
11 demonstrates this; if Channels 1 — 3 are employed simultaneously, the convergence of the three-hody
energy with respect to increasing the electron angular momentum I, is much more rapid than in the
case in which each channel is adopted separately.

Table 11: Convergence of the eigenenergy of J = 35.v = 0 state of pHe" with respect to increasing
Imax Of the angular momentum of electron. The upper table is for the case in which all of Channels 1 — 3
are included at the same time. The lower table is for the case in which only one of the three channels
is included in the expansion. The table shows the importance of taking the three channels. Taken from

[106].

L max E(au.) No. of Basis Channels
0 —2.9172152652 758 c=1
0  — 2.9810324862 1408 c=1-+2
0 — 29833722109 1976 c=14+243
1 — 2.9840208137 3810 c=1+2+3
2 — 2.9840209515 4962 c=14+2+4+3
3 — 2.9840209532 5929 c=142+3
4 — 2.9840209534 6279 c=14+2+3
5 — 2.9840209535 6851 c=1+24+3
6  — 2.9840209535 7175 c=14+2+3
{max Channel 1 Channel 2 Channe] 3
E(a.u.) E(a.u.) Ela.u.)
0 - 29172152652 - 2.8328020372 - 2.6704002265
1 — 29796718235 — 2.9802143284 — 2.8597272863
2 — 2.0828204232 - 29823428527 - 2.9310626650
3 - 29835260466 — 2.9834589475 — 2.9579340569
4 — 29836907910 — 2.9835786669 -~ 2.9656220436
5 — 29837150242 - 2.9836022094 - 2.9668085907
6 — 29837261297 — 29836106295 — 2.9673453010
7 — 2.9837318218 — 29836142809 - 2.9676155022
8  — 2.9837349872 — 29836160666 — 2.9677631326
In order to obtain the transition energies with the accuracy of 7 — 8 significant figures, it is necessary

to calculate the relativistic and QED corrections. It was precisely investigated in Refs. [3, 31, 32] using
the first-order perturbation theory; the second order was found to be negligible. Here, we do not, discuss
the details of the calculation. We mention that although the interaction derived from the Bright-Pauli
Hamiltonian includes momentum, position and spin operators and has complicated forms, the use of
the Gaussian basis function enables one to calculate all of the matrix elements analytically without
numerical integrals or multipole expansions.
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Table 12: Three-body angular-momentum space for the J = 35,v = 0 state of 7*He™ used in the
calculation of Table 11. Parameters for [ < 2 are listed. Lengths are given in units of Bohr radius.

c lc Lc Tlmax  "'min Tmax Nmax Rmin Rmax
1 0 35 6 0.00007 0.001 18 0.063 0.28
1 0 35 25 0.002 4.5 26 0.062 0.33
2 0 3 26 0.0003 4.5 25 0.062 0.33
3 0 35 6 0.00007 0.001 18 0.063 0.28
3 0 35 23 0.002 4.2 20 0.062 0.33
1 1 34 16 0.035 3.0 16 0.074 0.25
2 1 34 21 0.035 5.5 21 0.074 0.24
3 1 34 15 0.035 2.5 15 0.074 0.23
1 1 36 15 0.035 3.0 15 0.074 0.24
2 1 36 22 0.035 5.5 21 0.074 0.24
3 1 36 15 0.035 2.5 15 0.074 024
1 2 33 15 0.075 4.0 15 0.050 0.24
2 2 33 20 0.075 5.0 17 0.040 0.24
3 2 33 7 0.075 3.6 8 0.056 0.24
1 2 35 9 0.075 3.3 9 0.056 0.24
2 2 35 12 0.075 4.3 12 0.056 0.24
3 2 35 7 0.075 2.5 8 0.056 0.24
1 2 37 9 0.075 3.3 9 005 024
2 2 37 12 0.075 3.3 12 0.056 0.24
3 2 37 5 0.075 25 5 0.056 024

6.3 Calculated results

First, under the assumption that the antiproton mass m; is the same as the proton mass m,, the
calculation was made of transition energies between many states. The calculated energies agreed well
with those in the work by Korobov [35]. Here we pay special attention to the two transitions (J;, vi) —
(Je,vp) = (35,3) — (34,3) and (34,2) — (33,2) since experimental data on those transitions are the
most accurate, with the helium density correction taken into account. The results are summarized
in Table 13 together with the experimental results. The relativistic and QED corrections reduce the
discrepancy between the calculated and the observed values by about 40 ppm. The experimental data
are well reproduced within the experimental error. The results show high-accuracy of the coupled-
rearrangement-channel Gaussian expansion method for the Coulomb three-body systems with large
angular momenta.

The wavelength was recalculated using the antiproton mass scaled with 1 4+ z against the proton mass,
mg = (1+x)m,. Here, the antiproton charge was scaled simultaneously to keep the charge-to-mass ratio,
es = (1 + z)e,. The uncertainty of antiproton mass (charge) Az was estimated using an uncertainty of
the experimental wavelengths Adeyp.

-1
Az =2 2 Ax, (5@) (95)
My dz

cal

where (dA/dz)ca was obtained from the slopes of the lines in Fig. 31. The estimated Az in Ref.
[3, 32] are listed in Table 13. In the experimental paper by Torii et al. [2], using discrepancies between
theoretical and experimental values as Aley, instead of the uncertainty of experimental values mentioned
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Table 13: Calculated [3] and observed {2] transition wavelengths which are given in unit of nm. Acou
stands for pure Coulomb calculation, Are that with relativistic and QED corrections, Agyp, experimental
value. Az is the derived uncertainty of antiproton mass.

(Jiyvi)~(Jrv5) Acout ARel AExp Az
(nm) (nm) (nm)

(35,3)-(34,3)  597.2290 597.2573 597.2570(3) 1x1077

(34,2)-(33,2)  470.7048 470.7220 470.7220(6) 3x10~7

above, Amg/m, < 6 x 107® was reported and this value was cited in Particle Listings 2000 {1]. This
value of Amg/m, can be used for a test of the CPT invariance.

£ i
597.2700 |- (35.3)- (34,3) 4707350 | (34.2) - (33,2)
i xpt
. 597.2600 |- __470.7250
E 2 £
< i € o
< i i ? < P
597.2500 |- 1x107 | 470.7150 3107
i ci!z:' - — 3
[ 3 | !
597.2400 N RIS | T A, 470.7050 TR T I E T O
6x10% 3x10% ox10°  3x10°  6x10°0 6x10° -3x10% ox10°  3x10°  6x10°
Ax Ax

Figure 31: Calculated transition wavelengths as a function of Az. Closed diamonds show the caleulated
values and the solid line is the guide for eyes. Taken from [32)].

Analysis with complex-coordinate-rotation (CCR) method

The metastable states of pHe™ are Feshbach resonances which emit Auger electrons to decay into the
bare pHe?t atom. Therefore, in Ref. [10] the states were studies using the CCR method which is useful
for calculating resonance parameters. The complex rotated Hamiltonian, wave function, and Schodinger
equation are given by

H(a,@) = U(Oz, 9)]‘[(]41(057 0) \I-’vJI\,I(a,g) = U(a,e)‘l’m/m, (90\"

H(a,@)\IJMM(a,H) = E\I/UJM<(L,9). (S)T}

Here, U(c, 0) is a transformation operator, ¥ — cer, o and 8 being real and positive numbers.

It is known that after the complex rotation, the resonance wave function W, (cr,6) becomes L? inte-
grable so that the expansion in terms of the Gaussian functions can be made in the same manner as in
Eqgs.(87)~(92). By diagonalizing H(a, ), the eigen energy E and the expansion coefficients Aii’lm\rc,“
are obtained as complex numbers. The resonant energy E, and the width I are obtained as the real and
the imaginary parts of E respectively, namely E = E, —iI'/2. In order to obtain a converged energy,
one calculates complex eigenenergy trajectories as functions of @ for different values of . Examples
of the trajectories of E on the complex E-plane are shown in Fig. 32. The position of the resonance
can be determined at the converged point where 0F /00 is minimum. The numerical uncertainty of the
position is estimated from the standard deviation for different values of o. It is marvelous that the
present method can determine £, and I' so precisely.
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Figure 32: Complex eigenenergy trajectories for J=30, v=2 state of p*Het. The resonance is located
at E,=—3.37421343(4) a.u. and I'/2=4.988(3)x107° a.u., where numbers in the parentheses indicate
the numerical uncertainty of the last digit. Taken from [10].

In a new experiment by Hori et al. [9], six transition frequencies were reported as shown in the third
column of Table 14. Kino et al. [10] calculated the frequencies of the six transitions using the CCR
method assuming m; = m, and taking the relativistic and QED corrections. The results are shown in
the second column of Table 14. The best agreement with the data is seen in the first two transitions
which are transitions between low vibrational states. The worst agreement is for the transition (34,1)-
(33,3); the discrepancy is due to a unique character of the daughter state and the helium medium effect,
but we do not discuss here about it (see Ref.[10]). Observed and calculated Auger transition life time,
namely /i/I", are compared with the data in Table 15. In accordance with the good agreement in the
transition frequency, the decay of the state (J,v) = (32,1) is well reproduced by the calculation. The
discrepancy seen in the other two lifetimes might be due to the helium medium effect (see [10]).

Table 14: Traupsition frequencies between metastable states of pHet. The notations are theoretical
values (14n) [10], experimental values (Vex,) [9], discrepancies between vy, and veyp, transition frequency
shifts due to the scaling of antiproton mass and charge (vyn/ d—d";h) and uncertainty of antiproton mass

A .
(Tnvl:,l = (v — Vexp)/d_;;h)-

(Ji, v:) = (Jy,vp) Vi Vexp morm oy (e S
(GHz) (GHz) (10°6) (1079
(33,1)~(32,1) 804 633.127(5) 804 633.11(11) 0021  2.56  0.054
(32,0)—(31,0) 1012 445.559 1 012 445.52(17)  0.039 2.45 0.094
(35,3)—(34,3) 501 948.828(8) 501 949.01(13) —0.36  4.44 —L16
(35,1)—(34,3) 412 885.131(8) 412 885.18(12) -0.12 6.05 —-0.72
(34,2)—(33,4) 420 121.53(1) 420 121.9(10) —0.88 273  —2.4

(34,1)—(33,3) 486 104.43(7) 486 102.6(7) 38 340 13

Next, we examine the uncertainty in the determined antiproton mass by changing the antiproton mass
within a range in which the calculated values are in good agreement with the experimental values.
We scale the antiproton mass as well as the charge by a small fraction z, mz = (1 + z)m, and ¢; =
(1 + z)e, , which keeps the measured charge-to-mass ratio of antiproton unchanged. We recalculate
transition frequencies as a function of the scaling parameter x. An example of the transition (33,1)-
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3

Table 15: Auger decay lifetimes 7 (s). Theoretical values 7y, are given by [10].

(J.v) Tin (5) Texp ()

(32,1) 545 x107° (5 1)x107° Ref. [9]
(33,3) 2.26 x 107" (1.1£0.3) x 107 Ref. [9]
(33,4) 3.25x 107"%  (4.1£0.2) x 107** Ref. [107]

(32,1) is shown in Fig. 33. The uncertainty of antiproton mass (or equivalently charge) is given by

Amg/my = Aepfe, = AT = (y, — Voxp)/ b where %5 is given by the slope of the line in Fig. 33.
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Figure 33: The calculated frequencies of the transition (33,1)-(32,1) as a function of the p mass shift
parameter z. Closed circles show the calculated values and the solid line is a guide for eyes. Notations
are Amg/m, = Negle, = Az = (v — uexp)/%’;h

In conclusion, we obtained 5.4 x 1078 as the best upper limit of the relative difference of the antiproton
mass from the proton mass. In the experimental paper [9], based on this value but taking some
more statistics, Amg/m, < 6 x 1078 was reported which was cited in Particle Listings 2002 [8]. The
uncertainty is by a factor of ten smaller than the previously estimated value cited in Particle Listings
2000 [1}, based on the calculation in Ref. [3, 31, 32] and the experimental data {2]. This demonstrates
the power of GEM.

7 Three- and Four-Body Structure of Hypernuclei

In this section, we show examples of the application of GEM to the study of the structure of hypernuclei.
In the study of hypernuclear structure, there are many interesting and important subjects that can be
addressed by solving the Shrédinger equations for three- and four-body systems. The present authors
have investigated the structure of light A hypernuclei with A = 4,6,7,9 and 13 and double A hypernuclei
with A =6~ 10.

One of the primary goals of hypernuclear physics is to extract information on baryon-baryon interactions.
By making use of the YN scattering data and the complementary NN data, several types of YA
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one-boson-exchange (OBE) potential models have been proposed within the SU(3) and the SU(6)
framework. However, such YN and Y'Y OBE models exhibit a great deal of ambiguity at present, since
the YN scattering experiments are extremely limited and there is no YV scattering data. Therefore,
it is important to obtain information on YN and Y'Y interactions from hypernuclear structure studies.

As already mentioned in Section 1, we obtain information on YN and Y'Y interactions by combing theory
and experiment in the following way: (1) We take as candidate YN and Y'Y interactions, the ones based
on the OBE model and constituent quark model. (2) We have hypernuclear v-ray spectroscopic data
giving information on the YN and Y'Y interactions. (3) Precision structure calculations using models
of YN and Y'Y interactions are compared with the vy-ray data to test the quality of the assumed YN
and YY interactions. Such calculations allow us to improve the models so that agreement of theory
and experiment may be achieved. Our calculations of few-body systems play essential roles in this
procedure. As a typical example, we discuss y-ray spectroscopy experiments and theoretical structure
calculations related to the YV spin-orbit force.

Once the Hamiltonian is determined, we can calculate precisely the structure of many-body systems
consisting of neutrons, protons and hyperons. Another goal of hypernuclear physics is to study the new
dynamical features induced by the A particle. It is highly desirable to predict new phenomena and
guide experiments to find them.

In this section, we review our studies performed from the above viewpoints. All the three- and four-
body calculations were performed using the infinitesimally-shifted Gaussian basis functions described
in Section 2.6 and Appendix.

7.1 Spin-orbit force and {Be and }}C

In this subsection, we review our 2« + A three-body calculation and 3a+ A four-body calculation which
contributed to discriminating the OBE-model based YN spin-orbit force and the quark-model based
one by predicting the spin-orbit splitting energies in hypernuclei with those forces to which experimental
results were compared later. This calculation was reported in Ref. [14] and details are therein.

The reason why it is important to obtain information on YN spin-orbit force is that the antisymmetric
spin-orbit (4LS) forces are qualitatively different between one-boson-exchange (OBE) models 17, 18]
and quark models [19]. As a typical difference, the quark model [108] predicts that the ALS component
of the AN interaction is so strong as to substantially cancel the LS one, while the OBE models [17, 18]
propose much smaller ALS and various strength of LS. However, since there is no YV spin polarized
scattering data, we have no direct experimental information on the strength of YN spin-orbit force.
Therefore, careful calculations of hypernuclear structure should be of great help because A spin-orbit
splitting in hypernuclei are directly related to the spin-orbit component of the AN interactions.

For this purpose, the structure study of $Be and }}C is useful. ~y-ray experiments of Be and *C
have been performed. In %Be, one 7 ray of E, = 3.079 & 0.040 MeV has been observed so far [109],
but the resolution was not good enough to separate the spin-orbit doublet, suggesting only the limit
AE(5/21 =3/27) < 0.1 MeV. In ¥C, only the 1/2] state has been observed with £1(1/2] — 1/2{)
transition energy E., = 10.95 £ 0.30 MeV [110]. From analysis of *C(K~, 77)3C reaction, the p state
A spin-orbit splitting has been suggested to be 0.36 & 0.30 MeV [111].

Recently, two experiments with good energy resolution were performed for $Be and }3C at BNL. One
(E930 {21]) was to measure y-rays from the decay of the 5/2; and the 3/2] states in §Be, and the other
(E£929 [20]) was to measure those from the 3/2; and 1/2] states in 3C.

Before the high resolution measurements were made, it was requested to perform reliable and accurate
calculations of energy splitting of the 5/27-3/2f doublet in %Be and the 3/27-1/27 doublet in }2C.
It was well known that the wavefunction of core nuclei, *Be and 2C, are described well within the
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framework of 2 and 3« microscopic models. Therefore, we performed a 2« + A three-body calculation
for $Be and a 3a + A four-body calculations for }3C [14].

A A A R A
O Q &, © &GF0
r o R, Iy Pa
! R
D O e @O o
c=1 c=2 c=3 c=4
iBe 120

Figure 34: Jacobian coordinates of all the rearrangement channels for (a) the 2o+ A model of §Be and
(b) the 3a + A model of 3C. The «a clusters are to be symmetrized.

The employed OBE based AN spin-orbit force [17, 18] and the quark-model based one [19] are ex-
plained in Ref. [14]. The total wavefunction was described as a sum of components corresponding the
rearrangement channels of Fig. 34 in the LS coupling scheme:

2 .
Uir(3Be) = 3.0 3° 3 ClinesSa 300 [0 (rui (Rl X1 (M) (98)

e=1 I L nN

4

\I/JM 130 Z Z Z Z lNL,/,\IJO [q> Otl)q) az)q) a3) [[¢ )(rC)WI(VL( )]Iéu)\ (pc)]Jo ( ﬂJM’ (99)
c=11Jp l,LAn,Nyv

where the ¢ denote the channel shown in Fig. 34 and S, the symmetrization operator for QXChdn”(
between a clusters. x1(A) is the spin function of the A particle. As for ¢nim(r), ¥wrm(R) and {,,A#(pc)
we took the Gaussian basis functions of Section 3, but replace them with the infinitesimally-shifted
Gaussian basis functions when the three- and four-body matrix elements are calculated as mentioned
in Sections 3 and 4. The Gaussian ranges were taken to be in geometrical progression. Eigenenergics
of the coefficients C' were to be determined by the Rayleigh-Ritz variational method.

The Pauli principle between two « clusters is taken into account by the orthogonality condition model
(OCM) [112]. We employed an ax potential which reproduced the observed ca scattering phase shifts
and the resonant ground state energy of ®Be within the 2 OCM. The aa potential, Vya(r), was
constructed by folding the modified Hasegawa-Nagata effective NN potential [113] and the pp Coulomb
potential into the « cluster density. This e potential, however, gives rise to a significant over binding of
the ground state of 12C. We therefore introduced an effective, repulsive, 3o potential. The A« interaction
was derived by folding the AN G-matrix interaction (see Ref.[14]) into the a-cluster wavefunction. Use
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of the AN interaction and the aa and 3o interactions reproduced the A binding energies of 3 He, $Be,
and PC (1/2f and 1/27) simultaneously.

For § Be, we calculated the energies of the doublet states of 5/2f and 3/2} whose dominant cofiguration
was ®Be(2{) ® A(s1/2). Calculated energy splitting, AE(5/2f ~3/2]), was 80 — 200 keV depending
on the Nijmegen OBE models. For $3C, calculated energy splitting, AE(3/27 —1/27), was 390 ~ 960
keV depending on the Nijmegen OBE models. In these calculations, the ALS forces were more or less
similar to each other, while the LS strength changed continuously over a wide range. As a consequence,
the sum of LS and ALS gave rise to 20 — 40 % reduction of the splitting from that obtained with LS
only.

It is interesting to note that the cancellation is known to be more drastic for the quark-model based
LS and ALS forces. Use of the quark-model based AN spin-orbit interaction gives AE(5/2) —3/27) =
35 — 40 keV in 3Be and AE(3/27 —1/27) = 150 — 200 keV in ’C.

Table 16: Spin-orbit splitting energy in in $Be and 3C. Calculated values are given by Hiyama et al.
[14] using the OBE-model-based and quark-model-based AN spin-orbit force. Experimental values are
taken from [21] for {Be and from [20] for }*C.

splitting CAL(OBE model) CAL(quark model) EXP
(keV) (keV) (keV)
3Be E(5/2F-3/2]) 80 — 200 35 — 40 31.47%8
BC EB(3/27-1/2) 390 — 960 150 — 200 150 + 54 + 36

Recently, experimental data for these energy splittings of $Be [21] and }3C [20] have been reported to
be 31.4735 keV and 152 & 54 + 36 keV, respectively.

The predicted values and the experimental results are summarized in Table 16. We see that the predicted
energy splitting using the quark-based spin-orbit force can explain both data consistency, while any of
Nijgemen models cannot. It is obvious that the analysis described above can be used to test any new
Y N interaction which might be proposed in the future.

7.2 The first four-body calculation of {H and {He, and A — ¥ conversion

Four-body calculation of $H and 4He using NNV and YN interactions are much more difficult than
that of four-nucleon bound state because one has to take explicit account of the NNNA and the
NNNY channels as well as be realistic NN and Y N interactions. Historically, Gibson et ol employed a
coupled two-body model [22] of 3He(3H) + A/ which was originally due to Dalitz and Downs [114], and
later carried out four-body coupled-channel calculations with central separable potentials [23]. Carlson
performed four-body calculation with the NSC89 separable potential with Monte Carlo method {115]
and obtained binding energies with statical errors of 100keV. Akaishi et al. [24] recently analyzed the
role of the AN — XN coupling for the 0*-1% splitting in the framework of the coupled two-body model
of 3He + A /3.

We recently succeeded in performing extensive four-body calculations without any restriction of chan-
nels. Both the NNNA and NNN3 channels were incorporated explicitly and all the rearrangement
channels of these baryons were taken into account [15]. As a results, we succeeded in analyzing the role
of A — X conversion in light hypernuclei which had been investigated for many years by various authors
[22, 23, 24] to see its effects on the binding energies, the charge-symmetry-breaking difference, the role
of ANN three-body force, etc.
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Our main goals were, first, to solve the four-body 4 H and § He problem by taking into account explicitly
the NNNA(Z) channels using realistic NNV and YN interactions aud, second, to clarify the role of
the AN — XN coupling in the A = 4 hypernuclei. As a first step, before going to sophisticated OBE
models, we employed the AN — £N coupled YN potential of Ref.[116] with central, spin-orbit, and
tensor terms which simulates the scattering phase shifts given by NSC97f. The main reason for using the
simulated version of NSC97f was its computational tractabihty which allowed us to focus our attention
to the physical ingredients. The observed binding energy of $H was reproduced reasonably well: The
interaction lead to the A binding energy, Ba(3H), 0.19 MeV Which agreed well with the observed data
[BA(GH) = 0.13 £ 0.05 MeV]. For the NN interaction we employed the AVS potential [63].

The total four-body wavefunction assumed is given as a swun of the components for all rearrangeinent
channels (¢ =1 ~ 4) of Fig. 35 in the LS coupling scheme:

lIIJM(/}\He&I_U Z ZZ Z C(icl)ss’btt’A{[ ){)(I'C,R pc) H (12))(

Y=A2c=1 al ss'Stt’
{7 (12)m3(3) ey (Y)]T:%} , (1007

where the spatial wave functions have the form, with a set of quantum numbers o = {nl, NL, K. v},

(3]s ,X‘%(Y)]S};,u

i

Doy (r,R, p) = [[(Pnz(r)’a”.w(R)]Kqu(P)J . 1l
Here, A is the three-nucleon antisymmetrization operator and the x’s and the 1’s are the spin aud
isospin functions, respectively, with the isospin ty = 0 (1) for ¥ = A (¥). The dum(r) were taken 1o

be the Gaussian basis functions, but, in actual calculation of the four-body matrix elements, they werce
replaced by the infinitesimally- shlfted Gaussian basis functions as done in Section 4 and Appendix. The
Gaussian range parameters were chosen to lie in geometrical progressions as in Section 2.1. Eigenenergics
of the Hamiitonian and the coefficients C' were determined by the Rayleigh-Ritz variational method
The angular momentum space of [, L, A < 2 was found to be sufficient to get a good convergence of the
calculated results as described below.

Ay N AZ) N AX) N R A(X)
CERS
P4
" O
N
c=1 c=2 c=3 c=4

Figure 35: Jacobian coordinates for the rearrangement channels of the NN NA(X) systemn. The three
nucleons are to be antisymmetrized.

The calculations were performed for $He and $H. Calculated By of the 0% ground state aud the |
excited state of 4He and 4H are illustrated in Fig. 36 in comparison with the observed values. Both
states are unbound. The NNNY sector is divided into the (NNN);,T and (NNN);,,% channe
in which three nucleons are coupled to isospin ¢ = 1/2 and 3/2, Iespectxvolv When the (NNVN),,
channel is included, the 0" state becomes bound, but the 1% state is still unbound. The 17 state
becomes bound only when the (NNN);,,E channel is switched on. However, the binding energy of the
0% state increases only slightly with the ¢ = 3/2 channel.

s
2

Thus, the Y-channel components turn out to play an essential role in the binding mechanism of the
A = 4 hypernuclei, the (N NN)3,,% channel being particularly important in the 1% state. The calculated
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Figure 36: Calculated energy levels of (a) 4He and (b) 4H. The channels successively included are (i)
(NNN)y2A, (i) (NNN)1o¥8, and (iii) (NNN)3/,X, where the isospin of the three nucleons is coupled
to t = 1/2 or 3/2. Energy is measured from the *He + A(*H + A) threshold.

binding energy of the 0% state almost reproduces the observed binding energy, while the 17 state is less
bound by 0.6 (0.4) MeV for 4H (4H), and hence the 07-17 splitting is larger than the observed splitting.
The calculated value of Bx(4He(07)) — BA(4H(0T)) = —0.05 MeV is different from the experimental
one, +0.356 MeV, although the Coulomb potentials between charged particles (p, £) are included. This
difference should be attributed to the charge-symmetry-breaking component which is not included in
our adopted Y IV interaction.

As listed in Table 17, the calculated probabilities of the N N NX-channel admixture are 2% and 1% for
the 0% and 1% states in }He, respectively. In the 0% state, the probability of the (NNN )% Y. channel
is much larger than that of the (NNN )% ¥ channel, while in the 1% state they are nearly the same.
We therefore confirm that the (NNN )% % channel is particularly important in the 17 state. The S-,
P- and D-state probabilities of the channels are also listed in Table 17. It is remarkable that, in the
NNNZE channel, the D-state component is dominant both in the 07 and 1" states, since the AN-ZN
coupling part of the present interaction is dominated by the tensor component. These properties are
quite similar in the case of 4 H.

Table 17: The probabilities (%) of the S-, P- and D-state and their total for each of the (NNN)1A,

z
(NNN),E and (NNN)3X channels in the 07 and 17 states of 41He. (NNN), denotes three nucleons
whose isospins are coupled to t. This table is taken from [15]

1He 0" 1+
S P D Total S P D Total
(NNN)%A 89.32 0.08 852 97.92 90.38 0.07 8.2 98.97
(NNN)%): 0.84 004 116 2.04 0.10 0.01 0.40 0.1
(NNN)%Z 0.01 0.01 002 0.04 0.09 0.00 043 0.52

It is interesting to explore the spatial distributions of the N, A and ¥ in the A = 4 hypernuclei. We
calculated the correlation functions (two-body densities) of the NN, AN and £N pairs in Fig. 37. and
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the one-body densities of single nucleons, A and ¥ hyperons in Fig. 38. The &N correlation function in
4He exhibits almost the same shape as that in the 3He nucleus, indicating that the dynamical change
due to the presence of A is small. The AN correlation function has a long range and is flatter thau
the NN one, because the AN interaction is significantly weaker than the NNV interaction. The LN
correlation function is much shorter ranged than the AN one due to the large virtual excitation energy
(80 MeV) of A — X. Tt is interesting to note in Fig. 37 that, in spite of the small probability of the
¥ admixture (2 %), the ZN components is not so small at short distances in comparison with the AN
one. This enhanced short-range distribution of the ¥ is expected to be reflected in the nonmesonic
decay of XN — NN.

NN
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Figure 37: Correlation function (two-body den-
sities) of NN, AN and LN pairs in the 07 state
of 4He together with that for the NN pair in
3He. That of the LN pair has been multiplied
by a factor of 2 to make the behavior of this
function clear. The r.m.s. radius of each den-

Figure 38: Calculated one-body deunsities of
N,A and T particles in the 07 state of {He
Volume integrals of the densities are 1.0,0.93
and 0.02 for N, A and ¥ particles, respectively.
The r.m.s. radius of each density is 7y = 1.65
fm, 74 = 3.39 fm and s = 1.67 fm. This figure

sity is Ty = 2.86 fm, Fay = 3.77 fm and is taken from [15].

Fgn = 2.24 fm. This figure is taken from [15].

In order to illustrate the effect of the ¥ mixing in more detail, we separate the contribution of AN — 3N
coupling into the two processes illustrated in Fig. 39. The first one is the process (i} which can be
renormalized into the effective AN two-body force and the second one is the process (ii) which can be
represented by the effective AN N three-body force acting in the NN NA space. We solve the Schrodinger
equation by excluding the three-body process (ii) so as to evaluate the contribution of process (i) alone
and then including both (i) and (ii). As shown in Fig. 39, process (i) is large enough to make both the
0* and 17 states bound. The contribution of the three-body process (ii) is also substantial, viz. an
additional attraction of 0.62(0.62) MeV in the 0% state and a repulsion of 0.09 (0.08) MeV in the 1"
state of §He(4H).

Thus, we have developed a method of calculation for bound-state problems capable of precise four-body
calculations of §H and 4He, taking both the NNNA and NNNY channels explicitly into account and
using realistic NN and YN interactions. As a result, we have succeeded in clarifying the role of A — £
conversion and quantitatively estimating the size of the ¥ mixing in the A = 4 hypernuclei. Recently,
Nogga et al. [117] performed four-body Faddeev-Yakubovsky calculation of 4 He and 3 H using modern
realistic NN and YN interactions. They claimed that none of the YN interactions available so far werce
adequate for reproducing the binding energies of 0% ‘and 1% states, although the ground state energy
of 3H was in good agreement with the experimental data. It is left as a future problem to explore the
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Figure 39: Calculated energy levels of (a) 4He and (b) 4 H for case (i) and case (i)+(ii); here, (i) denotes
the two-body process and (ii) denotes the three-body process. This figure is taken from [15].

features of A — ¥ conversion in A hypernuclei using more refined YN interactions and to carry out
systematic studies of the structure of heavier hypernuclear systems.

7.3 Novel dynamical properties of hypernuclei

As described in the previous subsection, we can extract novel information on Y’V interactions by means
of highly accurate structure calculations. Once the Hamiltonian is given, we can calculate precisely
the structure of many-body systems consisting of neutrons, protons and hyperons. Another purpose
of hypernuclear physics is to study the new dynamical features induced by the A particle. It is very
desirable to predict new phenomena and guide experiments to find them.

Nuclear shrinkage in ]Li

It has long been thought that the nucleus cannot be significantly compressed. How is the structure of
a nucleus modified when a A particle is injected into it? There is no Pauli Principle acting between
the A and the nucleons in the nucleus. Therefore, the A particle can reach deep inside, and attract the
surrounding nucleons towards the interior of the nucleus (this is called ”gluelike role” of A particle).
However, how do we observe the shrinkage of the nuclear size by the A participation? In the work
of Ref. [118] based on the microscopic o + z + A three-cluster model (z = d,¢,He) for light p-shell
hypernuclei together with the o +  two-cluster model for the nuclear core, the reduction of the nuclear
size was recognized in the reduction of the B(E2) strength which is proportional to the fourth power
of the distance between the o and x clusters.

More precisely, in Ref.[13], we suggested the measurement of B(E2;5/2f — 1/2{) in ] Li and proposed
a prescription to derive hypernuclear size for the first time with the aid of the empirical values of
B(E2;3f — 1}) and the size of the ground state of °Li. Afterwards, the experiment of Ref.[119] was
performed and the result was compared with our prediction on the size of % Li.

We employed a microscopic 3 He+n+ p three-body model for §Li. It was examined in Ref. [13] that the
%He is a good cluster. The total three-body wave function is constructed on the Jacobian coordinates
of Fig. 40 in the same manner as in the three-body calculations in the previous sections. Interactions
employed are described in Ref.[13].

The observed energies of the 1/2f and 5/2{ were well reproduced by the calculations, and the value
B(E2;5/2F — 1/2]) = 2.42¢?*fm* was predicted. This is much smaller than the observed B(E2;3f —
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Figure 40: Jacobian coordinates of the $He + n + p system.

17) = 9.34+2.1e’fm* for the ®Li core which is well reproduced by our ®Li = *He+n+p three-body model
whose prediction is 9.26 e2fm*. It should be noted, however, that one cannot conclude the size-shrinkage
from the reduction of the B(E2) value alone since the B(E2) operator 72 Y, (8, ¢) includes the angle
operator. Furthermore, we should note that the shrinkage of {Li can occur both along the n —p relative
distance and along the distance between the *He core and the c.m. of the (np) pair.
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Figure 41: (a) the n — p relative density of ;Li as a function of r,—, and (b) the (np) c.m. density as
a function of Reore—(np) together with the corresponding densities in SLi core. This figure is taken from
[13].

We show in Fig. 41 the n — p relative density p(r,,—p) and the np can. density p(Roore—tnp)) together
with the corresponding densities in ®Li core. The n — p relative density exhibits almost the same shape
for the ground state of °Li and that of ;Li, namely, the shrinkage of the n — p distance due to the
A participation is negligibly small. On the other hand, the n — p c.m. density distribution of {Li is
remarkably different from that of °Li, showing a significant contraction along the Reore—(np) coordinate
due to the A addition. In fact, the r.m.s. distance Rcore_(np) is estimated to be 2.94 fm for {Li(1/2")
vs 3.85 fm for ®Li(1*).

Thus, we conclude that, by the addition of the A particle to ®Li(1™), contraction of }Li occurs between
the c.m. of the (np) pair and the core whereas the n — p relative motion remains almost unchanged.
In this type change in the wave function, the angle operator in B(E2) does not significantly affect the
magnitude of shrinkage. We predicted in Ref. [13] that the size of Rere—(npy 11t °Li will shrink by 25 %
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due to the participation of a A particle. In a later calculation [120] based on more precise *He+n+p+ A
four-body model, we predicted it to be 22 %.

The first observation of the hypernuclear B(E?2) strength was made in the KEK-E419 experiment for
B(E2;5/2% — 1/2%) in jLi. The observed B(E2) value was 3.6 & 0.5755 e*fm* [119]. From this, the
shrinkage of Rcore_(np) was estimated to be by 19 + 4 %, which was consistent with our prediction. It
is to be emphasized that this interesting discovery was realized with the help of our precision few-body
calculations.

Nuclear shrinkage in 3C

One may ask the next question, ” Are all nuclei compressed by the injection of a A particle?” Our answer
is No. We shall show an example in 2C and }C studied in Refs. [12] and [14].

It is well known that the ground 0 state in ?C has a shell model like structure while the 05 excited
state at E, = 7.65 MeV is a well-developed clustering state and that both states are simultaneously
well described by the microscopic 3« cluster model. Using the same 3 + A four-body model for }*C as
in Section 7.1 we studied the shrinkage problem.

The calculated A separation energies of 1/2 and 1/27 states in }>C are 11.69 MeV and 8.59 MeV,
respectively. The 1/2 state is dominantly composed of the 07 (*2C) core and a 0s A particle {99 %)
and the 1/27 is composed of the 03 (*2C) core and a 0s A particle (77 %).
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Figure 42: Probability densities of finding two o at a distance r,—, in the states (a) 2C(0F) and
13C(1/24), and (b) 2C(07) and 2C(1/2]). Shrinkage of the excited 0 in 2C is drastic, but that in
the ground state is little. This figure is taken from [12].

In the excited 1/2% state in 12C, the r.m.s. distance between the two o clusters, 7,_q, is estimated
to be 4.5 fm which is much reduced from 6.3 fm (by some 30 %) in the excited 0% state in **C. This
contraction is more vividly seen in Fig. 42a, which illustrates the probability density of finding the two
as at a distance r,_4. In contrast, in the case of the ground-states pair, little change of o — o distance
is seen in Fig. 42b ; the reduction in 74_q is from 3.0 fm in 2C(07) to 2.9 fm in ¥C(1/2}).

This results indicates that shell model like states are not easily contracted when a A particle joins. We
then predict that the nuclear density of the ground states in the stable nuclei heavier than A ~ 10 will
be compressed very little by the addition of a A particle. On the other hand, the matter radius in some
excited states will shrink by as much as some a few ten % by the injection of a A particle. It is to be
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emphasized that this interesting property has been found by the studies taking account of the three-
and four-body -degrees of freedom in nuclei.

Nuclear shrinkage in 3H and jHe

One may ask the question, "what is the effect of the A—X conversion on the shrinkage in A-hypernuclei?”.
An answer was given in our recent work [15] on the structure of 4H and 4 He already mentioned in Section
7.2. We briefly describe it here again.

We note that the A particle resides well outside the core and therefore the dynamical change in the
core nucleus due to the A particle is small. In the ground state of 4He, the nucleon r.m.s. radius is
7n = 1.65 fm which is smaller by 8 % than the corresponding 7y = 1.79 fm in 3He. On the other
hand, the ¥ hyperon lies close to the nucleons (see Figs. 37 and 38) and, therefore, generates a large
dynamical contraction of the core nucleus in the NN N¥-channel space; 7y = 1.49 fm is obtained by the
calculation including the ¥-channel amplitude only and the reduction amounts to 17 % in the channel.
From this reduction, it is expected that 3N in the NNNT space is strongly excited. In fact, calculated
probability of finding the ground state of triton in the NNNZX space is only 30 %.

Neutron-rich hypernuclei and halo structure

Another interesting gluelike role of A particle is to give rise to more bound states. This feature of
light hypernuclei has been studied mostly in systems consisting of a stable nucleus and a A particle.
Recently, the neutron halo states have been observed in light nuclei near the neutron drip line. If a
A particle is added to such a halo nucleus, a very weakly bound system, the resultant hypernucleus
becomes substantially more stable against the neutron decay. Thanks to the gluelike role of the A
particle, there is a new chance to produce a hypernuclear neutron (or proton) halo state even with o
core nucleus in a weakly bound state or in an unbound (resonance) state with an energy above the
particle decay threshold.

As a result, hypernuclei have the interesting possibility of extending the neutron {proton) drip line from
that of ordinary nuclei. At J-PARC (Japan- Proton-Acceraletor-Research-Complex), BNL and TJLAB,
it is planned to produce many A hypernuclei near the neutron and the proton drip line. Therefore, it
is desirable to predict structure of these A hypernuclei prior to the measurements. As an example, we
studied in Ref. [11] the structure of §He, §Li, 1He, {Li and ;Be, employing o + A + N three-body
model for §He and §Li, and §He+ N + N three-body model for 7He, {Li and % Be, and predicted some
halo states in those hypernuclei (see Ref.[11] for details). We hope that many neutron- and proton-rich
A hypernuclei will be observed in the future. That will much stimulate the study of many-body systeins
composed of nucleons and hyperons.

7.4 Double A hypernuclei

So far, we have discussed the structure of single A hypernuclei. What is the structure change when
one or more As are added to a nucleus? The extreme limit is the core of a neutron star which contains
many As,. In order to understand the structure of a neutron star core, it is essential to understand the
AA interaction, or in general Y'Y interaction. However, we have little knowledge of the YY interaction
because there exist no YY scattering data.

Recently two novel data from KEK-E373 experiment have offered a new basis for constraining the AA
interaction. One is the observation of the double A hypernucleus §,He, which is called the NAGARA
event [121]. The formation of § , He was uniquely identified by the observation of sequential weak decays.
and the precise experimental value of the 2A binding (separation) energy, Baa = 7.25 # 0.1973-18 MeV,
was obtained. The AA bond energy, estimated by Baa — 2Ba was about 1.0 MeV. Historically, there
were some more observations of double A hypernuclei, but no unique identification had been made. In

this respect, the unambiguious observation of the NAGARA event was epoch-making. Analysis of some
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more emulsion data is still in progress. Furthermore, it is planned to produce many more double A
hypernuclei at J-PARC, GSI and BNL.

Here, the important issues are: (1) Does the AA interaction which is designed to reproduce the binding
energy of §,He also consistently reproduce the Demachi- Yanagi event explained later? (2) Using this
AA interaction, what is the level structure of other double A hypernuclei? In order to answer these
questions, we studied the structure of double A hypernuclei §, He within the a+A+A model, and } , He,
TaLi, §4Li, 2,Li, §4Be and 1% Be within @ +z + A + A four-body model, where z = n, p, d, t,*He and a,
respectively. It is known that the nuclear core parts are very well represented by « + z cluster models.
We emphasize that these extensive calculations were presented for the first time for A = 7 ~ 9 double-A
hypernuclei and that our old predictions on §,He and 1} Be was updated using the same model but
with the new information on the AA interaction.

QG0 £)AQ ()
P3
f2 ) Ry
A0 &) A3 &)
€]

C=3

C=1 C=2
"G (D107 1O
R
P R, 7 \ps ps e
C=4 G=5 c=6

_ A A@—Rg—@
R

Tg " Py
Ps
SO ORCormS)
C=8 C=9

Figure 43: Jacobian coordinates for all the rearrangement channels (c =1~ 9) of the a+z + A + A
four-body system. Two A particles are to be antisymmetrized, and « and z are to be symmetrized
when z = a.

All nine sets of the Jacobian coordinates of the four-body system are illustrated in Fig. 43 in which we
also take into account the antisymmetrization between two A particles and the symmetrization between
two « clusters when z = a. The total wave function is described as a sum of the components of
rearrangement channels (¢ =1 — 9) in the LS coupling scheme:

‘I’JM(QAZ) = Z Z Z Z Cv(inguAszm
c=1n,Nyv !, LASTIK
(A)]sls 6% (r UL R 5 (0|, - (102)

X AnSa[®(a)[ s (2)Dxy (Ar)x
Here the operator A, stands for antisymmetrization between the two A particles, and S, is the sym-
metrization operator for exchange between « clusters when z = . x 5 (A;) is the spin function of the
i-th A particle. The eigenenergy E and the coefficients C' in Eq. (102) are to be determined by the
Rayleigh-Ritz variational method.

1
3
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The angular-momentum space of the wave function with [, L, A < 2 was found to be sufficient for getting
good convergence of the binding energies of the states studied below (note that no truncation is done to
the interactions in the angular-momentum space). As for the numbers of the Gaussian basis, npac Nas
and Vmax, 4 — 10 are sufficient.

In the present four-body-model study, it is absolutely necessary to make it sure, before the four-body
calculation, that the model and the interactions adopted are able to reproduce reasonably well the
following observed quantities: (i) energies of the low-lying states and scattering phase shits of the a + =
nuclear systems, (ii) By of hypernuclei composed of 2 + A, z being d, t,®> He, «x. (iii) By of hypernuclei
composed of o +x + A, z being n,p,d, t,* He, o and (iv) Baa of §,He = a + A + A. Then we perform
the four-body calculations, with no adjustable parameters at this stage, expecting high reliability of
the results. The parameters of the az, Az, AN and AA interactions are listed in Ref.{16]. The Pauli
principle between the nucleons in the « clusters are taken into account by the OCM.

It is of particular interest to compare the present result with another datum which is not used i the
fitting procedure. There is an event found in the E373 experiment named the Demachi- Yanage even
[122, 123]. The most probable interpretation of this event is the production of a bound state of {\Be
having BYy = 12.3325-3% MeV. In the emulsion analysis there was no direct evidence for the production
of 1% Be in an excited state. However, if the produced 1% Be were in the ground state, the resultant AA

bond energy would be repulsive, in contradiction to what was found in the NAGARA event.
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Figure 44: Calculated energy levels of ®Be, 3 Be and )} Be on the basis of the a + o, + o + A, and
a+a+A+A models, respectively. The level energies are measured from the particle breakup thresholds
or are given by excitation energies F,. This figure is taken from [16].

It is striking that our calculated value of Bas(3%Be(27)) is 12.28 MeV that agrees with the above
experimental value as shown in Fig. 44. Therefore, the Demachi- Yanagi event can be interpreted as
most probably the observation of the 2+ excited state in 1% Be. This good agreement suggests that
our systematically calculated level structures are predictive and useful for interpreting upcoming events
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expected to be found in the further analysis of the E373 data. Thus, we have understood the consistency
between the experimental data and our theoretical results for ;% Be. Therefore, in some reality, we can
predict energy spectra of double-A hypernuclei with A = 6 ~ 10 as shown in Fig.35. We expect they
will be examined by the future double A hypernucleus experiments.
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Figure 45: Energy levels of double-A hypernuclei, §,He, § ,He, 7, Li, &, Li, 3,Li, $,be and 1 Be calcu-
lated using the o + z + A + A model with = = 0,n, p,d, t,> He and «, respectively. This figure is taken
from [16].

In conclusion, these extensive four-body cluster-model calculations should serve to motivate extensive
spectroscopic studies of double-A hypernuclei.

8 Coulomb Three-Body Reactions

The GEM method is applicable to three-body reactions. So far, it has mostly been applied to Coulomb
three-body reactions which appear in the cycle of muon catalyzed fusion (uCF) [25, 26, 27, 28]. In this
section, we review our work [41, 42] on two types of important Coulomb three-body reactions which
have been stimulating the development of three-body reaction theory.

i) Muon transfer reaction:
(dphs -+t — d + (t)1s + 48eV (103)

is a doorway to the muon catalyzed d — t fusion as mentioned in Section 5. Calculation of the cross
section of this reaction at E, = 0.001 — 100 eV has been a stringent benchmark test to calculational
methods of Coulomb three-body reactions. Since the muon mass is 207 times the electron mass, fully
non-adiabatic treatment is necessary. GEM gave [41] one of the most precise results reported so far.
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it) Decay branching ratio of three-body Feshbach resonance (dHeu)s-1:

(dp)is + He — (dHep) =1 — (Hep)is +d + hv (= 6.7keV)
— (Hep)1s +d+8.2keV . (104]

Muon transfer to helium nucleus is a poison reaction in pCF as much as muon sticking to helium
nucleus after fusion; both processes cause muon loss to the deeply bound (Heu); state. Since muon
transfer from (du) to (Heu) occurs dominantly via the (dHep) -, molecule, study of the property of
the molecule is of importance in gCF. Using GEM, Kino and Kamimura [42] predicted presence of the
strong second branch (particle decay without emitting photons). The branching ratio was found to be
sensitive to the reduced mass of the d—He system (namely, the nuclear kinetic energy in the molecule;,
and hence generates a strong isotope effect i.e. dependence on the mass number of the He nucleus . 3
or 4. The molecular state is a Feshbach resonance embedded in the continuum of (Heu),, — d channel
at Een = 8.2 keV. This prediction was later confirmed experimentally [124, 125]. This fact motivated

many calculations to examine it in the literature.

The subjects i) and ii) give good tests to three-body reaction theories for elastic and transfer processes
in the presence of strong three-body distortions (correlations) in the intermediate stage.

8.1 Muon transfer reaction

We consider the reaction (103) at incident c.m. energies 0.001 — 100 eV which are much less than the
excitation energy of the n = 2 state of (fu) and (du), 2 keV. The total Hamiltonian of the d + 1 + p

U

I3

c=1 c=2 c=3

Figure 46: Three Jacobian coordinates of the d + ¢ + p system.

system (Fig. 46) is given by

R, R e e ¢?

—Vi - —Vh ——-—+—  (c=1,20r3), (105)
2m. Tt 2M, Be o ry oy ( 2 or 3), L)
where m. and M, are the reduced masses associated with the coordinates r. and R, respectively. The
wave function which describes the reaction (103) and the elastic (fu)1s — d scattering simultaneously

may be written as

H=-

Urar = ¢80 (r1) XS4 R) + 618 (1) x B @ (Ra) + 57 (106}
The first and the second terms describe the open (dy)1s —t and the ()5 — d channels, respectively. The

third term, \Ilﬂzsed), describes all closed-channels. This term vanishes asymptotically, and can properly

be described in the following way.

In Section 5, the three-body Hamiltonian is diagonalized for each J in a space spanned by a finite
number, say Nioal, of the three-body Gaussian basis functions written in Jacobian coordinates r. and
R, as

Do) ¥R (R (e=1-3) (107)
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with a parameter set, for example, listed in Table 10 for J = 1 (Neotar = 2748). The resultant eigenstates
and eigenenergies { U ps,4, Ey; v = 0 — Nioar } satisfy

<\I}JM,11|H|‘IJJM,'U’> = EJv(svv’ (Ua v =0— Ntotal) . (108)

The eigenstates ¥,y , with the eigenenergies Ej, below and above the (tu);s — d threshold are re-
spectively bound states and pseudo-states which approximately describe three-body continuum in a
discretized form. We assume that the pseudo-states to form a complete set in a finite space in good
aaproximation where the three particles interact each other; in Section 2, we presented this property of

pseudo-states in the case of two-body systems. We then consider that the closed-channel component

\I/(;}{f‘* ) can be well expanded in terms of this approximate complete set:

cotal

TEEY = 3" by Wn - (109)
v=0

We next introduce radial wave functions X(JC)(RC) of xff,{l(RC) as

(e)
X(JCI)\/I(RC) = 'X—J—]—éﬁﬁYJM(RC) (c=1,2) . (110)

Equations for X(Jl)(Rl), X(JQ)(RZ) and the coeflicient by, are given by the Kohn-type variational method
[59] as
() (re)Ysue(Re) |[H — E| Uim)en, =0  (c=1,2), (111)
and
(Yypo |[H=E|¥sm) =0 (v=0— Neotal) - (112)

Here, ( >rc1-°tc denotes the integration over the r, and RC.

Scattering-state boundary condition for the total wave function is

c—*OO

. v,
A X5 (Be) = w5 (koRe)boy = [ 225007 (e Re) (e = 1,2), (113)

where ¢ = 1 denotes the incident channel and J ) is the Ricatti—Hankel function of the order J, k.
being the wave number of the channel ¢ given by WkZ E(C) =F- Els Cross sections are given by

Tony = 2Z2J+1 e — S |? (c=1,2). (114)
Co J

The simultaneous Eqs. (111) and (112) are solved in the following manner. Firstly, from Egs. (108)
and (112), by, in Eq.(109) is given by

by = Ul H — Bl (r)x U (R) + 62 (ro)x P (R2)) - (115)

-1 (
E;,—F
Inserting Eq.(115) into Eqgs.(111), and performing the integration, we reach the following coupled
integro-differential equations for Xsl)(Rl) and X(J2)(R2):

[_ N N R J(J+1)

2M,. dR.*  2M, R
- —/°° VO (Ro, Ro)x'©)(Re)dRy | for (¢,¢) = (1,2) and (2,1), (116)
0

UO(R) = B9, [ (B + [ VI (Rey RO (ROER,

where ) .
U Re) = (S Yo (Re) | = =+ = | 62 Yom (R, )
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,
Niotal

ViR, B = Y ReRUE (o) Yom(Re) [H = E| yas)y i,
v=0
-1 Dt .
XE;__-E<®JM,L' |H — E| ¢{)(r YR wo. (118)
Vi (Re,Re) = ReRe (8 (r)Yom(Ro) H — ElofS (re)You (Re)) g s,
Neoral R
+ > RcRc/<¢§? (re)Yom(Re) [H — E| @yar) i,
v=0
-1 ¢ , SN .
x m<®Jh1,v \H = E| 65 (xe)Your (Re)), - (119)

Calculation of the non-local potentials can be performed analytically. We then solve the integro-
differential equations (116) using the direct numerical method (almost the same result was obtained
using the Kohn-type variational method of Section 2.5 with the Gaussian basis functions as trial func-
tions [3]).

Calculated cross sections converged quickly as increasing number of the pseudo-states Wy ,.; summation
up to v = 50 (E;, — E < 3 keV) is sufficient for the accuracy needed in the present calculations. The
form of by, in Eq. (115), looks singular at E=FE;,. However, b,, changes smoothly except for an
extremely small vicinity of E=Ej, since the numerator of Eq. (115) is nearly proportional to £ — E;,
around E=Ej,; in actual calculations with 15-decimal-digits arithmetics, b;, is found to be a smooth
function of E except for the region |E;, — E| < 1070 ¢V which can be neglected. As seen in Fig.47.
we have smooth functions of the cross section as a function the scattering energy.

c.m

Figure 47: Calculated transfer cross sections ooy of (dp)is + 1 — d + (i), + 48 eV by GEM [41, 126
(solid line), by Cohen and Struensee [127] (open boxes) and by Chiccori et al.[128] (open circles). Dotted
lines are partial-wave cross sections for each J by GEM. E) = F — 5%) is the collision energy in the

incident channel.

Calculated cross section oy, for the transfer reaction (103) at ELJ, = 0.001 — 100 eV were given in
Ref.[41] and afterwards revised slightly [126]. The result was compared with that reported by Cohen

and Struensee {127] obtained with the improved adiavatic calculation and by Chiceoli ef al. 1128
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Table 18: Calculated J = 0 cross section of the transfer reaction (du)1s +t — d+ (tp)15 +48eV by Kino
and Kamimura [41, 126] and Tolstikhin et al.[129]. E{Y) is the collision energy in the initial state, in
eV. Cross section is in units of cm?; afb] = @ x 10°. This may be used for a benchmark test calculation
of any Coulomb three-body method.

E8)  Kino & Kamimura Tolstikhin et al.
0.001 1.415 [-19] 1.436 [-19]
0.005 6.308 [-20] . 6.405 [-20]
0.01 4.555 [-20] 4.514 [-20]
0.05 1.968 [-20] 1.979 [-20]
0.1 1.374 [-20] 1.373 [-20]
0.5 5.650 [-21] 5.637 [-21]
1 3.754 [-21] 3.749 [-21]
5 1.379 [-21] 1.377 [-21]
10 8.827 [-22] 8.808 [-22]
100 1.907 [-22] 1.905 [-22]
1000 3.411 [-23] 3.177 [-23]

with an adiabatic expansion in terms of the two-center Coulomb basis. Agreement among the three
calculations was good except for the lowest and the highest energy regions. Since Chiccori et al. did
not calculate the higher partial wave components (J > 4), they could not reproduce the second peak
due to the J = 4 component. Recently, the cross section for the J = 0 component only was reported
by Tolstikhin and Namba [129] calculated with hyperspherical coordinate method and by Kvitsinsky et
al. [130] calculated with the Faddeev method. The former authors reviewed many calculations of the
cross sections (J = 0) in the literature and concluded that their values agreed excellently with those of
our GEM calculation. The values are listed in Table 18 for the sake of future benchmark test by any
method for Coulomb three-body reaction calculation.

Computation time was very short; for a particular total angular momentum J, the time for all the local
and non-local potentials was about 100 sec and that for solving the coupled-channel equations (116) was
only 15 sec per one scattering energy on FACOM VP2600 in 1992. This high speed computation will
be useful for systematic studies of various muonic atom-nucleus collisions at thermal and epithermal
energies.

Finally, we remark that the equation (116) through (119) can be used for the calculation of (du)is + ¢
elastic scattering just by taking c¢o = 2. Calculated result in this case was given in [41]

8.2 Decay branching ratio of three-body Feshbach resonance

Since energy of (Heu)s is much lower than that of (du)is, no molecular orbital associated with the
(Hep)ys is formed and therefore (dHep) molecule has no bound states. However, there are two metastable
states, (dHepu) =1 and (dHep) =g, below the (du)i, — He threshold both for He = 3He and “He; they
are Feshbach resonances embedded in the the (Heu);s — d continuum. The (dHep) —p resonance is of
little interest since it is not generated in uCF; the Auger transition from the (dHeu) - state to the
lower-lying (dHepu) =0 state is hindered because the energy difference between the two states is small.
Spectrum of the bound-to-free X-ray in the first branch of (104) was beautifully observed, in the case of
He=* He, by Matsuzaki et al. [131], and this is regarded as the first observation of the direct signature
of the existence of muonic molecule (recently, the X-rays were observed more precisely in [125]).
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However, before another X-ray measurement on (d3Heu), =1 was reported, Kino and Kamimura pre-
dicted that the X-rays from this molecule would be very much suppressed compared with those from
(d*Hep) =1, and those from (p*Heu);—; would not be observed at all since the suppression is even
stronger. This prediction was corroborated by the experiment [124, 125], and the reason of this isotope
dependence turned out to be interesting as we report below.

The Jacobian coordinates of the d + He + p system are given in Fig. 48.

i

M

c=1 c=2 c=3

Figure 48: Three Jacobian coordinates of the d + He + p system.

The total three-body Hamiltonian is given by

R, R, 2 e 2
2m. ¢ 2M. T ra 13

H= (¢=1,20r3). (120)
Kino and Kamimura [42] made similar calculation as in the previous subsection introducing the total

wave function
Wonr = o5 () xSV (Ra) + WY (121)

The first term describes the open (Hep)1,—d channel (¢ = 1). The (dp),s—He channel (¢ = 2) is closed at
the energy of the relevant Feshbach resonance, (dHep) ~1. The second term, \IJ(JCESM)? stands for all the

closed channels and is expanded in the three-body eigenstates (pseudo-states) {W, n ,; v = 0 — Nygral }:

Niotal
(closed) __ £199%
O =Y by, (122)

v=0

The three-body pseudo-states {WU s, ,} are obtained by diagonalizing the Hamiltonian using the Gaus-
sian basis functions

b viL R, (e=1-3), (123)
The Gaussian parameter set is listed in Table 19.

The partial cross section for each J of the elastic d—(Heu);, scattering is defined by

o(E) = %(2J+ )[S7, ~ 11 (124)
1

Calculated partial cross sections for J = 1 at energies in the vicinity of the resonances (d*Heu) =1 and
(d*Hep) =1 are illustrated in Fig. 49 with the closed circles. The solid lines are the best fit to themn by
the single-level resonance formula

ir 2
E = Fres + il /2

o,(E) = %(w +1)|e e — 1 4 (125)
1
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Table 19: Parameters of the Gaussian basis functions for (dHep) ;.

¢ !l Pmax 71~ TNpw (M) L Npax Ry~ Ry, (fm)

1,2 0 20 2~ 4000 120 50~ 8000
1 17 35~ 4400 0 18 60 ~ 6600
1 14 60~ 1500 2 14 100 ~ 3500
2 15 70~ 3700 1 15 100 ~ 4500
2 9 70 ~ 1500 3 9 200 ~ 3500
3 9 70 ~ 2500 2 9 200 ~ 3500

3 0 13 50~ 3000 1 13 100 ~ 2000
1 10 100 ~ 1500 0 10 100 ~ 1500
1 8 100 ~ 2000 2 8 100 ~ 2000
2 8 100 ~ 2000 1 8 100 ~ 2000
2 7 100 ~ 1500 3 6 100 ~ 1500
3 7 100 ~ 2500 2 6 100 ~ 1500

where I is the width of the resonance and 6, is the background-scattering phase shift calculated at
off-resonant energies. Closed circles are precisely fitted by the solid curves whose parameters are listed

in Table 20; the values of the resonance energies are shown for Eye, — e%.

It was found that the widths of the resonances are affected only by a few parts of 107¢ eV by reasonable
change of the parameters of the basis functions. The numbers in the parentheses in Table 20 are for the
limited case in which we employ those only pseudo-states J = 1,v = 0 which are located in the vicinity
of the resonances; the effect of the non-resonant pseudo-states could not be neglected in the calculation
of the resonant widths. Stimulated by the interest of the problems, several other calculations were
performed later on the energies and widths of those two resonances, but the results were significantly
different from that of GEM. Finally, Korobov [132] showed, on the basis of a precise calculation using
the complex-coordinate-rotation method, that his result agreed very well with that of GEM as shown
in Table 20.

Successful prediction by GEM

It is striking that Table 20 shows that the probability (width) of particle decay is three times higher for
(d3Heu) =1 than for (d*Hep);=;. The reason for this is that the probability of the particle decay into
d—(Hep)s scattering states is very sensitive to the tail of the wave function of the (dHep), -; state, and
the tail of (d3Hep) —; is longer than that of (d*Hep)s=; due to the small binding energy with respect to
the d—(Hepu)n—7 breakup threshold; this comes from the fact that the kinetic energy of relative motion
is larger in d — *He than in d — *He due to the mass effect.

The X-ray decay rate of (d*Hep) =1 was estimated {133] to be Ax = 1.69 x 10!! s which is the
same as the particle decay rate A\, = I'/h = 1.67 x 10" s7!. On the other hand, that of (d3Heu) =1,
Ax = 1.55 x 101! s71 is three times as small as Ap = 5.06 x 10" s~1. This is the main reason for the
isotope dependence of the X-ray yields from the two kinds of molecules (branching ratio is summarized
in Table 21). In the observation of the X-ray in the reaction (104), the formation rate of the muonic
molecule (dHep) =1 also affects the X-ray yields. Taking this into account, Ishida et al. {124] compared
the observed and predicted values together with the case of (p*Hepu) —; this is summarized in the lower
part of Table 21. One sees that the observed isotope effect is well understood by the theoretical finding
mentioned above.
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Figure 49: Energy dependence of elastic (Hep)ys — d scattering cross sections in the visinity of the
molecular resonances of (d*Hep) =1 and (d*Hep)s=1. Closed circles represent calculated results and the
solid lines the fit by formula (125). Energy of the horizontal axis is measured from the (du)is — He
threshold; scattering c.mn. energy of (Heu)is — d is ~8.1 keV at the resonances. This figure is taken
from [42].

Table 20: Calculated resonance parameters of (dHeu) =, by Kino and Kamimura [42] with GEM and
by Korobov [132] with the complex-coordinate-rotation method. The numbers in the parentheses are
for a limited case where we employ, in the calculation of the coupling potentials, the only pseudo-statc
J = 1,v =0 at which the Feshbach resonance is located.

Fres ~ &1t I (eV) 0oy (deg)
Kino & Kamimura [42]
(d®*Hepu) -1 —48.419(—48.419) 3.33 x 1074 (3.9 x 107")  6.55 (3.7)
(d*Hep) y= —58.221(~58.221) 110 x 1074 (1.4'x 1077)  6.25 (1.3)
Korobov [132]
(d®Hep) =1 ~48.421 3.48 % 1071
(d*Hep) =1 —58.225 1.18 x 1071

9 CDCC Method for Four-body Breakup Reactions

The method of Continuum-Discretized Coupled Channels (CDCC) which was developed by the Kyushi
Group [43] has been successful in describing nuclear reactions involving breakup processes of weakly
bound projectiles {44, 45, 46, 47, 48, 49, 50, 51, 52] and of unstable nuclei {53, 54]. CDCC is a {ully
quantum-mechanical way of treating three-body breakup processes. It solves the three-body dynarnics
by discretizing continuous intrinsic states of the projectile into a finite number of discrete ones.

CDCC is attracting a great deal of attention due to the advent of many experiments using radioactive
beams since projectile breakup processes are in general essential to such reactions. CDCC is thus
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Table 21: Calculated branching ratio of X-ray decay to (X-ray decay + particle decay) in (d3*Hepu) =1
and (p*Hep) -1 (upper part), and relative X-ray yields with the formation rate of the molecule is taken
into account (lower part).

(d*Hep)y=1  (d*Hep)y=1  (p*Hep)y=t

Ax/(Ax + Ap) [42] 0.503 0.234 0.095
X-ray relative yield
EXP [124] 1 0.123(19) 0.002 (19)
CAL [124, 42] 1 0.096 0.007

important in the spectroscopy of unstable nuclei by scattering experiments. So far, the projectile has
been assumed to be composed of two particles in CDCC calculations. However, reactions induced by
some important unstable nuclei such as *He(= a + n + n), 5B(= o+ 3He + p),"! Li(= °Li+n +n) are
typical examples of projectiles composed of three particles (clusters).

It is possible to extend CDCC, in combination with GEM, to projectile breakup processes in which
the projectile is formed by three particles. From the studies in the previous sections, we consider that
eigenstates of three-body systems obtained by GEM form an approximate complete set in a finite space
sensitive to the projectile breakup processes.

This idea is supported by a recent CDCC work by Matsumoto et al. including two of the authors (E.H.
and M.K.) [134]; breakup continuum states of two-body projectiles were found to be well approximated
by discrete eigenstates (pseudo-states) obtained by diagonalizing the intrinsic two-body Hamiltonian
with the complex-range Gaussian basis functions proposed in Section 2.3.

In this section, we briefly introduce the work of Matsumoto et al. and suggest an extension to four-body
breakup processes induced by (unstable) projectiles composed of three particles.

9.1 Pseudo-state CDCC

CDCC treats a three-body system shown in Fig. 50 in which the projectile (B) is composed of two
particles (b and ¢) and the target nucleus (A) which is assumed to be an inert core. Assuming a model
Hamiltonian

H = Hye + Tr+ Upa(rsa) + Uca(rea) + Uc(R), Hye = T + Vie(r). (126)

Vbe 18 the interaction between b and ¢, while Upa (Uca) is the optical potential between b (¢) and A. For
simplicity, the spin part of each potential is neglected. Furthermore, the sum of the Coulomb parts of
the optical potentials are treated approximately as the Coulomb potential acting on the center of mass
of the systems b + ¢ and A, U.(R). We neglect the Coulomb breakup process and focus on nuclear
breakup.

In CDCC, the three-body wave function ¥ sy is expanded in terms of a discretized orthonormal set of
eigenstates {wl(l)(r) 31 =0— imax} Of Hpe:

lmax 7'max . .
Vs = [0 () Xk (B, + 223 [0 xid®)] (127)
=0 L 1=1

where XYL) describes the center-of-mass motion of the b-c pair in the state wlm. The state ¢ = 0 denotes
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Figure 50: Ilustration of a three-body Figure 51: Discretization of two-body contin-
{A+b+c) system in CDCC. uum states using the momentum bin method.

oy

the ground state of the projectile (we assume here Iy = 0). We introduce the radial functions 1,/’,7}”(: )
and {7 (R) by 9 (r) = ¥ (r)¥in(F) and {7y, (R) = x{7 (R)Yzu (R).

The method of momentum bins

In usual CDCC calculations, the discretized eigenstates wl(i)(r) are constructed by dividing the momen-
tum (k) continuum states {@1(k,7);0 < k& < kmax} of the b-c system into a finite number (¢max) of bins
and then averaging the continuum wave function in each bin (Fig. 51):

WP A\/_/ dulk,r)d Ai=kim ki, (=1 i) (128)

Since the orthonormal relation (w,(:,)l]wl%)} = §;¢ is satisfied, each u’)/i is regarded as if it were an
972

inelastic-channel wave function whose energy is given by ¢ = (wh) | Hpe | wlm) = W’k /2 with

~2 .

ki = (k@ + ki_1)2/4 + Af/lZ

Inserting Eq. (127) into the three-body Schrédinger equation, (H — E)¥ sy = 0, leads to a set of
coupled differential equations for Xl(gzo(R) and X§?(R) [134] though explicit form of them is not written
down here. The equations are solved by the direct numerical method under the asymptotic boundary
condition

XtL (B,R) ~ UL (PHR)(S@O‘S! 100L,Lo — \/P/PO SZI doLo U (R, R). (129)

Here uL (R, R) and u{ (R-, R) are incoming and outgoing Coulomb wave functions with Z;, and Sz‘};),z“ L
is the S-matrix element for the transition from the initial channel {lg, Lo, ¢ = 0} to {[,L,7}. Each of
momentum pairs, (ko, Fp) and (léi,f’,-), satisfies the total energy conservation: BiP, [24ap + 6, = E
Continuous S-matrix element Sy (k) for the excited states {¢i(k,7);0 < k < kmax} Of the b-c system is
assumed to be given by

SlL( ) SlL LOlO/A (Iﬂ <k< ki—l) (ldU/‘

which is constant within each momentum bin. Convergence of the S-matrix element with respect to
incleasing lmax and kmax as well as decreasing A; has been confirmed in [52].

Pseudo-state method for three-body breakup

Recently, Matsumoto et al. [134] proposed a new treatment of breakup continuum in CDCC. The
discrete orthonormal set {wm ;% = 0 — imax) is obtained by diagonalizing the two-body Hamiltenian
Hy, using (complex-range) Gaussian basis functions in the same manner as in Section 2.4 where the
set of pseudo-states {d),(i) } was found to form a complete set in a finite space. In this method, which
is called pseudo-state method [134], the continuous S-matrix element, S;(k), is calculated as follows.
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Fitst, the continuous T-matrix element is defined by

Tu(k) = (du(k,r) i (PR) [Yi®) Vi ®)] | U1 U5 (131)

where U = Upa (rp4) + Uca(rca). Using an approximate complete set {wl(i)}, Ti.(k) may be rewritten as

T () = 3 (nlh, ) 190 ()) (80 (1) 3o (PR) [Yi(E) Va(BD)]

i=0

o | U19GEY (132)
where P has been replaced by a F; in the spherical Bessel function j,{PR). This replacement is valid,
since the k-distribution of (4;(k,7')| w,(i) (r'}) is sharply localized at k = k;. We shall show below that
the approximation (132) is very good. The second matrix element ( ) in (132) is nothing but the
T-matrix element of CDCC. Since the breakup T-matrix element is propotional to the corresponding
S-matrix element, the continuous S-matrix element Sy (k) is expressed as

Tmax

Suwk) =Y (Wl ) v () SP sy - (133)

=0

The two expressions (130) and (133) is compared to each other below.

Test for SLi projectile breakup

Test of the pseudo-state CDCC method was done in [134] on the SLi (= a + d) projectile breakup in
Li 4+ %0Ca at 156 MeV. This was a good example since °Li had d-wave resonance and s-wave non-
resonant continuum states. For simplicity, the intrinsic spin of ®Li was neglected. We took the same
o — d potential as in Section 2.3; Va—a(r) = Vo e~0/Y” with Vp = ~74.19 MeV and b = 2.236 fm which
generates an [ = 2 resonace at €, = 2.96 MeV with width 0.62 MeV. U,_4w0g, and Uy_aoc, are the
optical potential of a-+°Ca scattering at 104 MeV [135] and that of d+%°Ca scattering at 56 MeV [136].

The model space sufficient to describe breakup processes in this scattering was kpax = 1.8 fm~! and
{ = 0,2. In the momentum bin method, the d-wave k-continuum is further divided into the resonance
part [0 < k < 0.55] and the non-resonant part [0.55 < k < 1.8]. The k-continuum of ¥;(k,r) in the
resonance part varies rapidly with &. In principle, the bin method can simulate the rapid change with
a large number of dense bins. Such a CDCC calculation was done to obtain the accutrate breakup S-
matrix elements. Clear convergence was found for both the elastic and the breakup S-matrix elements
with 30 bins of a common width for the resonance part and with 20 bins for the entire region of the
s-wave k-continuum and the non-resonance part of the d-wave k-continuum. The S-matrix elements
so obtained were compared with the pseudo-state method. In the latter, convergence of the S-matrix
elements was achieved with 21 pseudo-states for the s-wave k-continuum, 13 pseudo-states for the d-
wave non-resonant k-continuum and 8 pseudo-states for the d-wave resonance part. The parameter set

of the complex-range Gaussians were {r; = 1.0fm, 790 = 20.0fm, & = 7/2, 2nyay = 40 }.

The momentum bin method and the pseudo-state method gave the same differential cross section of
the elastic scattering up to 180°. The squared modulus of the breakup S-matrix element | S;; ;(k)}? at
grazing angular momentum J = 43 is illustrated in Fig. 52. The pseudo-state method well reproduces
the accurate solution calculated by the bin method with dense bins. The resonance peak is expressed
by only 8 pseudo-state channels, while the corresponding number of breakup channels is 30 in the bin
method. The pseudo-state method with the complex-range Gaussians is thus useful for describing both
resonance and non-resonant states. In a sense, it is more convenient than the bin method, at least in
dealing with the nuclear breakup; study of applicability to the Coulomb break up is in progress.

In conclusion, we have confirmed that the set of of pseudo-states {¢li) (r}; ¢ = 0 = imax} can forms an
approximate complete set in a finite (rather large) space that is important to the breakup reaction.
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Figure 52: The squared modulus of the breakup S-matrix element as a function of k at the grazing
total angular momentum J = 43 for Li + “°Ca scattering at 156 MeV. The solid line is by the pseudo-
state method, while the bars by the momentum bin method with dense bins. (a) s-state breakup
(I =0, L = 43) and (b) d-state breakup (I = 2, L = 41); similar result is obtained for (I = 2, L = 43,45},

This figure is taken from [134].

9.2 Extention to four-body breakup processes

In this subsection, we discuss a feasibility of the pseudo-state CDCC for four-body breakup processes.
Reactions induced by unstable nuclei composed of loosely bound three particles give important informa-
tion on the structure of such nuclei. In principle, these reactions are to be treated as four-body breakuyp
processes in theoretical studies. It is possible to extend the pseudo-state CDCC, in combination with

GEM, to such processes.

A

Figure 53: Illustration of a four-body (A+b+c+d) system in CDCC. Two other sets of Jacobian coor-
dinates of the projectile (b+c+d) are omitted for simplicity.

The momentum bin method needs the exact (continuous) wave functions the three-body system which,
in general, are quite hard to obtain. But, we can circumvent this problem with the pseudo-state
method. In the method, it is possible to prepare the approximate three-body complete set of wave
functions {Cb(;); i = 1 ~ imax} by diagonalizing the Hamiltonian of the projectile in a space spanned
by bases of L? type (see Section 3). Regarding {<I>(Ii)} as the intrinsic wave functions of the breakup
channels, we expand the total wave function ¥$9°C in the same manner as Eq. (127) (Fig. 53):

Tpax tmax

PO = (@1 (r,0) X, (R)],, + > 2 [0 (o) AR, (134)
I=0 L i=1

Insertion of Eq. (134) into the four-body Schrédinger equation, (H ~ E)W = 0, leads to a set of
coupled differential equations for ng)LO(R) and X(,%(Pi, R). The diagonal and the coupling potentials
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are given in the form
Virorw(B) = ([0 (r, p)V.(R)] ,, [U] [#0(r, p) Y (R)]

where U is the sum of the three optical potentials between the target nucleus and each of the particles in
the three-body projectile. The asymptotic boundary condition for xyL)(Pi, R) is the same as Eq. (129).
generating the S-matrix elements S}ZL) 1oL, O the pseudo-states @5’).

JM> ! <135)

From the S-matrix elements we can calculate the differential cross sections of the elastic scattering and
projectile-inelastic scattering (projectile-breakup) to the pseudo-states <I>y). Experimental differential
cross sections to breakup states is sometimes given as a sum of the cross sections for projectile continuum
states within an energy interval. In such a case, the corresponding calculated cross section may be given
as a sum of cross sections to pseudo-states in the same energy interval. Analysis of the effect of the virtual
breakup of the projectile on the differential cross sections of the elastic scattering of *He(= o +n + n)
and HLi(="Li+n 4 n) projectiles is underway using the three-body GEM wave functions of the bound
states and pseudo-states of those projectiles. Recent experimental data on %He scattering and ''Li
scattering are of particular interest. Very recently, Matsumoto et al. [137] reported a four-body CDCC
analysis, for the first time. They analyzed elastic *He +!2 C scattering at Ep;, = 38 MeV /nucleon;
observed differential cross section was well reproduced by the calculation including the s-wave and
d-wave three-body breakup pseudo-states of SHe.

Explicit breakup T-matrix element can be calculated by inserting W®PCC | in place of the exact total

wave function, in the exact form of breakup T-matrix elements, which leads to an approximate form
[134]

Ty = (P RFkrtap) py | yeDCCy (136)
where U; is sum of all interactions in the four-body (A-+b-+c+x) system and k and g are momenta
conjugate to r and p, respectively. Accuracy of Eq. (136) depends on how precise the approximate
complete set is within a finte region sensitive to Ty. Analyses based on this formulation are of much
interest as a future work on breakup reactions induced by three-body unstable nuclei.

10 Summary

We have reviewed our method of calculation, Gaussian expansion method (GEM), for bound and
scattering states of few-body systems and its applications to various subjects. Major points to be
emphasized are as follows:

i) We introduced three types of basis functions for GEM: Gaussians, infinitesimally-shifted Gaussians
and complex-range Gaussians in which range parameters are chosen to form geometric progression. As
for two-body systems, we demonstrated that the former two types (mathematically equivalent to each
other) were quite suitable for describing short-range correlations and long-range asymptotic behaviour
simultaneously, while the third type was good at describing highly oscillatory wave functions of both
bound and scattering states.

ii) Bound-state wave functions of three- and four-body systems are expanded in terms of a set of
(complex-range) Gaussian basis functions of a set of Jacobian coordinates in each of all the rearrange-
ment channels. This multi-channel representation makes the functional space much wider than that
spanned by single-channel basis functions. Therefore, the multi-channel basis functions are particularly
suitable for describing both the short-range correlations and the loose (halo-like) binding of any pair of
particles in the system.

ili) With the use of the (complex-range) Gaussian basis functions, calculation of three- and four-body
matrix elements between rearrangement channels can easily be performed for potentials with arbitrary
shape. A technique of using the infinitesimally-shifted Gaussian basis functions in place of the Gaussian
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basis functions is very powerful ! !and is used in all the four-body calculations described in this paper.
Accuracy of the results has been demonstrated in a stringent benchmark test calculation for the four-
nucleon bound state using a realistic NN interaction.

iv) An advantage of GEM is that the diagonalization of a Hamiltonian using the Gaussian basis functions
generates not only the lowest eigenstate but also excited eigenstates with the same J7 simultaneously.
For two-body systems, we found that the eigenstates (bound and discretized continuum states) form
an approximate complete set in a finite but sufficiently large region of the coordinate space. The same
is also true for the four nucleon system: a GEM calculation well explained the ground and the second
0™ states of *He and demonstarted that the 0% eigenstates obtained by diagonalizing the four-body
Hamiltonian exhausts 99.99 % of the energy-weighted monopole sum rule.

v) We took full advantage of GEM mentioned in ii) and iv) when we performed high-precision Coulomiy
three-body calculation of exotic atoms/molecules: (a) the very weakly bound J = v = 1 state of the dtp
molecule which is a key to the muon catalyzed d—t fusion, and (b) the metastable, vibrationally-excited
states (J = 35,v < 5) in antiprotonic helium atoms (He*" + ¢ + p) observed by laser experiments. In
the latter, the GEM calculation was so accurate as to become the first recommended value of antiproton
mass cited in Particle Listings 2000 and the latest value in the 2002 edition.

vi) The advantage of iv) of GEM has been taken in a new treatment of breakup continuum in the
method of CDCC (continuum-discretized coupled channels) for three-body nuclear reactions involving
breakup proceses of weakly-bound projectiles (ejectiles) such as unstable nuclei. Continuum states of
the projectile (ejectile) can properly be treated by the discretized eigenstates {pseudo states) obtained
by GEM. Smoothing of discrete breakup S-matrix of CDCC into accurate continuous breakup S-matrix
becomes possible by the treatment. The CDCC calculation of elastic scattering of *He (= ce +n +n}. 2
typical three-body halo nucleus, with its virtual three-body breakup states taken into account, is now
feasible using the techniques of this paper; differential cross section of *He+'2C at Ey,,/A = 38 MeV is
found to be well reproduced by this ’four-body’ CDCC.

vil) Application of GEM is possible to low-energy Coulomb three-body reactions based on the same idea
as in vi). Examples were presented for muon transfer reactions and the decay of Feshbach-type muon
molecular resonances. The three-body scattering wave function was given by a sum of two components;
one for (rearrangement) open channels and the other for closed channels. The latter L? integrable com-
ponent was presented as a superposition of three-body eigenstates which were obtained by diagonalizing
the total Hamiltonian using the three-body Gaussian basis functions of all the rearrangement Jacobian
coordinates. The eigenfunctions constituted an approximate complete set in a finite coordinate space.
The calculated results agreed with those obtained by completely different methods, which showed that
GEM is valid at least in some cases of Coulomb three-body reactions .

viii) Studies of light hypernuclei based on three- and four-body (cluster) models have been quite usetul
in constraining ambiguities of hyperon(Y)-nucleon(N) and hypron(Y)-hyperon(Y) interactions for whiclh
information from scattering experiments is scarce (Y V) and none (YY), Good examples are as follows.
The spin-orbit splitting energies in $ Be(= 2a-+A) and *C(= 3a+A) predicted with a quark-model-based
Y'N spin-orbit force agreed with the energies given by later v spectroscopy experiments, whereas those
predicted with the meson-theory-based YV spin-orbit force was several times larger than the observed
values. Regarding the Y'Y interactions, a AA potential designed to fit the 2A separation energy, Baa, of
§1He (NAGARA event) was found to reproduce By of the 2% excited state of 19 Be ( Demachi- Yanagi
event) consistently. With the same AA potential, energy levels of double A hypernuclei with A = 7~ 10
were prectited to be compared with future experiments for further studies of the Y'Y interaction. A
definitely important role of A — £ conversion in 4H (4He) were made clear using a (3N +A) + (3N + 3
four-body model with realistic NN and YN interactions.

ix) Some of light hypernuclei were found to show significant dynamical change by addition of A parti-
cle(s) to them. This phenomena is well described by three- and four-body (cluster) model of single and



E. Hiyama et al. / Prog. Part. Nucl. Phys. 51 (2003) 223-307 293

double A hypernuclei. A significant shrinkage (22 %) of the core nucleus of {Li was predicted, together
with a suggestion of how to determine it. The prediction was afterwards verified experimentally (194
%). Addition of A particle(s) makes the core nucleus more stable and extends the neutron drip line
in the nuclear chart and gives rise to many 'neutron-lich’ hypernuclei. Level structure of some of such
neutron-lich hyper nuclei was predicted.
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Appendix

In Appendix, we shall describe some technical details of Gaussian and infinitesimally-shifted Gaussian
basis functions. In Appendix A.1, the calculational method for three-body matrix elements is presented.
Appendix A.2 explains how to construct the infinitesimally-shefted Gaussian basis functions. Calcula-
tional methods for three-body and four-body matrix elements with the infinitesimally-shifted Gaussian
basis functions are provided in Appendix A.3 and A.4, respectively.

A.1 Three-body matrix elements using the Gaussian basis functions

We outline the calculation of matrix elements using three-body Gaussian basis functions which appear
in Section 3. Spin and isospin parts are omitted for simplicity of expressions.

Interaction potentials

As an example, we consider how to calculate a central-potential matrix element of the following type:

(850 (ra) ¥R, (Ra)] V() | [d, () 95,0, (Re)] ) (137)

in which the ket- and bra-vectors are from different chanuels a and b(a # b) and the potential is a
function of 7., (¢ 5 a, ¢ # b). We transform both the e-channel and b-channel functions into c-channel
functions and to perform the integration over r. and R..

Assuming the coordinate transformation (rg, R,), (s, Rp) — (r¢, Re) in the form

ry, = Ogclc+ ﬁacRc s R, = YacTe + dacRec )

ry, = aplc+ GpcRe, Ry = Yoere + 0ucRe (138)
and using the formula
d 4m(2 + 1)) 3 _
! Ym All = ac! ¢ A ac A Ac - C 139
7o Yim(Fo) g[(mﬂ)!@(z—x)ﬂ)z (@eere) ™ (Buefe)* [YaF) Vi (R, (139)

we can rewrite the a-channel three-body basis function as a function of r. and R.:

e REx Y, (E)¥e (Ra)]
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= (2L +1D2L +1){2 §% [ (2la) (2 |* grama g1 e g0 i) i
a a et 2 2A “tac Mac Tac e Te ;

lamA Lo—=A 1, _ .
x SN A Loy (la=ALa—A0O[LOYAAOO|LO) {)Qc(fc))ﬁw(R(.)JJ’\[ (140)
te.Le lu Lu J A

This expression can be summarized in the form (denoting A + A as K)

fadla K (v e .
re Ry ]iyia(fa)YLa(Ru)]le = Z Z (la Lo J o Le K J Yamg vietHo B R Lylc(rC)YLc(RC)JM[ {14l
le,Le K=0

and the transformation coefficients {l, Ly J | o Le K J )a—. can be calculated and stored prior to the
computation. The same transformation can be made for the b-channel basis function as

ly+1Ly ) - —
=3 N WLy J [l L K J Yo rpHe" N RE p;crfam_(Rc)} (142

rie RE [ Y4, (8)Y, (Ro)] PR »

JA

Using the coordinate relations in Eq.(138), the remaining Gaussian part can be transformed as

, ; PR _ C
eraTa MR oo N nri26re ReQRE =G R 247r\/2l + 1Z{(26r.R,) lL}l(fl‘c))"t(Rc)J0

1=0

{(143)
where Z;(z) is the modified Bessel function, Zj(z) = (=)' (iz).

Combining Eqs. (141),(142) and (143), we are ready to perform the integration in Eq.(137) over r,
and R,.. The integrations over R, and then over ¥, can be performed analytically after some angular-

momentum algebra though the result is not written here explicitly.

Numerical integration of an arbitray V(r.)

We are finally left with a one-dimensional radial integration in the form

o0
V= /0 pim e Vire)ridr O<m < ({ly+ Lo+ ly+ Ly)/2, o >0), (1dd;
where a depends on the Gaussian sizes (Vy,, An,, Vn,, An,) and the coordinate transformation coethi-
cients (e, Bac, Yac Oacs Obes Bbes Voer Obe)- (la + Lo + Iy + Ly)/2 is an integer because of the parities
(=)latle = (=)t When numerical integration of Eq.(144) is nccessary for a specific V{r,), it is
time consuming to perform for each combination of basis functions, especially in the case of a large
dimensional matrix.

For an arbitrary shape of V(r.), the authors recommend the following interpolation technique which
requires only a short computation time but keeps a high accuracy (this is an advantage of taking
the Gaussian basis functions): Since V;, is a smooth function of loga for any m, third-order (cubic}
interpolation with respect to loga is satisfactory. First, estimate the possible minimum and maxinnum
of log o using the shortest and longest ranges of Gaussians and calculate the integral Eq.(144) for
{(loga)n;n=1— N}, N being the number of equidistant grid points. High accuracy, say 107, in the
interpolation is accomplished with a few thousand points for which the computation time in preparing
the integration is negligible; the radial integrand can be accurately done with the Gauss quadrature.

Other matrix elements

Three-body matrix elements of the norm-overlap and those of the kinetic-energy operator are much
easier by simply transforming the a-channel basis functions into the d-channel functions by Eq.(141)
{or from the b-channel to the c-channel).



E. Hiyama et al. / Prog. Part. Nucl. Phys. 51 (2003) 223-307 295

Matrix elements of non-central forces are more tedious but straightforward, though explicit results are
not shown in this paper. In the study of three-nucleon bound states (*H and ®He) based on the present
method using realistic NV forces [63], the non-central forces employed are the spin-orbit, tensor, (2,
quadratic spin-orbit and momentum-dependent forces as well as the Tuson-Melbourne three-body force
[64] (See Section 3).

A.2 Construction of the infinitesimally shifted Gaussian basis functions

The infinitesimally-shifted Gaussian (ISG) basis functions are generated in the following way. As an
example, we give the ISG function which is equivalent to the p-wave ([ = 1, m = 0} one-body Gaussian
function

26 = lim e )i grler o) (145)
e—0 ey
where ¢ is the shifted distance of the Gaussian. The term in [ | can be written as
e~u(z—s)2 _ eﬂ/(z-f—e)2 - eu(z2+ez) [821152 _ 672115:] - eu(zz+52) [461/2 + z(QEI/Z)s N } (146)
3

and the RHS of Eq. (145) converges to the LHS for ¢ — 0. The procedure € — 0 in actual calculations
is to be performed after the analytical calculation of the matrix elements, as was emphasized in Sections
2.6.

More generally, we have the following expression:

_ non -%(r~ea)2 _ —-E(r+sa)2 n 147
(a-r)m e =lim ()" [e e I (147)
where, a is a dimensionless vector to indicate the shift direction (¢ has the dimension of length). With
respect to ¢, the leading-order term of the quantity [ " is (4ve/n)*(a-r)"e™" and all the lower-order
terms vanish. We define three shift vectors a;, a;, and aj, as

z for a=a,=(0,0,1)
a-r=<{z+wy for a=a,=(1,40) (148)
r—iy for a=a}, =(1,-40)

and use them below in the definition of the ISG basis functions. The spherical harmonics Y, (8¢)
multiplied by 7' are described in term of cartesian coordinates as follows (for m > 0):

- 3 BB N dem=2i 2

] R S 5

= @rign f Aimy 2778 (@ 4 )
- =0

= Z A j 27U (g i)™ (g — dy)? (149)
=0

with
—m)E | i
Aimg = {(2’4Z&)fm>§”)'} ‘ J;:l)' T ji0m +j()!(; p———T (150)

Using the trivial relation (I # 0)

AT (g 4 iy)™H (z— dy) e = [(ag 1) e TP [(agy 1) e EU) [(ag, 1) e TP (151)
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and replacing v with vn/l in Eq. (147), we have an alternative expression for the normalized Gaussian
basis function Eq. (7) in the following form:

Fn(r) = Nur'e™ Vi, ()
[ I_Tml (- ca,)? —Eir pra,)? l-m—2j
= Nl (gz) X A T
x [ef'ﬂr—eamy)z — Q—%(r-%—sazy)z]mﬂ [pf%(r_c*ﬂ;y)z — el +sa;y)21§j . (152)
Expanding the | | terms we can rewrite the above equation (introducing p = [ —~m —2j and ¢ = m+ j)
as
l,—vr? l L 2 (P 2(2s-p) c /1
sremnin = ot (& o g ()
7=0 8=
q
x Z (Q> e 2(2t—q)evaxyr/l Z ( >82(2u—_7)sua;y«r/l (154
t=0 ¢ u=0
LV E S NI AN NS (r~eD)
= N, lim Ay i Tvir—e 155
i a) 5 am B 55 0)C) () ow
with
p = l—-m~2j, g=I1l+m {156)
D = (2/1)[(2s - play + (2t — q)axy + (2u — j)a}, | (157)

Here, we have neglected the effect of the O(¢?) terms in the argument of the exponential functions.

Equation (155) gives connecting with the Gaussian basis functions ¢%(r) defined by Eqs.(7), (8) and
(9) in the form

am(®) = Nu rlewz im (T)
kmax
Ny Z Cim e €0 = Dims)? (158)
with
Crompe = ()" Cim Dig =D - (159)

The coefficients Cy, , and the shift-direction vector Dy, x are dimensionless numbers ndependent of »
and . Cyn i and the z- and z-components of Dy, are real numbers. The y-component of Dy, is
purely imaginary. With this in mind, one can treat the Dy, with no explicit use of complex variables
in the computation. It is to be noted that the choice of the shift-direction vectors is not unique, though
the final result of the matrix element calculation is the same. For example, we can take a, = (1,0.0},
a, = (0,1,0) and a, = (0,0,1) and make a similar calculation as above resulting in another set of
{Crmps Dimp ; k = 1 — kmax} With kmax becoming slightly larger and Cin e being complex, but use of
this set is mathematically equivalent to Eq. (158).

Here again (ver)! is the leading order of the summed quantity in Eq. (158) and is canceled by 1/(ve}
leaving r'; the lower-order terms vanish through the summation and the terms of higher order than
(ver)! dlsappear after ¢ — 0. This property is the key advantage of the present method and is often
used in the calculations below.

A.3 Three-body matrix elements using infinitesimally-shifted Gaussian
basis functions

We outlined in Appendix A.1 how to calculate the energy matrix elements using three-body Gaussian
basis functions Eq.(137). The angular-momentum algebra (Racah algebra) to perform the integration
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over all anglular coordinates is straightforward but rather tedious, especially in the case of compli-
cated interactions. Also, the algebra will be much more laborious for four-body systems. Use of the
infinitesimally-shifted Gaussian (ISG) basis functions makes such a calculation very easy with no tedious
angular-momentum algebra required. An outline of this calculation is given in this section. We note
that Suzuki and Varga utilized [72] another method for matrix calculations using Gaussian functions.

In the calculation of the matrix element Eq.(137), Caussian basis functions ¢$,,(r) and Y%, ,,(R) are
replaced by the mathematically equivalent ISG functions, Eq.(158):

kmax
¢nlm() = Ny h_r% 1/ lz C’l'mke . r_EDlmk) (160)
Kmax
¢1GVLM(R) = Ny lim LL Z CLI\{KE —~An{R EDLMK)z (161)

e—0 (/\5) =

The matrix element in Eq.(137) can then be written down explicitly in the form

< [ nula<ra) 1/)N.,L,,( a)] M [ Vire) | [ nbz,,(l'b) ¢'NbLb(Rb)] JM>
= ¥ngly NN.,L,, nply NNbLb Z (lamaLaMaIJM) Z (lbmbLbe!le)

ma Mg my My
x lim L li ! li li
—_— 1im m -——
200 (Unealle a0 Oiea)le 0 (Umgen) a0 (An,m)bh
X Z Z Z Z Clama,ka CLaAla,Ka Clbmbykb CLbe»Kb< V(TC) >rc,Rc (162)
ke Ko ky Kb
(V(re) bre,Re (163)

_ < e—una(ra‘eaDlama,ka)ze—ANa(Ru—sADLaMa,Ka)2l V(TC) b e—unb(rb—ablemb,kblze-XNb(Rb—EBDLbM,,,Kb)2> )
re,Re

The coordinate transformation (rs, Re), (v, Rs) — (re, Re) in Eq.(138) is simply performed within the
arguments of the Gaussians of Eq.(163); this is an advantage of the ISG basis functions.

For simplicity in the expressions below, the following definitions are introduced.

€1 =¢a, E£2=€4, E3=Ep E4=EB, (164)
D, =D}, x> D2=Dia k., Ds=Dimuk, Di=Drux,, (165)
L™ = (1, + Ly + 1y + Ly) /2. (166)

where (Io + Lo + Iy + L)/2 is an integer because of the pary relation (—)'s*le = (—)+ie.

Gaussian potential

In the case of a Gaussian potential, V (r,) = vo e #"¢, Eq. (163) is easily evaluated and can be represented
in the form .

< V(TC) >rc,Rc = Gab exp( Z gijei EjDi . Dj) (167)

1=i<j

where the terms of {O(e?);i = 1 — 4} are already dropped in the argument of the Gaussian since
they are of no use. Though not explicitly given, the factors G4, and g;; depend on the Gaussian sizes
(Vngs ANa» Uny» AN, ), the coordinate transformation coefficients (Qac, Bac, Yac: acs Qbes Boes Yoe, bc) and
the potential parameters (vg, ), but not on the shift parameters.

In the same manner as in Section 2.6, we expand Eq. (167) in terms of e’s and retain only the terms
proportional to el ghe eg" €5*. This is accomplished by the following three steps: Firstly, in the expansion
of the exponential funcmon, we take only the term

4
Gas (Y. gigeieDy - Dy L)y (168)

1=i<j
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since only this term includes the order of st eb e% el*. Secondly, we expand Eq.(168) as
1 (sum)
Ga H > ——(gyeig;Di - Dy)"™ {169)

1=i<j m,;=0 ‘L
imposing the constraint
4
ST myy = L (170
1=i<y
Thirdly, in the summation in Eq. (169), we pick up only the terms which satisfy the relation about the

powers of €’s:

5m12+m13+7mq — 6la myz+maz+mes _ 8La ~miatmaztmas b PUOT Rl g L -
1 =1 — %255 =3 -

- Ly PR
&g 3, g4 =z - ‘-.,l(ll

oy

As the result of these three steps, Eq. {162) can be represented in the form

( (680 0ra) Y50 R)] V(o) | [ b (1) U, (R )
= Nt Nvata Nagty Naiyr, Gas /(Mg AV AR )
X 3" (lamaLaMa|JM) > (lymsLyMy|J M)

MmaMa mp My

X3 3 3" Clumarka Crataiiw Clymyky CLonty i, (1723

ko Ko ky Kb
1
X Y e o T
e TMig Miq Tas Mo mag 10121 772137 TN14: Mozt Mag: Mi3q:

X (D1 . D2)m12 (Dl . Dg)m13 (Dl . D4>m“(D2 . Dg)mza (Dz . D4>m24 (D3 . D/;)TmH

Xomlz+mn+mu Aa 5mu+mzs+mz4 La 6m13+m23+m34 Wy Omystmins+man, Ly
m 7T mn L keg’ T,
Xg 12 13 14 23 24 34

9137 914" Y237 Gog 934 -
We then sum up the coefficients that are associated with the same powers of ¢;;’s:

mi2 M3 M4 ,MM23 M24 M54 7.
G17° 9157 911 95” goa™ 934 - (173)

The result can be summarized in the following form, which is much more useful for rapid computation:

([ () Y8, (R 1V (7o) | [ () VS, ()] )

= Anula NN L [V’nble NyLy flb/( N,J nb/\ )
=y W @ @, 0,0
- DI 0]
X Z S Lty Ly L T2, T3, M4 My, 7”2477“4,1 )
=1
n il

X G192 g13° Gist Gos Goit Gast, (174;
with

@ @ ) @) i)
Sla,La,lb,Lz,( ’”127 Mig, Mg, Ty, Maq, Mg )

= Y (lamaLaMa|JM) > (lbmyLyMy|J M)

me Mg my My

X Z Z Z Z Clama,ka CLaI\Ja-Ka Clbmb,kb CL;,A{;,,K,,

ke Ka ky Kp

30D :

M1z ™Mi3 Mi4 M23 M24 M3q Mzl Mgl Mgl miog! mag! may!

X(D] . Dz)m12 (D] . Dg)ml3 (D1 . D4)m14(D2 . ])3)1’"23 (DQ . D4)m24(D3 . ]34)7”34 .

X6M12+m13+mm a 5m;2+m23+m24 vLa 5M13+m23+m34 Jy 6"114 +moa+rga , Ly

X0 w0 Y @0 W 6 0 G - (175
Miz, My M13,Myz M1,y M3, Mgy M21,My,  M3a,Mg,
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No complicated angular-momentum algebra is needed. The computer algorithm for calculating the
coefficients S and m® and iy is simple. A good test of the calculation is to verify that S is independent
of M.

It is to be emphasized that the coefficients S depend neither on specific three-body systems nor on the
Gaussian range parameters, and therefore they can be stored in a data file and universally used for any
three-body calculation. This is an advantage of the ISG basis functions.

Needless to say, the authors examined numerically that the matrix elements calculated with Eq.(174)
are exactly the same as those calculated with the expression obtained in Appendix A.1 for the original
Gaussian basis functions.

The structure of the final expression of the matrix elements in' Eq.(174) is very suitable for vector-
processor computation. The ’do loop’ to sweep the matrix elements (by changing n,, Ny, ny, Ng in a
one-dimensional manner for a given set of Iy, Lq, Iy, L) should be placed inside the 'do loop’ for the
sumnmation over i. This makes the computation time shorter by a factor of 10 — 20. This is also an
advantage of the ISG basis functions.

Central potential V(r.) of arbitrary shape

For any arbitrary functional form of V(r.), it is possible to calculate the three-body matrix element in
Eq.(162). Performing the integration over R, first and then over ., we obtain the following type of
expression for { V(r¢) v r.:

1 (sum)
1
R, = Gy el ——Q"V, 176
<V(rc)>ch Gabe m'Z=O (2m+1)|Q V 3 ( )
where

4 4

P=% pyjeaeDi-Dj, Q= g¢eeDi-D; (177)
1=i<j 1=i<j
0 2
Vi = / r2m =t V(p ) r2 dr (178)
0

Here, though not explicitly given, G, p;; and g;; and ¢ are numbers which depend on the Gaussian range
parameters (Vn,, AN, , Vn,; Av,) and the coordinate transformation coefficients (Qae, Bac, Yac, Sac: Coes Bee;
In the course of calculations, we have used the expansion of the modified Bessel function Zp(z) =

. 0 (7:%%)—!’ but the upper limit of the summation is L& in Eq.(176) due to the consideration on
the powers of €’s. V;, should be calculated by the interpolation with respect to « in the same manner
as the integration Eq.(144).

In the same way as before, we expand ef Q™ with respect to the 's and pick up the terms which have
appropriate powers of the €’s, namely ¢k gl= Eéb Ef b, The resulting expression is similar to Eqs.(174) and
(175). The computer algorithm is still simple.

Other operators

Calculation of the matrix elements of norm-overlap and kinetic-energy operators is simpler than the
above cases. The coordinate transformation (r,, Re) — (rs, Ryp) is recommended.

In the case of a momentum-dependent force such as
V.=V2V(r)+V(rd) VZ,, (179)

the operation of Vfo on the bra and ket functions is easily performed since they are simple functions
of r.. The structure of the final expression of ( V. )., r, is similar in style to Eq.(176), but the part
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associated with the radial integration appears in the form

1, (sum) 1
" Vo, 180}

As for the spin-orbit force and the tensor force, with some spin angular-momentum algebra, the final
expression is given in a similar style to the above but slightly more complicated. The part associated
with the radial integration appears in the form

Lo (m+ 1)
> ' Q" Vit for spin-orbit force, (181}
— m!(2(m+ 1)+ 1)! )
m=0 m (
L (m+2)!
Z = Q" Viin for tensor force. (182}
—o m!(2(m+2) + 1)! )
m=0 m (

In our test calculation of the three-nucleon bound state, we verified that the method used in this
Appendix with realistic NN forces with central, spin-orbit, tensor, [?, quadratic spin-orbit, momentun-
dependent forces gave the same result as does the method of Gaussian basis functions in Appendix A.1.

A.4 Four-body matrix elements using infinitesimally-shifted Gaussian ba-
sis functions

Calculation of the matrix elements between the four-body basis functions is quite analogous to the
three-body case. Using the four-body Gaussian basis functions in Eq. (69), the matrix elements of a
central potential V(r.) are represented apparently as
ol o ol N .l bl 3 \.
([ 06 R, o] 1V | ][00 08, ()], xSEaton)) )
= Nnula NNaLa NVa/\a Nnblb NNbLb Nl’b/\b
X Z (/\a,uafaj\/[[alJJW) Z (/\b/,LbIb]\/f[b|JM) Z (lamaLal\/fallaA/f[a) Z (lbﬂlbLbﬁfb“(J’[[b)

My, ta Mlb#b MmaMa my My
1
4

x lim ———— lim lim im lim lim
ca=0 (Un,Eq)le €a—0 (An,ga)le a0 (wy,E0)e =0 (Unyn) e5—0 (An,ep)Pr =0 (wy,2p)

X33 S ST Clamaka Cratta i Coapiaiia Clamyky CLoaty icy Cogigns { V(76) Yroerp, (183)

ka Ka Ka ky K, b
with

< e~ Vna(Ta —2aDigmg ke )? e~ Wa(Ra —eaDr,aa ko) e~wva (P oDy paing )’ | (184}

< ( C) >I R P
ey By 2,
X V(T‘ ) | e ”nb(lb'Eblemb,kb) e“/\Nb(R'b EBDLbe,Kb) efdvb(p[,“fﬁD/\bub,nb‘)o> Re, P,

The coordinate transformation (rq, Re, p,), (ts, Re, o) — (re, Re, p,) of the form

Ty = Qgclc+t ﬂacRc + YacPe 5 R, = Ot':mrc + B:ICR«" + %CPC :
Ty, = Qpelet ,BbcRc + YoePe s Rb - a;;crc + ﬁI/)cRc + A/ll)cpc ) (185)

is then done in the arguments of the Gaussians.
For clarity in expression below, the following definition is introduced:

€1 =E8Eq, E2=Ex, €&E3=€Eq, E4=¢&y E5=Ep, E¢= €4,
D, = D?a’fﬂa,ka’ D2 =D} vk, D3 = D} pamar D2 = Dyymy iy Ds = Diyagy i, Do = D;hllhv"‘b"
LE™ = (lg + Lo + Ao + o + Ly + o) /2. (186)
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where (I, + Lq + Aq + Ip + Ly + As)/2 is an integer because of the parities (—)letlatda = (Yh+leth,

Gaussian potential

In the case of a Gaussian potential, V(r,) = vpe™ ’3, following the prescription in the three-body case,
we calculate Eq. (184) to get the result in the form

(188000 ¥ Ra)], xEalen)] 1V | [ [¢50000) 050, Ra)], XSa(e0)] )
= Nugta NNoLa Nvara Nugty NnyLy Noyay ab/ Vlaa /\JLVE; I\: Vlb )‘ I/b)
X Z (/\a,u,aIaM[a|JM) Z ()\b/LbIbM[leM) Z (lamaLaMalIaMIa) Z (lbmbLbelfijb)

My, tia Mr maMa my My

X Z Z Z Z Z Z Clama,ka CLaMa,Ka C)\a,ua,fta Clbmb,kb CLbe,Kb C’\bubv"b (187)

ke Ka Ka ky K &b

6 L(aum)
H Z 91] D;-D, ) 5m12+m13+m14+m15+m16 Jla 6m12+m23+m24+m25+m26 s Loa

1=i<j myj —0

X 5m13+m23 +ma4+mas+mae , Aa 5m14+m24 +maq+mas+mas by (5m15 +mas-+mas +mas+mse , Ly 6m16+m26 +mzg+mag+mse , Ay -

We then sum up those coefficients that are associated with the same powers of the g;;'s, namely
mi;

H?:i(] gz]
The result can be summarized in the following form which is much more useful for a rapid computation:

([[¢5 ) 50 @), X001V | [¢n,,,b<rb> (B, Xlon)] )
= Noate NNozo Noare Mgty Nnyzy N, Gas/ (V2 AN w pe vl /\L" wyt)

Va

imax i i i m“ m(Z) m(f)
X Z Sl{,,La,/\a,l,,,Lb,Ab(mggymgagv ----- mgs)) G123 e 956 (188)
i=1
with
S[] LaAale, Ly, ,\,,(mgz)a m%)’ ----- mge))
= Z ( a,ua.[aM]a|JM) Z (/\b/LbIbM1b|JM) Z (lam,lLaMaHaM[a) Z (lbmbLbeUbM[b)
My, tha Mlbl‘b me Mg my My

X Z Z Z Z Z Z Clammka CLaMa,Ka CAa,,UlavNa. Glbmb,kb CL;,M],,KI, C)\blibv'ﬁb

ke Ko Ka ky Kp Kb

xS >

miz M3 mse

(D - D)™ (Dy - Dy)™ - - (Ds - Dg)™

mpa!mgg! - Msg-
X5m12+m13 +mig+mis+mie ,la 5m1z+m23+m24+WL25+m26 Le 5m13+m23+m34 +m3s-+mae , Aa

X6m14+m24+m34 +mas+mas by 6m15+m25+m35 +mas+mss , Ly 6m16+m26 +mag+mas +1Ms6 ; Ap

o Omism 1 Oy (189)
This expression is quite analogous to Eq. (175) in the three-body case. Algorithm for the calculation
of four body systems is only a slight extension of that for the three-body case. This is an advantage of
the ISGL basis functions.

It is to be emphasized that the coefficients S depend neither on specific four-body systems nor on
the Gaussian range parameters, and therefore can be stored in a data file and be used universally for
any four-body calculation. This is an advantage of the ISGL basis functions. We can make the same
comment as in Appendix A.3 on the advantageous use of vector processors.

Central potential V(r.) of arbitrary shape

As in the calculation of the three-body matrix elements, it is easy to calculate the four-body matrix
elements of the central force V(r.) of any functional form. Performing the integration over p, and R,
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first and then over T, we obtain the following type of expression for { V(rc) jr.. k., p,:

J.(sum)
’ 1
Vir =G € Y ;n £190)
< ( c) )rc,Rc ab Z (2ﬂl+ 1) Q . /
with
G G
P= z pijSiEjDi'D]', Q: Z ([ijfi:‘]D,,-D] (191
1=i<j 1=i<j
s b 2m —ar? g 2 e
Vin :/ reMe e Vir) i dr. {192)
0

Here, though not explicitly given, G, p;; and ¢;; and « are numbers which depend on the Gaussian \i/« «
(Vnas ANas Woy Vnys )‘M w,,) and the coordinate transformation coefficients (e, Sacs Yae: &hps Bors Vhr
Qpe: Bber Yooy Cpes Bher Voes )- Vi should be calculated by the interpolation with respect to « in the same
manner as the integration Eq.(144).

In the same manner as before, we expand ef Q™ in owers of the 's and pick up the terms which
P ¥ 1

have appropriate powers of the ¢’s, namely sll“ EL“ £3° 54 eL” £s®. The resulting expression is similar to

Eqs.(188) and (189). The computer algorithm is quite similar to that in the three-body case.

As for other interactions such as momentum-dependent forces and non-central forces, the same com-
ments as Eqs.(180) — (182) are applicable.
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