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Abstract 

We review our method of calculation, Gaussian Expansion Method (GEM), for bound and 
scattering states of few-body systems. The method was proposed in 1988 and has been applied 
to a variety of few-body systems. The understanding on the structure and the mechanisms of 
reactions of those systems obtained from such applications is discussed together with some useful 
techniques for the calculations. A well-chosen set of Gaussian basis functions forms an approximat,e 
complete set in a finite coordinate space so that it can describe accurately short-range correlations 
and long-range asymptotic behavior as well as highly oscillatory character of wave functions in the 
bound and the scattering states of the systems. Examples of applications of GEM include i) the 
latest determination of antiproton mass by the analysis of laser spectroscopic data for antiprotonic 
helium atoms, ii) predictions and experimental verifications on the structure of hypernuclei and 
hyperon-nucleon interactions, iii) Coulomb three-body calculations of bound and resonant states 
of muonic molecules as well as muon transfer reactions in muon catalyzed fusion cycles, iv) a new 
treatment of CDCC (continuum-discretized coupled channels) method for three- and four-body 
breakup processes, and v) benchmark test calculations for three- and four-nucleon bounti st,ates 
using realistic interactions. 
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1 Introduction 

There are many examples of precision numerical calculations which have contributed to examining fun- 
damental laws of physics and interactions in physical systems. One recent, example is the determination 
of the upper limit of the difference between the masses of proton and antiproton, mp and mg, respec- 
tively. The first recommended upper limit of Imp-m,]/m, by the Particle Data Group listed in Particle 
Listings 2000 [l] was 5 x 10d7, which could be used for a test of CPT invariance. This number was ex- 
tracted from a high-resolution laser experiment involving metastable states of antiprotonic helium atom 
(He2+ + e- + p) [2] by Kino et al. [3] through a theoretical analysis of the Coulomb three-body system 
using Gaussian Expansion Method (GEM) of calculation developed for few-body systems [4, 5, 6, 71 
which is the present article. The ratio was improved to ]mg - mpl/m, < 6 x lOWa, as listed in the 
Particle Listings 2002 [8], by a later, more extensive experiment [9] and an additional calculation [lo]. 

Many important problems in physics can be addressed by solving the Schrodinger equation with high 
precision for three- and four-body systems.. It is therefore of particular importance to develop methods 
for precision calculations for such problems. In the calculation of the three-body system mentioned 
above, the interaction (the Coulomb potential) is precisely known. In newly developing fields of physics. 
however, there are cases in which interactions are not well known. Studies of such subjects with precision 
(few-body) calculations are also meaningful and important. In order to extract reliable new information 
and constrain the ambiguity in the interaction being examined, the calculation must be sufficiently 
rigorous. 

Examples are seen in the study of hyperon(nucleon(N) and hyperon(hyperon interactions in 
hypernuclear physics. The YN and YY interactions proposed so far exhibit a great deal of ambiguity, 
since YN scattering experiments are extremely limited, and there are no YY scattering data.. One 
can, however, obtain useful information on the YN and YY interactions from hypernuclear structure 
studies by combining theory and experiment in the following way: (1) There are candidate YN and 
YY interactions based on the OBE model and those based on constituent quark model. (2) There are 
experimental data of y-ray spectroscopy aimed at getting information on the YN and YY interactions. 
(3) Precision structure calculations with model YN and YY interactions are compared with the ?-ray 
data to test their quality. The few-body studies by Hiyama et al. [ll, 12, 13, 14, 15, 161 using GEM are 
theoretical contribution to the step (3). The work of Ref.[14] tested two types of YN spin-orbit forces, 
based on meson theory [17, 181 and the other based on a quark model [19], predicting the spin-orbit 
splitting energies in !Be and PC. Later y spectroscopy experiments [20, 211 suggested a very weak 
spin-orbit splitting, which was in good agreement with the prediction using the quark-based spin-orbit 
force. This detailed comparison of the theory and experiment was possible because of the precise three- 
and four-body model calculations for the iBe(= 2cu + A) and KC(= 3cr + A) systems taking into proper 
account of the Pauli principle between nucleons [14]. 

Another example in hypernuclear physics is the work of Hiyama et al. [15]. They succeeded in perform 
ing difficult four-body calculations of :H and iHe, taking the A - C conversion explicitly into account. 
for the first time in both NNNA and NNNC channels. This enabled them to analyze precisely the 
role of the A - C conversion in those hypernuclei which had for a long time been a subject of investi- 
gations of various authors [22, 23, 241 to see the effect of the conversion on the binding energies, the 
charge-symmetry breaking, the role of ANN three-body force, etc. 

The Gaussian Expansion Method was proposed by Kamimura 14, 5] some 15 years ago to carry out 
non-adiabatic three-body calculations of muonic molecules and muon-atomic collisions. Those systems 
are very good testing grounds for atomic and molecular models and few-body calculations since there 
are more observable quantities than those in the analogous electron systems because of large muon 
mass. The structure of muonic molecule dtp and muon transfer reaction (dp)l, + t ---f (tp)ls + d are 
of particular interest since they are the key to muon catalized fusion (&F) (for example, the review 
articles [25, 26, 27, 281). An accuracy of up to seven significant figures in the calculated binding energy 
and the accurate wave function in the tail region was required for the very weakly bound excited ./ = 1 
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state in order to derive the asymptotic normalization constant, to be used for the calculat~ion of tii(’ 
molecular formation probability. The calculation using GEM satisfied this. Since the muon mass ix 
207 times the electron mass, non-adiabatic treatment of the three charged particles is necessary. Tl11~ 
difficulty, as well as the practical interest in the energy production by /rCF has been stimulating st~~the: 
of the problems by means of various methods in nuclear physics. atomic/molecular physics and quarnum 
chemistry. Among the methods, GEM has made one of the best contributed to a variety of three-both\ 
scattering and bound-state problems appearing in &F. 

In a usual variational method for three-body bound states, Hamiltonian is diagonalized in a spac’t* 
spanned by a finite number of L2 basis functions. Chara.cteristics of GEL1 are as follows: 

(i) The basis set consists of functions of Jacobian coordinates, (r,. R,.j, of dl thr, thrrcs rearran~meut 
channels (c = 1 - 3) shown in Fig. l! each base being in the form ~~~~~~~~~~~~~~~~~ (R,)[x‘(F,.) k;,c(R,)j,i.li 
with obvious notations for angular momenta, 71, and NC specifying t,ht, radial dependence 

(ii) The radial dependence is Gaussian, &l(r) = T’ 6’nr2 and similarly for ~:~,v~,(X), with the range 
parameters forming a geomet,ric progression,{v, = v~R,~-‘: rr = 1 - n,,,;,,}. 

N3 N3 N3 

Figure 1: Three Jacobian coordinates of three-body system 

Prescription (i) for preparing the basis functions in three channels makes the function space significa.ntl~ 
larger (even if 1 and L are strongly restricted) than the case using the basis functions of a single chaunc~l 
alone but makes the non-orthogonality between the basis functions much less troublesome t,haii in 
the latter case. These types of three-channel basis functions are particularly suitable for describing 
a weakly bound system along any of the R, as well as for describing strong short-range correlations 
along any of the T, (c = 1 - 3). Prescription (ii) for the Gaussian ranges has been found to be VW’ 
suitable for accurately describing both the short-range correlations and the long-range tail beha.vior 
in the asymptotic region of few-body wave functions. The Gaussian shape of basis functions tn,il;~~- 
the calculation of matrix elements easy even between basis functions of different channels. T!NIY. 
prescriptions (i) and (ii) are the main reasons for the success of GEhl in various types of three-botil 
bound and quasi-bound states such as muonic molecules [4: 251: three-nucleon bound states (‘Ii. “ll(, 
[fi, 71, unstable nuclei, [29, 301 antiprotonic helium atoms [3. 10. 31; 323. 

As mentioned before, precision three-body calculations with GEM contributed to the tlct,errrliIla.tic,li :;I 
t,hr first recommended value of antiproton mass from the spectroscopic study of the antiprotonic hcllu~r. 
atom (He” i-e- +p). The study of this system is one of the most difficult three-body problems hcc~a!~ 
of the following reasons: (i) It is a Coulomb three-body problem of heavy-heavy-light system. (ii) ‘I-l~t 
total angular momenta concerned are as high as J - 30 - 4Ofi. (iii) The excited states to be studied 
are not true bound states but so-called Feshbach resonances. (iv) The inter-nuclear motion between 
the helium nucleus (Z = +2) and the antiproton (Z = -1) is not adiabatic when they are close ~(1 
each other. (v) Correlation between the electron and antiproton should be precisely taken into RCCOUI:~ 

(vi) Accuracy of eight significant figures in the transition energy (ten digits in eigenenergy) is required 
to compare with the laser experiment of the transition frequency. There have been only two groups 
that succeeded in overcoming these difficulties; Kino et al. [3. 10. 31, 321 using GEM and I<orob~\ 
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[33. ?, ?, 35, 361 who employed the expansion of the atomic coordinates. Physics with the antiprotonic 
helium atoms will be discussed. 

When we proceed to four-body systems, calculation of the Hamiltonian matrix elements becomes much 
laborious. In order to make the calculation tractable even for complicated interactions; we replace 
the Gaussian basis function, ’ r e +‘n’zY&(f), bv a superposition of infinitesimally-shifted Gaussians. 
limE_o ;: c;z; c~~,~ e-+ - ED[,,~)’ , whose parameters {Cl,,,, Dlm,k; k = 1 - Icmax} are so determined 
that the latter is equivalent to the former. We make similar replacement of the basis functions in 
all the other Jacobian coordinates. Thanks to the absence.of the spherical harmonics, use of the lat- 
ter functional forms makes the matrix element, calculation extremely easy in practice with IN tedious 
angular-momentum algebra. The technique of infinitesimally-shifted Gaussians [37. 381 have been ap- 
plied to various three- and four-body calculations in hypernuclear physics [ll. 12, 13, 14. 15, 161 as well 
as four-nucleon bound states [39] and double-muonic molecules [99]. 

A stringent test of accuracy of GEM was made in Ref. [6] in the calculation of three-nucleon bound 
states using a realistic NN interaction. The calculation of the binding energies and some properties 
of the wave functions, including the asymptotic normalization constants, agreed with the result,s of 
thr 34-channel Faddeev calculations. Practicality of the infinitesimally-shifted Gaussian basis functions 
was demonstrated in a benchmark test calculation [39] of the four-nucleon bound state (*He) using a 
realistic NN force; in this collaboration of seven groups, agreement between the results of the seven 
calculational schemes was essentially perfect. Recently, the same method was applied to the second 
0’ state of the 4He nucleus by Hiyamn et al. [40]; a f our-body calculation of 4He(e, e’)4He(O;) using a 
realistic NN force was performed for the first time. The observed electron scattering form factor was 
reproduced well. 

An advatage of GEM is as follows. Diagonalization of Hamiltonian automatically yields not only the 
lowest eigenstate but also many excited eigenstates having the same spin and parity, J”. Some of 
the excited eigenstates are supposed to correspond to observed bound and/or resonance states, and 
the others are considered to be so-called pseudo-states representing non-resonant continuum states in 
discretized form. A good example is the four-nucleon GEM calculations [39, 401 mentioned above with 
a simultaneous calculation of the ground state, the second O+ state, and the distribution of monopole 
strengths in the discretized O+ continuum states. In the’case of two-body systems, we tested and 
confirmed that such eigenstates form an approximate complete set in a sufficiently wide finite space. 
We consider that a large number of eigenstates obtained by GE?Vl constitutes an approximate c~omplete 
set also in three-body systems in a finite but sufficiently large space. This property makes it possible 
to tlstend GEM to three-body scattering problems. 

A11 application of GEM to scattering problems has been performed in Coulomb three-body reactions 
appearing in the cycle of muon catalyzed fusion. We review the GEM calculations [41, 421 of two types 
of important reactions in &F, muon transfer reactions (d,!~)~~ + t ---) d+ (tp)ls +48eV and decay of the 
muonic molecule (dHep), which have been stimulating the development of Coulomb three-body reaction 
theories. Essence of the method is as follows. The total wave function is divided into two parts: one 
is for describing open-channel amplitudes in a usual manner and the other is for amplitude of all the 
(closed channels which vanish asymptotically. The latter is expanded by the approximate complete set 
of the three-body eigenstates which are obtained by diagonalzing the three-body Hamiltonian with lhe 
Gaussian basis functions. 

Another application of GEM is to the study of projectile breakup processes in combination wit,11 the 
method of Continuum-Discretized Coupled Channels (CDCC) [43, 441. CDCC has been successful in 
describing nuclear reactions involving breakup processes of weakly bound projectiles [43, 44, 45, 46. 47, 
48. 49, 50, 51, 521 and of unstable nuclei [53, 541. CDCC has been attracting a great deal of attention 
since the advent of experiments using radioactive beams because projectile breakup processes arc’ in 
general essential to such reactions. CDCC solves the three-body dynamics by discretizing c.ontinuous 
intrinsic states of projectile into a finite number of discrete ones. So far. the projectilr 11as l~~(~n 
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assumed to consist of two particles. However, reactions induced by unstable nuclei such as “Hc(== 
cy + n + n), *B(= cr + 3He + p)?” Li(= “Li + n + n) are typical examples of projectiles composeti 
of three particles (clusters). In such cases, it is reasonable to discretize continuum intrinsic states of 
the three-body projectile in terms of the pseudo-states (eigenstatesj obtained by means of GEM with 
diagonalization of the projectile intrinsic Hamiltonian with the Gaussian basis funct,ions. 

In spite of many successful examples of the use of the Gaussian and infinitesimally-shifted Gaussian 
basis functions in the few-body calculations as mentioned above. it was hard to describe accuratei\. 
highly-oscillatory wave functions having more than several nodes, since the Gaussians themselves had 
no radial nodes. In this paper we propose an improvement to overcome this difficulty by introducing ncn 
types of functions each of which has radial oscillations, namely, Gaussians multiplied by trigonometric 
functions 7’ e+nr2cos ct.u,r2 and r1 e-“,’ ‘sin cru,r’ (n = 1 - nmax). They are respectively rewritten as 
r-r (e-‘Jnr2 i e?G’“)/2 and r1 (e-+” - e-q;“)/2i with comples: sizes 71,) = (1 + i o) I/,, and ,I/:, = (1 ~~ i (I j I/, 
We refer to these oscillating functions as complex-range Gaussians. To take CY - 7i/2 is rc~culnmcricl~~l~l~~. 
We shall show later that use of these basis functions makes it possible to represent oscillating furict.ious 
having more than 20 radial nodes accurately. Calculations of t,he Hamilt,onian matrix elements bct~v~ec~li 
the complex-range Gaussians can be performed with essentially the same computer program for tilt, 
real-size Gaussians with some real variables replaced by complex ones; this is another advantage 11i 
adopting the complex-range Gaussians. Use of these new t,ypes of Gaussians makes t,hc applicabilit!. /II 
GEM much wider than hitherto. 

Construction of this paper is as follows: In Section 2, the basis funct,ions mentioued above are describe(i 
precisely and tested for two-body systems. GEM is presented and tested for three-body systems i11 
Section 3 and on four-body systems in Section 4. Section 5 shows an applicatioii of GEM to I 11t, 
three-body problems in the muon catalyzed fusion cycles. In Sect,ion 6; we present a precision throw>- 
body analysis of the laser spectroscopy of antiprotonic helium atoms and the latest determination ti! 
antiproton mass by GEM. Section 7 demonstrates successful applicat,ion of GM4 with infinitesimaliv- 
shifted Gaussian basis functions to the study of three- and four-body structurr of light, hyperrmclei. 111 
Section 8, Coulomb three-body reactions are studied. An extension of the CDCC method with GEJ,\I i 1, 
four-body breakup processes is discussed in Section 9. Summary is given in Section 10. ln Appeudir. 
we present some details of calculational method for Gaussian and infinitesimally-shifted Gaussian basis 
functions. 

2 Gaussian Basis Functions: Test for Two-body Systems 

We consider how to solve the Schrodinger equation for bound states of a few-body system with t,he !ot<li 
angular momentum J and the z-component M 

(H - E)QJ‘f, = 0 t ! 

using the variational method. In what follows, the other quantum numbers such as parity and isospu: 
are omitted for simplicity. We expand the total wave function in terms of a set of L2-integrable basi- 
functions (@.JM,~~: 72 = 1 - rllnax} as 

The Rayleigh-Ritz variational principle leads to a generalized matrix eigenvalue problem 

where the energy and overlap matrix elements are given by 
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By solving the eigenvalue problem, we can obtain not only the lowest state but also the excited state 
eigenfunctions with the same J and parity (and some other quantum numbers); this is an advantage of 
the Rayleigh-Ritz variational principle. 

An important issue of the variational method is how to select a good set of basis functions {@PJM,~; n = 
1 - n,,}. There are many candidates for two-body systems. However, for systems with more than 
two bodies, construction of a good set of basis functions is not easy, and calculation of the matrix 
elements becomes much laborious. From this point of view, the (complex-range) Gaussian functions 
written in the Jacobian coordinates of all the rearrangement channels are particularly suitable not only 
for the calculation of the matrix elements but also for describing, for example, short-range correlations. 
long-range tail behavior and highly oscillatory character of few-body wave functions, etc. 

We shall show that resulting eigenfunctions {Q$$; i = 1 - n ,,} obtained by diagonalizing the Hamil- 
tonian with (complex-range) Gaussian basis functions form an approximate orthonormal complete set 
in a finite but sufficiently large space so that they can well reproduce both bound and continuum states 
within that region. In this section, usefulness of the (complex-range) Gaussian basis functions will be 
examined in the two-body cases. 

2.1 A set of Gaussians with ranges in geometric progression 

Let us consider the two-body Schriidinger equation 

-$C’ + V(r) - E 
1 

q&,$-) = 0 

where b is the reduced mass and V( T 1s a central potential. We expand $lm(r) in terms of a set of ) 
Gaussian basis functions, ~#&~(r) = @l(~)Yjim(I;), with given range parameters: 

The constant Nnl is for normalization ( d,“,, / c+h,“I, ) = 1. Note that the set {$J$~; 7~ = 1 - II,,} is a 
non-orthogonal set. 

Such an expansion with high accuracy is in fact possible with little effort in the optimization of the 
parameters. For our many successful experiences, it seems that the best set of Gaussian size parameters 
are those in geometric progression 

1 
u, = - 

T2 : 
n 

rn = ~1 a n--l (n = 1 - n,,) (10) 
There are three parameters, {nm,, ri, rnmax} or {nmaxr ~1, a} of which we use the former type through- 
out this paper. Because of Eq. (lo), the non-orthogonal basis functions 4,“,(r) satisfy the condition 
that the overlap between the nearest neighbors, ( &$ j c#J,“_,, ), IS a constant independent of n, which is 
considered to be one of the reasons why the expansion works well. 

The expansion coefficients {Q} and the eigenenergy E are determined by the Rayleigh-Ritz variational 
principle, which leads to a generalized matrix eigenvalue problem: 
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The matrix elements are given by 

-v,,.,,, 

T n,n’ 

V IL,,,’ 

For three explicit forms of Lr(r), we have 

2.2 Short-range correlation and long-range asymptotic behavior 

A property which is required for a good set of variational basis functions for t&v-body syst,enlh is t III’ 
ability to describe accurately any rapid change of the wave function in the short-range region (short- 
range correlations) and the long-range tail behavior in the asymptotic region. In this subsection. we givr 
t)wo examples for two-body systems. We emphasise t,hat, the same is also true for thrctl-body qystc)n:s 
as will be shown in Section 3. 

Test for “He atomic dimer 

One of the very difficult two-body potential problems is to solve the Schrijdinger equat,ion for t,hr v(‘i’\. 
shallow bound state of t,he “He atomic dimer in the HFDHE2 potential [55] (Fig. 2) : 

with T’, = 2.9673A, t = 10.6K, A = 0.5448504 x10”, ci = 13.353384, Cb = 1.3732312. L’& 
0.4253785, Cl” = 0.178100 and D = 1.241314. We adopted a value of /i’/.U = 12.12 I< ,&;cilij. 

A direct, numerical calcAtion by the step-by-step method gives E = -0.0008297 Ii and the, XV;IV(’ 
function illustrated in Fig. 3. Since this potential has a strong repulsive cork accompanied by a sl~~llc~n 
attractive tail which results in the weak binding, one might think that it would be almost irnpossibl(~ f’c //’ 
any variational approach to accurately reproduce this result, particularly the wave function. But. tliago- 
nalization of the Hamiltonian using our basis functions with the set {TL,,~~ = 60, 1’1 = 0.14 .&, I’,,~~>~~ = 700 
-4) gives the same energy and wave function as those with direct numerical m&hod as shown iu Fig. :i 
The difference between the two wave functions is less than 0.01 % for r - 150 _& and 0.1 % oilt to 
I’ - 750 h, beyond which Gaussian-damped behavior appears gradually. The r.m.s. lathus ih SC, I;IIKI 
as 88.20 A. 

It is strikiug that both the short-range correlations and the exponcrltially-darilped tail are _;il~~~lit~~~~t’~,l~~~~ 
reproduced extremely accurately. This owes to the geometric-progressioll Gaussian ranges \vllic~h ~I<L\-v 
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r $1 

231 

Figure 2: Potential V(T) between 4He atoms defined by Eq. (19) m units of I(, T being in unit,s of A. 

Figure 3: Wave function of the 4He dimer with the potential in Eq. (19): (a) the short-range region 
($1=0(r)); (b) the asymptotic region (r $Q=~(T)). Th e solid line is calculated using the direct numerical 
method and the present variational method with the Gaussian expansion, Eq. (6), with the set {nnrlut = 
60, r1 = 0.14& T,_, = 700 A}. ds = 88.20 A. D’ff 1 erence between the two results is not visible 
since it is less than 0.01 % up to r N 150 A and 0.1 % out to r N 750 8, beyond which Gaussian-da.mped 
behavior appears gradually. 

a dense distribution in the short-range region and a coherent superposition of long-range Gaussiana in 
the asymptotic region. It would be difficult to reach this degree of agreement if one were to choose the 
Gaussian ranges stochastically. 

Test for deuteron 

Next, let us examine a nuclear two-body potential problem, the deuteron ground state for the NN 
potential: 

I’(r) = (-626.885e-1.55’ + 1438.72e-3.1”)/r, film = 41.47MeV (E = -2.2307MeV) (20) 
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Figure 4: Wave function of the deuteron with the potential in Eq.(20): (a)the short-range region 
(&s(r)); (b) the asymptotic region (r &=c(r)). Th e solid line is calculated using the direct numerical 
method and the present variational method with the Gaussian expansion, Eq.(6), with the set {n,,,,, = 
30, ~1 = O.O2fm, rnmax = 30fm }. The difference between the two results is not visible since it ib 
relatively less than 0.01% up to T - 30fm and 0.1 % out to - 50 fm beyond which Gaussian-darupcc! 
behavior appears gradually. 

which is a slightly modified Malfliet-Tjon I-III model and was used for a benchmark test paper for the 
three-nucleon scattering problem [57]. 

Diagonarization of the Hamiltonian using Gaussian basis functions with {nmax = 30,l.l = 0.02 fm, T‘,,,,,_ :- 
30fm } gives the same energy and wave function as those with direct numerical method as shown in 
Fig. 4. The difference in the wave function between the variational method and the direct nrunc~ric~~l 
method is less than 0.01 % up to r - 30 fm and 0.1 % out to N 50 fm beyond which Gaussian-damped 
behavior appears gradually. 

Again, the exponential-damping of the wave function in the asymptotic region is well reproduced bv t 1~ 
resultant superposition of the Gaussians with ranges in a geometric progression. It is straightforward 
to extend the accurate asymptotic region further using additional Gaussians as needed. 

2.3 Approximate complete set in a finite region 

By solving the eigenvalue problem of Eq. (ll), we obtain an orthonormal set of eigenstates (S), namcl\ 
{?Q(r); 2. = 1 - nmU}. Some of them are bound states and the others are ‘pseudo-states’ represeutnl~ 
discretized continuum states. We consider that the set of discrete states {r/$:(r); L -= 1 - II,,,,,,} ior~~r 
a complete set with good accuracy in a finite region of r’ up to some upper bound and that ~~a(‘1 
continuum states are well expanded by the set in the finite region. This is exa.mined below for riic’ 
continuum states of deuteron and 6Li(= 01 + d) [58]. 

Deuteron continuum states 

We consider a quadrupole transition from the deuteron ground state to the I = 2 continuum statc,x. 
A central 7~ - p potential is employed; V&(T) = ‘-10 c(~/Q)~ with v0 = -72.15 MeV and I‘~, = 1.484 i111 

which reproduces the radius and the binding energy of deuteron. R’e first solved Eq. (5), using th(, 
direct numerical method, for the i! = 0 ground state, $J~.~. , and 1 = 2 continuum states with momc~n uui 
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k, &,(k, r), and calculated the quadrupole transition strength to the k-continuum which is defined as 

B(‘)(k) = I (&m(k) 1~~ Y2m I $,.s.) 12. 

@“j(k) is illustrated in Fig. 5 for k 5 1.3 fm-’ (E,, 5 70 MeV) 

(21) 

Next, taking the Gaussian basis set, {#~z,~~(r); n = 1 - n,,} with {nmax = 20, 7’1 = 0.5fm, T,__ = 

2O.Ofm }) we solved Eq. (3) for 1 = 2 and obtained an orthonolmal set of discrete states {@FL(r); i = 
1 - n,,}. We then calculated the quadrupole transition strength to each pseudostates by 

(2) B, 
(i) 2 

= lt42m IT yzml qq.s.)12 (i = 1 -n,,). (22) 

As shown in Fig. 6, the discrete distribution of B,(‘) simulates qualitatively the continuous k-distribution 
of B(‘)(k) in Fig. 5. A ssuming completeness of the pseudostate set {&L(r); i = 1 - nmax}. we derive 
the smooth distribution B@)(k) approximately by 

(23) 

Both the exact form (21) and the approximate one (23) yield the same continuous distribution as shown 
in Fig. 5. This means that, at least within the region where r2 $g.s.(~) is appreciable, the discrete states 
{Q(r); i = 1 - w,,} form a complete set with good accuracy. 

6Li continuum states 

The same test is repeated in the case where a resonance state exists in the continuum. We investigate 
1 = 2 continuum of 6Li using the a + d model but neglecting the deuteron spin. An cx - d potential of 
V(T) = Voe-(“b)2 with V, = -74.19 MeV and b = 2.236 fm generates an 1 = 2 resonate at EC,, = 3.0 
MeV with a width 0.6 MeV. 

Exact continuous distribution of the quadrupole transition strength, Bc2)(k), is illustrated in Fig. 7 in 
the region k 5 1.3fm-‘(E,, < 50MeV). We see a resonance and a non-resonant continuum. Figure 8 
shows the discrete distribution, B,!“‘, to the pseudostates {$$;(I-); i = 1 - nmaw} which were obtained 

using the Gaussian bases with {n,, = 20, ~1 = l.Ofm, rnmax = 2O.Ofm }. Bj2) simulates qualitatively 
the continuous distribution of Bc2)(k) in Fig. 7. 

Using (23) we calculated the approximate smooth distribution B/$(k). As shown in Fig. 7. both the 
exact form (21) and the approximate one (23) yield the same continuous distribution, not. onlv the 
non-resonant continuum but also the resonance. This means again that the discrete states {$~$z~(r); i = 
1 - nmax} form a complete set with good accuracy at least within the region where r2 $~~.~,(r) significant. 

2.4 Complex-range Gaussian basis functions 

As seen in the previous section, the expansion in terms of Gaussian basis functions, Eqs.(G) - (9), 
is suitable for representing short-range correlations and the long-range tail behavior. However, it is 
difficult to reproduce highly oscillatory functions having more than - 5 nodes with good accuracy. 

Such oscillating functions can appear in highly excited vibrational states of few-body systems. i\lso. 
such functions are necessary to describe the amplitude of a scattering state if one utilizes the Kohn- 
type variational method for scattering of composite particles [59]. The same is true in discretizing 
the breakup continuum states in the framework of the CDCC method [43, 441 for projectile breakup 
reactions. 
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&F(r) = iVzs r1 e-“nr2 sin aiu,r2 (n = 1 - nmax) (25) 

The Gaussian sizes v, are taken to form a geometric progression in the same manner as iu Eq. (10). 
The parameter o is a free parameter in principle, but numerical tests suggest to take o b $ (note that 
cosnv,r” = 0 at eevnr2 = e-l when o = 5). 

The reason why the functions @Y(T) and 4,“(, ) r are easy to be used in numerical calculations is as 
follows: They can be rewritten as 

Q,GI(r) = j,J;c # e-qn’2 ; e-q ,r2 . (n = 1 - nmax) 

Q,G~S(~) = ,;c,l e-q”r2 ; e-fTZ (n = 1 - nmax) (27) 

with complex size parameters 

7/n= (1+ia)u,, 7; = (1 -icY)u,. (28) 

Calculation of the matrix elements (13)-(14) with the expressions in Eqs.(26) and (27). In this case, 
the calculation can be done using essentially the same computer program as for real-range Gaussians 
with some real variables replaced by complex ones. this is an advantage of adopting the complex-range 
Gaussians. Note that with complex-range Gaussian basis functions, the total number of basis functions 
is 2n,max. 

We have ascertained that the complex-range Gaussian basis functions can expand the deuteron aucl “Li 
continuum states in the same (even better) quality as the Gaussian basis functions do in Figs. 5 and 
7. More stringent tests are described below and in Section 2.5. From these tests, we consider that the 
eigenstates obtained by diagonalizing the Hamiltonian form a complete set, in a finite but sufficiently 
large space where we are interested in. 

Test for highly excited states in a harmonic oscillatpr potential 

A good test of the use of complex-range Gaussian basis functions is to calculate the wave functions of 
highly excited states in a harmonic oscillator potential. We take the case of a nucleon with angular 
momentum 1 = 0 in a potential having tiw = 15.0 MeV. Parameters of the complex-range Gaussian basis 
functions are { Zn,, = 28,ri = 1.4fm, rnmax = 5.8fm, cy = z& = 1.09}. For the sake of comparison, 
we also tested the Gaussian basis functions with the paramters {n,, = 28, ri = 0.5fm, r,__ = 11.3fm 
}. Optimized r1 and r,_ are quite different between the two types of bases though the total numbers 
of basis functions are the same. In Table 1, we compare the calculated energy eigenvalues with the 
exact ones. It is evident that the complex-range Gaussians can reproduce up to much more highly 
excited states than the Gausssians do. For the Gaussian basis, even if the number of basis functions is 
increased, the result is not significantly improved, because the number of oscillation does not increase. 
On the other hands, for the complex-range Gaussian functions, as the number is increased, the result 
becomes better so long as the number of oscillation is not too large. 

Figure 9 demonstrates good accuracy of the wave function of the 19-th excited state having 38 quanta. 
Error is within a few %, much smaller than the thickness of the line. The figure suggests that the basis 
functions is also suitable for describing scattering wave functions in a finite space. This is examined iu 
Section 2.5 for Kohn-type variational method for scattering states and in Section 9 for a new treatment 
of projectile breakup states in the method of CDCC. 

Test for highly excited states of the hydrogen atom 
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Table 1: Test of accuracy of Gaussian and complex-range Gaussian basis functions for highly excitc’tl 
states (I = 0, n 5 23) of a harmonic oscillator potential. The number of basis functions is 28 for hot.11 
cases. Energies are listed in terms of the number of quanta, E/h - 8. 

Exact Gaussian comnlex-range Exact Gaussian comDlex-range 

0.0 0.0000 0.0000 24.0 24.1 24.0001 
2.0 2.0000 2.0000 26.0 26.4 26.0001 
4.0 4.0000 4.0000 28.0 29.5 28.0003 
6.0 6.0000 6.0000 30.0 32.9 :~0.1)00:~ 
8.0 8.0000 8.0000 32.0 :i7.3 :j2.002 

10.0 10.0000 10.0000 34.0 il.8 34.002 
12.0 12.0000 12.0000 36.0 4i.9 36.002 
14.0 14.0000 14.0000 38.0 53.8 38.003 
16.0 16.002 16.0000 40.0 62.3 40.1 
18.0 17.998 18.0000 42.0 69.9 12.1 
20.0 20.01 20.0000 44.0 82.2 44.2 
22.0 21.9 22.0000 46.0 91.6 46.3 

Figure 9: Wave function of the I = 0, N=19 state obtained by diagonalizing the harlllonic-oscillat(~r. 
potential Hamiltonian using 28 complex-range Gaussian basis functions. It is compared with the ex:tc,t 
wave function but the difference is invisible since the error is less than a few % everywhere. See texr 
for the Gaussian parameters. 

We explore another typical example in which the complex-range Gaussian basis functions reproducr 
highly oscillatory functions with high accuracy. Table 2 lists the calculated energy eigenvalues of thcx 
hydrogen atom with I = 0, n = 1 - 40 compared with the exact values. Parameters of the complex-range’ 
Gaussian basis functions are { 2n,, = 160,~~ = 0.015a.u. , r,,,_ = 2000a.u.; CY = 1.5). Thr energ\- 
is reproduced within a relative error of 5 x lo-’ up to the state with 71, = 30. The wave fuuctioll 01 
the state with n = 26 is illustrated in Fig. 10: both for the exact solution and the calculated OM’. 
The relative error of the calculated wave function is 1O-7 - 10e5 up to ?’ = 1500 a.u.. If (one does not 
need such a high precision in the energies and wa,vc functions, the number of basis f’uncrions (‘ii11 ill, 
significantly reduced. 

As an example of using atomic wave functions with such large n, a full four-body GEM calculation 15 
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Table 2: Calculated energy eigenvalues of the hydrogen atom with 1 = 0, n = 1 - 40 compared with 
the exact values. Parameters of the complex-range Gaussian basis functions are taken to be { nmaw = 
80, q = 0.015a.u., rnmaX = 2000a.u., 0 = 1.5). 

7l &I (a.=) Eexxt (a.u.) relative error 

1 -4.999999845x 10-r -5.000000000x 10-l 3.1 x10-a 
2 -1.249999980x10-r -1.25OOOOOOOx1O-1 1.6~10-~ 
3 -5.555555494x lo-’ -5.555555556x 1O-2 1.1 x10-a 
4 -3.124999974x lo-’ -3.125000000x 1O-2 8.4x 10-a 
5 -1.999999986x1O-2 -2.OOOOOOOOOx1O-2 6.8x10-” 

10 -4.999999983x 1r3 -5.000000000x 1O-3 3.5x10-a 
14 -2.551020402x 1O-3 -2.551020408x 1O-3 2.5x10-” 
18 -1.543209873x 1O-3 -1.543209877x 1O-3 2.0x 10-a 
22 -1.O33O57849x1O-3 -1.033057851x10-3 2.2x 10-a 
26 -7.396449686x 1O-4 -7.396449704x lo-’ 2.4x lo-’ 
30 -5.555555323x 1O-4 -5.555555556x 1O-4 4.2x lo-* 
32 -4.882807341x 1O-4 -4.882812500x 1O-4 1.1x10-” 
34 -4.325109595x 1O-4 -4.325259516x lo-” 3.5x10-5 
36 -3.856834714x 1O-4 -3.858024691x 1O-4 3.1 x lo-” 
38 -3.4614885O9x1O-4 -3.462603878x10-” 3.2x 1O-4 
40 -3.1O6429115x1O-4 -3.125OOOOOOx1O-4 5.9x10-3 

0.002 

i 

. 
.* 

O.ooO 
. ??. 

. . . ??
-0.002 t . . 

0.01 0.1 1 10 100 loo0 2t 
* (a.u.) 
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Figure 10: Wave function of the I = 0, n = 26 state of the hydrogen atom. The solid line is the exact 
one, and the dots are given by the complex-range Gaussian basis functions with the same parameters 
as in Table 2. Relative error of the latter is lop7 - 10m5 up to T = 1500 a.u. at which absolute value of 
the wave function is four-order of magnitude smaller than that at r = 0. 

underway by the authors on hydrogen-antihydrogen collisions at very low energies (< 1 K) taking into 
account the coupling between (pe-)r, + @z+)~, and (p&i + (e-e+) nil, channels; transition to the latter 
channels leads to loss of antihydrogen. Here, it is necessary to prepare wave functions of (~p)~l with 
71 N 24 in terms of complex-range Gaussians in order to calculate Coulomb matrix elements accurately. 
As was mentioned in a recent paper on this subject [60], theoretical studies of the collisions can give 
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an important suggestions for experiments intending to trap and cool antihydrogen for investigatin:: 
matter-antimatter interaction [61, 621. 

2.5 Gaussian expansion of scattering state wave functions 

As was examined in Section 2.3, the Gaussian basis functions. Q’ L711jr). i‘~X111 a cx~lllplctc~ sc’i. ii* <i iilil:i. 
space in good accuracy. We have seen that the complex-range Gaussians. &,:‘(r) anti c,$,:fr). ilr(’ NII)LI‘ 
suitable for describing highly oscillatory states than the Gaussians are. Thcr&rc~. the forrncr /);\\I,- 
must form a complete set in good accuracy in much larger space than ill t,hr’ (‘a~(’ of t.11~ latter b;iiL 

In this subsection. we try to expand scattering states in the interaction region in t(~nns of t tw wl~l~~lt~.i:- 
range Gaussian bases and calculate the S-matrix using the Kohn-t,ype variational mrt,hod for rca~t iou- 
between composite particles [59]. This method has been elnployed by many authors in t,hc, KG11 (rob- 
onating group method) and GCM ( generator coordinate method) studies of ~~~c:l~~ls-~lrlc.i~~~~ sc<lttt:rlllg 
as well as nucleon-nucleon scattering based on the constituent quark lrloclcl. 

We recapitulate the variational method of Ref. [59] f 01 scattering by a simple pot,ential. tlorf~ wtiipi~- 

cat,ed cases including the applications in the framework of RGM and GCM are given in [59]. 

Variational method for scattering states 

We solve the Schriidinger equation 

under the boundary condition U,(O) = 0 and 

lfL(r.) = @(7/, kr) - sr. U,j,+‘(rj, ,47), )’ > I’,,. I, 30; 

Here T,,, is t,he matching radius, and u’-) (+) L (u,~, ) 1s t h e incoming (out,going) Coulornh fuilc,tion gi\rr>n I,\ 

‘Lj+)(?,, k1,) = GI,(Tj, kr) * iFI,(?/, X,r 1 1 iii 

FL and GL are the regular and irregular Coulomb functions, and k is t,he wave number and 11 t 1~ 
Sommerfeld parameter. 

We define an operator CL by 

and a symbol (S CL y) bq 

i :i;i ) 

where not f* but f is used in the integrand. Schriidinger equation (29) is written by CL ILL = 0 

We introduce a trial function ,ui(r) for the exact solution UL(T) and expand lit(r) as 
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where {UP)(T); n = 1 - n,, } are L2-type basis functions to expand UL(T) for r < T, Coefficients a,, 
and s, are determined by coonecting U,(T) smoothly at T,. From (30) we have 

g&=1, 

N 
c ens, = St, 
i=l 

Equation (36) enables us to eliminate any of the c,, say cl, and to rewrite Ut as 

(36) 

(37) 

(38) 

Variational partameters are now {c, ; n = 2 - n ,,}; S, itself is not a variational parameter. Kolm’s 
variational principle for S-matrix leads to linear equations 

([%--1]L%)=O, (n = 2 - nmax). (39) 

to determine {c~ ; n = 2 - nmax } and hence the S-matrix SL by 

iP $,=St+-(Ut&Ut). 
ti’k (40) 

In order to calculate the fundamental matrix elements (u, CL un,) as analytically as possible, the defi- 
&ion (35) for ‘ILL(T) is not convenient. It may be rewritten with a trivial alternative form as 

u,(v) = a,[ d”)(r) + n 4?)(T) I , O<r<oo (n=l-nn,,) 

anu’)(r) = { zi’)(q, kr) - s, up)(v, kr) - a,$‘) (r) , 
r < r, 
r>r,, 

(41) 

(42) 

where Us”) is extended to the region T > T, with the same functional form as in ‘r < ‘r,,,. Using 
integration by parts, we can rewrite (,LL~ CL unl) as 

where 

with 

(44) 

(45) 

The matrix elements (UP) LL z&j) in (43) is th e same as those appearing in bound-state calculations. 

and the additional matrix elements ((up) L$’ z@)) a re quite easy to calculate numerically. This is 
an advantage of the present variational method; scattering problem can be solved almost in the same 
manner as in the bound-state problem. 

In Ref. [59], many techniques for calculating the matrix elements (@‘I LL UC)) which appear in RGM 
and GCM calculations for scattering between composite particles such as nucleus-nucleus scattering 
a.nd nucleon(3q)-nucleon(3q) scattering. 

complex-range Gaussians as trial functions 

In the work of [59], three types of trial functions UP) (T) were proposed with special attention to how 
to calculate the matrix elements (un tin) W ug)) of the non-local potential W(T, T’) which appears in the 
RGM and GCM calculations of scattering between complex nuclei. Among the basis functions, the 
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Gaussian basis functions, ~~e-‘~~“, were utilized as one of the most. tractable basis in many examplc~. 
including three-body systems. But! it, was hard for the basis functions to reproduce wave functions 
with more than N 5 nodes in the region T < T,,. There are some L2-integrable basis functions whic11 
are suitable for highly oscillatory wave functions, such as the eigenfunctions of the harmonic oscillator 
potential, but they are not, always convenient for systems having t,hrce- or four-body degree? of frcrtic~l~~. 

As shown in Section 2.4; the complex-range Gaussian basis functions (24)-(27) are just suit&k for SIN II 
purposes. We propose here to use the basis functions ?I:“) (r) defined below to describe the 3~ attclriug 
wave functions ILL(~) in the interaction region (7. < rrn): 

We calculate the wave function and the S-matrix of the a-“C scattering in a test optical potent,kl 
whose parameters are Vo = -100.0 MeV, \V, = -10.0 MeV, RR = RI = Rc = 4.Ofm and nil = ~1 = 0.5 
fm for E,., = 25 - 450 MeV. The matching radius is set at r,,, = 8.0 fm; the witI:? function slioiiltl 
have as many as 20 nodes for I’ < T,, when Ecm = 400 MeV. Parameters of tlic trial function> a~‘( 
{2n.,, = 40, r1 = 1.0 fm, r2” = 3.6 fm. 0 = x/2}. 

The calculated S-matrix elements, S = /S/ e216, are listed in Table 3 (upper line for each i&j 11: 
comparison with those obtained by the direct numerical method (lower line). The agreement is v~r\. 
good for E cm 5 400 MeV. The wave function (r 5 T, = 8.0 fm ) at E,,, = 400 MeV is illustra,rc>d in 
Fig. 11 togeter with that given by the direct numerical method. Diffcrencc bei.ween t,he two rc:s~~lt.~ I> 
invisible in the figure since it is within 0.005 in the lmits of the vertical axis. 

The complex-range Gaussian basis functions are extremely good at, reproducing the scattermg wva~~ 
function which has some 20 radial nodes in the interaction region. Therefore, t,he basis functions can ht~ 
used as accurate and tractable trial functions in RGM and GCM studies of reactions between composit,cl 
particles up to rather high energies. 

0 2 4 6 8 

r<fm> 

Figure 11: Wave function ,ut(r) (7. < T, = 8.0 fm) of the a-“C: scattering stat<, with 1 = 0 ;II 
Ecm = 400MeV calculated by the variational method with 40 complex-range Gaussian bases and by the, 
direct numerical method. Difference between both results is indistinguishable since it> is within 0.005 in 
the units of the vertical axis both for the real part (solid line) and the imaginary part (dashed line). 
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Ta.ble 3: Accuracy of the S-matrix calculated by the variational method with the complex-range Gaus- 
sian basis functions for the cy -12 C elastic scattering at EC, = 25 - 450 MeV. The calculated values 
(upper) are compared with those by the direct numerical method (lower) at each energies. The number 
of the basis functions is 40. S = IS) ezis. Ic is the wave number. 

EC, (MeV) k (fm-r) IS] 6 (deg) EC, (MeV) Ic (fm-r) IS/ 6 (deg) 

25.0 

50.0 

75.0 

100.0 

125.0 

150.0 

175.0 

200.0 

225.0 

1.89 

2.68 

3.28 

3.79 

4.24 

4.64 

5.01 

5.36 

5.68 

0.2245 120.53 
0.2244 120.53 

0.2624 179.41 
0.2624 179.36 

0.2950 110.70 
0.2950 110.68 

0.3226 64.05 
0.3228 64.03 

0.3467 29.51 
0.3469 29.48 

0.3680 2.50 
0.3683 2.48 

0.3873 160.61 
0.3874 160.59 

0.4050 142.39 
0.4047 142.36 

0.4210 126.97 
0.4203 126.86 

250.0 

275.0 

300.0 

325.0 

350.0 

375.0 

400.0 

425.0 

450.0 

5.99 

6.28 

6.56 

6.83 

7.09 

7.34 

7.58 

7.81 

8.04 

0.4341 113.59 
0.4346 113.45 

0.4472 101.71 
0.4478 101.71 

0.4608 91.38 
0.4600 91.31 

0.4718 82.34 
0.4713 82.01 

0.4784 73.71 
0.4819 73.63 

0.4957 66.16 
0.4918 66.03 

0.4989 59.33 
0.5011 59.09 

0.5109 52.24 
0.5098 52.72 

0.5125 47.28 
0.5181 46.85 

2.6 Infinitesimally-shifted Gaussian basis functions 

In the calculations of the matrix elements of the Hamiltonian of three-body systems, particularly when 
complicated interactions are employed, integrations over all of the radial and angular coordinates become 
laborious even with Gaussian basis functions. The difficulty increases when we proceed to four-body 
problems. But, an important development [30, 37, 381 of our method was made by introducing the 
infinitesimally-shifted Gaussian basis functions by 

How to determine the parameters, {cl,&, Dlrn,k; k = 1 - km=}, is described in Appendix A.2 Taking 
the limit E + 0 is to be carried out after the matrix elements have been calculated analytically. This 
new set of basis functions makes the calculation of three- and four-body matrix elements very easy. All 
the advantages of using the usual Gaussian basis functions remain with the new basis functions. LVith 
the use of these basis functions a variety of four-body calculations have been performed [12, 14, 15. 16. 
39, 991, which will be reviewed in Sections 4, 5 and 7. 

Two-body matrix elements 

Although the infinitesimally-shifted Gaussian basis functions are particularly useful in three- and four- 
body problems, it is instructive to show an example of calculating the matrix elements of a Gaussian 
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potential wee- pLT2 in the t,wo-body case. Integration over r is easily performed as 

If we take very small E and E’ and compute Eq. (49) using t,he function subprogram for the esp[. .! 
part, we suffer from a serious round-off error in the summation over !Y and X-’ since terms lower-ortlei 
than (~6)’ survive. If, instead, we expand the individual exp[ ..I with respect to E and 5’. the t(lriIi.‘: 
with powers lower than (EE’)~ cancel out by the summat,ion over k and k’ due to the definition of oiu 
Clrn,k and Cim,k’. At the end of the calculation of Eq. (49) one is left only with a t,errn propor: ioual ! c B 
(EC’)’ when E and E’ ---f 0. Therefore, t,he exp[, .] pert, of Eq. (49) is replaced b\ 

Since the (EE’)’ factor cancels with the (s&-l in Eq. (49) th t,wo-body matrix element, becomc~> 
independent of E and E’ as 

Each term on the RHS of Eq. (51) is a product of a term which depends only on the Gaussian size, 
parameters and a term which is only a function of the shift coefficients. The latter can be calculat~~tl 
and stored prior to the matrix element calculation. Because this separation is also possible for t,hret,- 
and four-body matrix elements the computation is very simple and efficient as shown in Appendix A.Y 
and A.4. 

3 Gaussian Expansion method for Three-Body Systems: 
Test for 4He-Trimer and A = 3 Nuclei 

The Gaussian Expansion Method (GEM) for three-body systems is described in the following in tilt’ 
case of central forces alone. We consider Schrodinger equation 

[T + V(‘)(Q) + V(‘)(T~) + V@)(Q) - E] Q.,s., = 0 (52, 

where T is the kinetic-energy operator. The three-body total wave function QJJJ is described as a sum 
of amplitudes of three rearrangement channels c = 1 - 3 (Fig. 12). 

~IJM = @yG’)(ri, RI) + @($ (r2, R2) + @($)(ra, Rx) (53) 

Each amplitude is expanded in terms of the Gaussian basis functions written in Jacobian coordinatcxs 
rc and R,: 

where 
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j&$JL; 

NI b Ni N, ‘% N2 

c=l c=2 c=3 
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Figure 12: Three Jacobian coordinates of three-body system. 

The normalization constants N,r and N NL are shown in Eq.(9), and the Gaussian ranges a.re given by 

v7l = l/r;, rn = r1 a n-l 
(n = 1 - %mx) , (57) 

xjv = 1/R:, RN = RI AN-’ (N = 1 -N,,) , (58) 

The numbers and range parameters depend on 1, and L, but the dependence is omitted for simplicity 
of notation. I, and L, are restricted to 0 5 1, 5 I,,, and IJ - 1,) 4 L, < .I + I,;. Eigenenergy 

E and coeffients Ai\I,,NcL, are determined by the Rayleigh-Ritz variational principle. The method of 
calculation of the interaction matrix element 

( [ di,,h) ti%~,Pd],, / V(c)(~c) I [d&(Td ti.&,(Rb)]Jh, ) (59) 

for arbit,rary functional form of V(‘)(r,) is described in Appendix A.3. 

If one employs the infinitesimally-shifted Gaussian functions instead of the Gaussian bases (71) and 
(56) as 

(61) 

the matrix elements (137) are much more easily calculated without the laborious Racah algebra as 
described in Appendix A.3. 

3.1 Test for 4He-trimer 

As seen in Section 2.2, the interaction between two 4He atoms has a very strong repulsive core with 
weak att,ra,ctive tail which supports a quite loosely bound state. It is a stringent test of calculational 

Table 4: Three-body angular-momentum space (I, L, J) and the Gaussian range parameters foi, the 
J = 0 st,ates of “He trimer. Lengths are in units of A. 

1 L nmax rrnin r,, N ma.x Knin Rnax 

0 0 30 0.14 150.0 22 0.8 650.0 
2 2 15 0.30 150.0 15 1.5 250.0 
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Table 5: Calculated energies of the O+ ground and the O+ excited states of “Hc trimer by the presc’nl 
method and the Faddeev method [56]. No other excited states exist. 

“He trimer JW:) (IO E(OZ) (IO 

present method -0.114 -0.155 x lo-” 
Faddeev method [56] -0.11 -0.16 x lWZ 

0.004 - 

0 m 
0 5 10 0 20 40 60 80 

d) 

Figure 13: Two-body correlation function C(T) of (63) for the ground stat,e (Of) of “He trimer obtamed 
by the GEM. Left pannel for the short-range correlations. Right one for the tail which deviates frown 
the exponentially damped behavior for T > 80 fm. 

methods to solve the bound state of three 4He systems (4He trimer): successful mct,hods should desc,rit)c, 
properly both the very strong short-range correlations and the long-range tail behavior. This system 
has also attracted the attention of few-body theoreticians because of Efimov states, but, we do 1101 
discuss this problem in this paper (for example see [56]). 

The 4He-4He potential used here is the same as in Section 2.2. So far, this three-body problem has been 
solved most accurately by Cornelius and Gloeckle [56] using the Faddeev method with s- and tl-wavcl 
pair interactions for total J = 0 (no bound state for J > 0) as shown in Table 5. 

In our method, the three-body wave function is described as in (53)-(58). H owever siuce the t,lirct~~ , 
particles are identical bosons, Cp,, (‘I in (53) has the same form for c = 1 - 3, and therefore ~,JJJ is 1.0 t)(l 
expanded as 

Basis parameters employed in the converged calculation are listed in Table 4; the t,otal number of basis 
functions is 885. Although the wave function space is truncated, all angular momentum components vi 
the interaction are fully taken into account in our variational method. Converged energies are givcxn 111 
Table 5. The result of the present calculation agrees well with that of the Faddrev-method calclllatioli 

In order to compare the two-body correlations in the trimer with those in the dirner; we ralculatetl tlrb, 
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rC& 

Figure 14: Two-body correlation function C(T) of (63) for the excited state (0:) of “He trimer obtained 
by GEM, left pannel for the short-range correlations and right pannel for the tail which deviates from 
the exponential for T > 800 fm. 

two-body correlation function (two-body density) 

C(r) =< QJ=oJS(r - riz)]9J=o > (63) 

for the ground state (OF) and the excited state (0:). H ere 1’12 is the distance between particle 1 and 2. 
The r.m.s. distance between the pair is calculated to be 11.3 Aand 116.5 A for the ground and excited 
states, respectively. C(r) is shown in Figs. 13 and 14 for the ground and excited states, respectively. It 
is reasonable that almost the same shape of the strong short-range correlations is seen in the ground 
and excited states as in the case of the dimer (Fig. 3 for the wave function). Size of the excited state 
is similar to that of the dimer, but the ground state shrinks by one order in size compared with the 
dimer. Superposition of the Gaussian basis functions through the diagonalization of the Hamiltonian 
results in reasonable shape of the tail out to - 80 fm in the ground state and N 800 fm in the excited 
state. This behavior is not unexpected from our experiences in three-body calculations. 

In conclusion, this tough three-body problem in the presence of a very strong repulsive core has been 
solved very accurately by GEM for both the compactly bound ground state and the loosely bound 
excited state without assuming any ad hoc two-body correlation function. 

3.2 Test for the three-nucleon bound states (3H and 3He) 

One of the best tests of three-body calculational method is to solve three-nucleon bound states (3H and 
“He) using a realistic NN force. This test was done for GEM in Ref. [6] using the AV14 force [63] 
and in Ref.[7] using the AV14 force plus the Tucson-Melborne (TM) three-body force [64]. We shortly 
review them here. 

The total wave function may be written as the sum of three component functions, one for each rear- 
rangement channel of Fig. 12 

QJM,TT, = @JM,TTz(rIj Rl) f @JM,TT,hr Rz) + @JM,TT,(r3, W , (64) 

where the @JM,TT,(ri, l&) have the same functional form for i = 1 - 3. We expand each of t,hern 
in the Gaussian basis functions in the three-body angular-momentum channel which is specified by 
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Table 6: LS coupling three-body allgular-momentum space for the 1 /L” ground state of ‘H ~ci “Hrb 
Lengths are given in units of fm. 

1 U 0 (1 0 l/2 15 0.05 15.0 1; 0.3 
2 0 0 0 1 l/2 15 0.05 15.0 1; 0.3 
3 2 U 2 1 312 15 0.1 15.0 15 Il.3 
-1 0 2 2 1 3/% 15 U.1 15.0 15 Il..3 
5 2 2 U 1 l/2 15 0.1 15.0 li 0.3 
(i 2 2 1 1 l/2 15 0.1 15.0 1 5 0.3 
7 2 2 1 1 Y/2 1.5 0.1 15.0 1 ‘, 0.3 
8 2 2 2 1 312 15 0.1 15.0 15 iI. 
9 1 1 U 1 l/2 10 0.1 10.0 111 0.3 

10 1 1 1 1 l/2 10 0.1 10.0 11) 11.3 
11 1 I 1 1 3/2 10 0.1 10.0 10 0 3 
12 1 1 2 1 312 10 0.1 10.0 10 0.3 
13 1 1 U O l/2 10 0.1 lU.0 10 c1.:1 
14 1 1 1 0 l/2 10 iJ.1 10.0 10 (1 3 
15 2 2 U 0 11” 1U 0.1 10.0 10 (1 3 
16 2 2 1 0 I!% 10 I) 1 LO.0 111 0.J 
17 1 3 ‘2 1 3/2 10 0.1 10.0 I LJ (I.3 
18 3 1 2 1 312 10 0.1 10.0 IU 0.3 
19 3 :s 0 1 l/2 10 0.1 10.0 1U 0.3 
20 3 :3 I 1 lj2 10 0.1 10.0 10 0.3 
21 3 3 1 I 312 10 0.1 10.0 10 0.3 
22 3 3 2 I 312 10 0.1 1U.O I I! (I.3 
23 3 3 0 0 l/2 10 0.1 10.0 III r1.3 
24 3 :I I 0 I/“2 10 0.1 111.0 ill 0 :j 
25 2 3 2 1 312 10 0 1 10.0 lit /I ;: 

R,,,X 

i4.U 
0.0 
9 0 

!I.0 
lJ.0 
‘3.0 
!).(I 
!I.0 
fi.ll 
Ii.11 
!i.O 
6.i) 
(,.(I 
0.0 
LO 
O.Li 
0.0 
0.0 
G.0 
hi) 
G.ll 
/,.(I 
(i.il 
Ii Ii 
ti /I 
(i.ll 26 4 2 2 1 s/2 10 U.l lo.u 10 il.3 

--= 

Table 7: Calculated binding energy and the asymptotic normalization constants C’s a.nd Cl, of “H b> 
the present method and the Faddeev method. This table is taken from [6] 

(a) Present method 

number of N3JJ) 
channels (MeV) Cs CD 

5 7.643 1.825 0.0733 
8 7.660 1.825 0.0735 
10 7.674 1.826 0.0737 
12 7.678 1.827 0.0739 
14 7.6818 1.828 0.0741 
16 7.6820 1.827 0.0741 
18 7.6836 1.827 0.0741 
20 7.6840 1.827 0.0741 
22 7.6843 1.827 0.0740 
24 7.6843 1.827 0.0740 
26 7.6844 1.827 0.0740 

a s {nl, NLI A, s, C, t! JM, TT,}: 

(b) Faddeev method _ 
number of W3H) 
channels (NeV) CS C,) 

Ref. [66] 
5 7.45 1.81 0.07#5 
18 7.58 1.82 0.07 i7 
26 7.67 I.82 0.0?:30 
34 7.68 1.82 0.0x? 

Ref. [67] 
5 
18 
26 
34 

7.440 1.81 0.076-I 
7.576 1.81 0.0717 
7.658 1.81 0.0729 
7.673 1.x2 0.0731 
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Bc3H) 
(MeV) 

a. 
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a. 

a. : AV14 + TMrA =700MeV) 

B(3He) 

/ 
AV14 

present 
.YZ=-----f 

7.4 I I 5 10 15 20 25 30 35 6. 5 10 15 20 25 30 35 
Number of channels Number of channels 

Figure 15: Convergence of the binding energies of 3H and 3He calculated by the present method [6, 71 
and the Faddeev method with respect to the number of the three-body channels. Interactions used are 
AV14 (lower lines) and AV14+TM (upper lines). Ref.[65] for line c, Ref.[66] for b and e, and Ref.[67] 
for a, d, f, g. This figure is taken from [6, 71. 

where x and 7 are the spin and isospin functiolis, respectively. We consider here the case of J = 7’ = l/2. 
The particle numbers (i, j, Ic) are taken in cyclic permutation. The Pauli principle between particle j and 
Ic requires 1+ s + t = odd; it is easily to see that, under this condition, Q~~,J-T, is totally antisymmetric 
for the exchange of any pair of particles among i, j and Ic. We take the LS coupling representation for 
the sake of simplicity in the space-coordinate transformation; the jj coupling scheme is not necessary 
since angular momentum truncation of the interaction is not made. 
the partial-wave expansion (truncation) of the interaction is not taken in the present method. We 
employ the full-wave interaction. 

The total wave function is then expressed in the form 

QJM,TT, = T A, [ @.a(nr RI) + Qa(rz, R2) + aLy(r3, R.3) I (66) 

The coefficient A, and the eigenenergy E are determined by the following equations derived from the 
Rayleigh-Ritz variational principle: 

(Qa,(rl, RI) 1 H - E IQ_,M,~~z ) = 0, for all CY’. (67) 

They lead to an eigenvalue problem of the type of Eqs.(3) and (4) 

In practical calculations, we have to truncate the angular-momentum space of trial functions. In the 
calculation described below we restrict the orbital angular momentua to 1 + L < 6, which resuks m 26 
types of the U-coupling configurations. We refer to such configurations as channels (more precisely. 
three-body angular-momentum channels) similarly to the terminology the Faddeev calculations. The 
26 channels employed in our calculation are listed in Table 6 together with the Gaussian parametc%rs. 
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5 10 15 20 25 30 35 

Number of channels 
IO 20 
R,(fm) 

Figure 16: Convergence of the probabilities 
of the S, S’ and D states of 3H with respect to 
the number of the three-body channels. The 
AV14 potential is used. The Faddeev result 
is taken from Ref.[66]. This figure is taken 
from Ref. [6]. 

Figure 17: I>euterorr-“He overlap fuuc~tttoils, 
$(Rr) for S-state and uf(Ri) for D-state. l’hr, 
solid curves are by the 26-channel calculation. 
The dashed curves are the exact asymptotic 
functions normalized at RI = 10 fm. This figure 
is taken from Ref. [6]. 

Convergence of the binding energies and the probabilities of the S, S’ and I) states with respect to t lit% 
number of the three-body angular-momentum channels is illustrated in Figs.15 and 16. respectivrl! 
The results were those given by GEM in Refs. [6, 71 two decades ago together with those given by thr’ 
Faddeev calculations at that time. The convergence is very rapid in t,he GEM. Accuracy of our WV<’ 
function in the asymptotic region is examined by checking the deuteron-“He overlap functions, rrg( RI 1 
for S-wave and @(RI) for D-wave. They are shown in the solid lines in Fig. 17, reproducing accuratel> 
the exact asymptotic functions (dashed lines) up to = 17 fm. This wide-range agrecmeut is euou~11 
to determine reliably the asymptotic normarization constants, Cg and Cg, which agree well with thrs 
result of the Faddeev calculation [6]. Table 7 summarizes the convergence of the binding energy anti 
the asymptotic normarization constants with respect to t,he three-body angular momentum channels 

At first sight, the minimum and the maximum ranges of the Gaussians in Table 6, all round and similui 
numbers, might not seem a result of serious optimization. However, since the number of the basih 
functions is enough to give the accurate solution, slight change of parameters does not change the rcsnlr 
in any significant way. In other words, since the computation time needed is very short we take more 
than enough number of basis functions and avoid serious effort to optimize the parameters. This ii 
our rule in our variational calculations of three- and four-body problems, Stochastic treat,ment of the 
parameters might be necessary for problems involving more than four bodies as shown by the stochast,ic 
variational method in [72, 73, 74, 751. 
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4 Gaussian Expansion Method for Four-Body Systems: 
Test for A = 4 Nucleus 

In this Section, we test the Gaussian Expansion Method (GEM) for the four-nucleon bound state. 
Calculation of the matrix elements between the four-body basis functions is quite analogous to the 
three-body case. The Four-body total wave function ~JM is described as a sum of the components of 
18 rearrangement channels (Fig. 18): 

“‘3 N4 “43 N4 

Nl N2 Nl N2 

c=4 c=3 

"'3 N4 

Nl N2 

c=5 

"J3 N4 

Nl N2 

c=6 

N, N, N, N, NI N2 N 1 "J2 N, N, N, N2 

c=7 C=% c=9 c=lO c=li c=12 

N3 
R 

N4 
13 

ZE 

PI3 

Nl 
r13 

N2 

c=13 
Nl Nz N 1 N2 

c=14 c=15 

PI6 J-Q 
Nl R16 N, 

C=l6 

"J3 N4 

R PI7 

H 

17 r17 

“4 N2 

c=17 

N3 N4 

Nl N2 
c=18 

Figure 18: Jacobian coordinates for the rearrangement channel of four-body system 

@JM = 5 @j&c, Rc, P,) (68) 
c=l 

If we omit the spin and isospin part for simplicity, each component function is expanded in terms of 
the Gaussian basis functions of the Jacobian coordinates rc, R, and p,: 

@%rc, % P c 1 = c A2L,N,L,,I&. 
~CL,NCLC,L,~C& 

&ct, kc) &c, Oh)] rc x~xhc) 1 
(c= l-18) : 

JM 

(69) 
where we take Gaussian basis functions 

&dr) = ~$3~) %F), l&T) = N,17J e+“+ (n = 1 - %m.x) > (70) 

$;AR) = &L(R) YLM(% q!&(R) = NNL RL e-XNR2 (N=l-IV,,,). (71) 

X,Gx,(P) = XL(P) yx,(F)l xzA(p) = N,,A px e-wyp2 (v = 1 - v,,) (72) 
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The number and the range parameters of the Gaussians depend on 1,; L,, A, and 1, but the dependence 
is omitted here for simplicity of notation. If some particles are identical. some channels are equivalent tci 
each other under the antisymmetrization (symmetrization) between the particles. and therefore sholiltl 
have the same coefficients A~\c,,,c,c Ic,u,h, as seen in the previous section for the case of three-bed? 
systems. 

In the GEM calculation of four-body matrix elements. Gaussian basis functions are replaced by tll(, 
infinitesimally-shifted Gaussian basis functions: 

A technique for calculating the Hamiltonian matrix elements is preserned in Appendix A4 

4.1 Benchmark test calculation of the 4He ground state 

Calculation of the four-nucleon bound state (*He) using realistic NN force is useful for testing the, 
method and the scheme of the calculation. So far, this four-nucleon problem has been solved accuratei) 
by several efficient methods, the Gaussian expansion method (GEM) [4, 6, 7, 13, 14, 151, Faddee\,- 
Yakubovsky method (FV) [68, 69, 70, 711, the stochastic variational method (SVM) [12. 73. 74, 75j. 
the hypersperical harmonic variational method (HH) 176; 77. 78, 79: 801, the Green’s function Monte 
Carlo (GFMC) method [81, 82, 83, 841, the no-core shell model (NCSM) [85. 86. 871, and the cffecti~ 
interaction hypersperical harmonic method (EIHH) [SS]. 

The eighteen authors of Ref. [39], including the two of the present authors (E.H. and XI<.) 1 p~~rfomc~c~ 

benchmark test calculations of the four-nucleon bound state of 4He wit,11 the methods mentioned above 
using the same NN realistic force, AV8’ interaction and compared the calculated energy eigenvalucs 
and some wave function properties. AV’ is derived from the realistic AV18 interaction [89] by neglecting 
the charge dependence and the terms proportional to L2 and (L S)“. In this subsectioii, we brie111 
review the result of the benchmark test of Ref. [39]. 

Ni N2 k N2 

K-type H-type 

Figure 19: Jacobian coordinates for the rearrangement channel of “He. The four nucleons are antisyrn 
metrized. 

In GEM, the total four-body wavefunction is given as sum of rlir~ c,c)mponent funct,ions of all t lot 
Jacobian-coordinate rearrangement channels within the LS coupling scheme (Fig. 19): 

Q,,=” = c c$?@” + c c;%$? (7k 
R cl 
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where the anti-symmetrized basis functions are described by 

with cy f {nl, NL, A, VA, I, S’S’, t} We employ the K-type and H-type configurations (Fig. 19). Due 
to the four-nucleon antisymmetrizer A, K-type includes c = 1 to 12 channels and H-type c = 13 t,o 18 
channels of Fig. 18. The x’s and the 7’s are the spin and isospin functions, respectively. The functions 
(jlLl(r)z @NL(R) and pUx(p) are taken to be the Gaussian basis functions but they are replaced by the 
infinitesimally-shifted ones when calculating four-body matrix elements. Gaussian ranges are taken 
to lie in geometrical progressions. Eigenenergies and wavefunction coefficients C,‘s are determined hp 
solving the Schrijdinger equation with the Rayleigh-Ritz variational principle. 

In the GEM, truncation is made not to the NN interaction but is only to the angular momentum of basis 
functions; this makes it possible to accomplish a quick convergence of the solution within 1, L, X 5 2, 
just as in the case of three nucleon bound states discussed in Section 3. 

In Table 8! we compare the calculated value of the binding energy E and the radius with those obtained 
by the other six methods. The good agreement for E is within 3 digits or within 0.5 %. This is quite 
remarkable in view of the very different techniques of calculation and the complexity of the uuclear force 
chosen. Also the radius is in good agreement among seven methods. Table 8 also shws the probabilities 
of finding three different total orbital angular momentum components in the 4N system. The agreement 
among different groups is good. 

Table 8: Calculated results for 4He properties by seven methods of calculation. GEM is the present 
method. Taken from [39](note that the GEM was referred to as CRC-GV in [39]). 

- 

Method E (MeV) m (fm) s (So) p (%) D (s) 

F>_ -25.94(5) 1.485(3) ‘85.71 0.38 13.91 

GEM -25.90 1.482 85.73 0.37 13.90 

S\iM -25.92 1.486 85.72 0.368 13.91 

HH -25.90( 1) 1.483 85.72 0.369 13.91 

GFMC -25.93(2) 1.490(5) 

NCSM -25.80(20) 1.485 86.73 0.29 12.98 

EIHH -25.944(10) 1.486 85.73 0.370(l) 13.89 
- 

As a more detailed test of the calculated wavefunctions, we show the NN correlation function (t,wo-hod) 
density) 

C(T) =< *k0lh(r - rl2)(Bk0 > (79) 

where r12 is the distance between particle 1 and 2. It is normalized as 4?rJC(r)r’dr = 1. The results 
obtained by the various calculational schemes, except GFMC, are shown in Fig. 20. The agreement 
among the FY, GEM, SVM, HH, and NCSM is essentially perfect. 

In conclusion, the results of all schemes agree very well, showing the high accuracy of the‘ existing 
methods of calculation of the four-nucleon bound state. 
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Figure 20: Correlation functions of 4He in the different calculational schemes: EIHH(dashed-dotted 
curves), FY, GEM, SVM, HH, and NCSM( overlapping curves). Taken from [39]. 

4.2 The second O+ state of 4He 

4He is the smallest nucleus that has discrete excited states. The second O+ state at E, = 20.2 MPV 
has the same spin, isospin and parity as the ground state, and therefore must have quite tlifferellt, 
spatial structure orthogonal to that of the ground state. The can then be the smallest system to st,ud\. 
nuclear spatial excitation using realistic interactions. Hiyama. Gibson and Kamimura [40] performr~d 
a full four-body calculation of the 0: and 0: states and the inelastic electron scattering form factor 
between them using GEM. Both the ground and excited O+ states were obtained simultaneously by !11(, 
diagonalization of the Hamiltonian. The interaction employed was the A\i8’ forcrx plus the Coulomb 
force and a phenomenological 3N force which was adjusted to reproduce the binding energies of 3.1 
and 4He(0:). We took the isospin formalism for total isospin=O stat,es. There were no other adjustabl(~ 
parameters. 

The calculated energy of the second O+ state is E,(O$) = 20.3 MeV in good agreement with the, 
observed value. One-body densities of the ground and second O+ states are illustrat,ed in Fig. 21 (left). 
The dominant structures in the O+ excited-state wave function are 3N + N component,s. The size of t,hct 
excited state is significantly larger than that of the compact ground state. Transition density between 
the two O+ states is shown in Fig. 2l(right). Its Fourier transform with the proton size WrI’eCTim givc:i 
the form factor of inelastic electron scattering which agree satisfactorily well mit,h the elcperimont al 
data (see [40] for details). This is the first four-body calculation of the form factor using a real&c :v.l 
interaction. 

5 Three- and Four-body study of Muonic Molecules in Muon 
Catalyzed Fusion Cycles 

It was in the study of muonic molecules that the present coupled-rearrangement-channel Gaussian 
expansion method (GEM) was first proposed in 1988 by one of the authors (M.K.). The study oi 
muonic molecules in the context of muon catalyzed fusion ($F) (f or example; see 125, 26, 28. 7, 271) 
stimulated very much three-body calculational methods in nuclear and atomic/molecular physics and 
quantum chemistry in the 1980s. In this Section, we briefly review bCF and the application of thP 
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Figure 21: One-body densities of the 0: and 0: states of 4He (left) and transition desity between the 
states (right). 

present method to it. 

Muon catalyzed fusion 

In the last three decades, increasing attention has been paid to &F from the viewpoints of i) the 
possibility of energy production at low temperature (< lo3 K) and ii) interest in physics of the processes 
involved in the fusion cycle. The d + t + p system is known to be a possible source of energy production 
by &F. Main cycle of the &F in the Dz/Tz mixture is as follows (Fig. 22): Muons are first produced 
by the decay of pions which are generated in collision of intermediate-energy protons and target, nuclei. 
The muon injected into the Dz/Tz liquid or gas is immediately (- lo-l1 s) captured by the deuteron 
or triton nucleus to form (dp) or (tp) atom. Due to the difference of the binding energies, the muon 
in the (dp) atom is soon transferred to a triton. The (tp) atom, which is electrically neutral, enters a 
Dz molecule and is captured by a deuteron to form a (dtp) molecule. In the molecule, fusion reaction 
d-t t d4 He + n takes place immediately( - lo-” s). Muon is shaken off and becomes free again. Muon 
continues to catalyze the fusion reaction until its life time is exhausted. 

Unfortunately, with a small probability (< l%), muon is captured by the cy particle to form a (4Heb) 
atom (called initial muon sticking to 4He) and exhausts its lifetime in the atom, although there is a 
probability of reactivation of the muon during the travel of the (4Hep) atom in the Dz/Tz mixture. 

The input energy of the cycle is estimated to be -5 GeV which is necessary to produce one muon. If 
:V, is the number of fusions catalyzed by one muon, since one d - t fusion generates 17.6 MeV, we see 
that Nf -280 is necessary to reach the scientific break-even. Experiments performed so far show that 
Nf increases almost linearly with the density of the Dz/Tz mixture, reaching Nf -150 at the density 
of liquid hydrogen. More extended research and development are highly desirable to increase Nf and 
to decrease the cost of generating muons as well as to get deeper understanding of the mechanism of 
the fusion cycle (see Ref.[25] for the recent status of experiments). 

Theoretically, there are many interesting and important problems in the dtp fusion cycle from the 
viewpoints the physics of few-body systems. For example (see Ref.[25] for details): 

1) Energy levels of the (dtp) molecule. 
2) Mechanism of the formation of the (dtp) molecule. 
3) Fusion rate of the (d&u) molecule. 
4) Probability of the muon sticking to a: particle in the fusion reaction. 
5) Muon transfer reaction (dp) + t -+ (tp) + d. 
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Figure 22: Main cycle of muon catalyzed d-t Figiue 23: Theoretically predicted cneray !e\ 1’1 01 
fusion. dCp molecule (for example. [ill). 

Various theoretical methods have been applied to the problems. 7‘1~ present GEM has been applied 
to all the five problems; the method has so wide applicability as well as high accuracy. In this Sec,t N 11). 
however. we concentrate on the problem 1) that the most strongly st,imulated few-bodv theoreticiana 
in 1980s. A Coulomb three-body reaction, 5), is discussed in Section 8. 

Precision calculation of the energy of J = v = 1 level of jdtp) molecule 

In the Ds/Ts mixture with injected muons, muonic molecules dt/f. (exactly speaking; molecular iou-; 
are resonantly formed in its J = ‘u = 1 state which is very loosely bound below the (l~l),, + d t~hresholti 
(Fig. 23) and is the key to the I~UOII catalyzed fusion. In order to analyze the observed data of tlics 
molecular formation rate. accuracy of 0.001 eV is necessary in the calculated energy of the J = 11 == I 
state. Since the (tp)ls+d threshold energy is -2711 eV from the d+t+p three-body breakup tlnrsl~oltl 
the accuracy of seven significant figures is required for the energy of the J = 0 = 1 states in tlic~ nc ):I 
relativistic Coulomb three-body calculation. Note that precision c,alciilat,ioii of the vnerpie cri' ( )I 111,: 
states is not difficult since they are deeply bound: many calcrrlat,ional methotls were suc,tesst’ul. 

This difficult problem on the energy of the J = u = 1 state was challenged by many t,heot-etician. ii: 
nuclear and atomic/molecular physics and chemistry. The energy below the (t/h) ,,+d thrc~sholtl, 5: I~ iv !i 
obtained as -0.64 eV by Vinitsky et ~2. [90] (1980) and -0.656 eV by Gocheha ct ill. j91] (1985) n-irlr 
the adiabatic representation. Using variational method with elliptic basis. Vinit,sky (::1 crl. [92] [lYti(i J 
and Korobov et al. [93] (1987) g ave -0.6589 eV and -0.65968 eV. I.c:si_,(:‘,t.i\,r,l\.. Finally. -(~.i;(ji)ll: 
eV was obtained by Szalewicz et al. [94] (1987) with Hylleraas basis, --U.66010 eV 1~ Kaniiii,m~i 1 
(1988) with GEM and -0.66017 eV by Alexander et ol. [95] (1988) with Slatcr gc~~~mals. SLUI~I~I~~~:~I~I;. 
-0.660 eV was recognized in 1988 as a reliable solution tso the order of 0.001 e\‘. 

Since the muon mass is not negligibly small compared with the ~lucleor~ 111ass, fully uonadiabat ic t i;i- 
culations were necessary; this is a difference from ordinary molecules. All met,hods in arorllic./lllolcc~~~ll;;i 
physics and in chemistry cited in the above paragraph (except GEM [4] which is from nuclear physics j t 
suffered from the difficulty coming from this non-adiabaticity. Main trouble was the largt: noll-or(,hog~,l~~:!~~ 
between the basis functions; the diagonalization of the energy and overlap mat,ricea (_ 2000x 20001 1.1~ 
quired quadruple-precision (-30 decimal-digit arithmetics) and the computation time of the ,~r(lt~r 1 j’ 
10 hours on the computers at that t,imc. 

On the other hand; GEM takeu hy Kamimura [4] needed only about 2 minutes for c.alculations 01 t :I( 
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same size. More precisely, it took about 30 set to calculate the J = 1 matrix elements of 2000 x 2000 

and about 100 set the eigenenergies and vectors of the 10 lowest J = 1 eigenstates on a FACOM VP- 
200 computer in 1988. This fast computation is because the use of the Gaussian basis functions which 
spanned over the three rearrangement channels and had the ranges in geometrical progressions sufferred 
little from the trouble of the linear dependence between large scale basis functions, and therefore the 
method works entirely in double-precision (-14 decimal-digit arithmetics) on supercomputers. 

Motivation of the proposal of Gaussian expansion method (GEM) 

Motivation of the proposal of the present multi-channel GEM in 1988 was as follows: The J = v = 1 
state in the dtp molecule is located very closely to the (tl_~)i~ - d threshold. According to Ikeda’s 
threshold rule [96], the state is naturally considered to be dominantly composed of a loosely coupled 
(lp)is - d configuration in Channel 1. Such a configuration is difficult to describe accurately in terms of 
the basis functions spanned over the (dt) - p channel (c = 3) only, since one would need large value of 
the angular momenta 13 and La associated with the coordinates r3 and Rs, respectively. Therefore, for 
the precise description of the J = v = 1 state which is nearly dissociating into the (th)is - d two-body 
system, it is of particular importance to employ the Jacobian coordinate (r-i, Ri) of the (t,~) - d channel 
explicitly. Furthermore, in order to conveniently describe the d - p and d - t correlations, one also 
needs the basis functions which span over the (dp) - t and the (dt) - p c h annels. The equal treatment 
of all three rearrangement channels (or three particles) is natural in the sense of nuclear physics since 
the muon mass is not very different from the nucleon mass. From the viewpoint of atomic/molecular 
physics and quantum chemistry, however, a muon is analogous to an electron and is treated separately 
from the nuclear motion. 

CL 

AA r1 12 

1 R2 

d t d t 
c=l c=2 

Figure 24: Three Jacobian coordinates of 

The three-body Hamiltonian is given by 

P 

Q 
R3 J-0 r3 

d t 
c=3 

the d + t + p system. 

g (c= 1,2or3). (80) 

where m, and iM, are the reduced masses associated with the coordinates rc and R,, respectively. In 

Ref.[4], it was proposed to describe the total wave function qJM(dtp) as a sum of three component 
functions of the coordinates of the rearrangement channels c = 1 - 3. 

Each component is expanded in terms of the Gaussian basis functions of the Jacobian coordinates r, 

As described in Section 6, the basis functions 4$,(r) and $gLM(R) are given by the Gaussian functions 
with the ranges in a geometrical progression. Since small values of the angular momenta 1 and L are 
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sufficient to reach a converged solution, the present method does not surfer, nom the over-completeness 
problem. 

Convergence of ~11, the energy of the J = u = 1 state, with respect to the number of the three-hod\- 
basis functions is shown in Table 9. In order to discuss this sort of accuracy, the employed values of t,he 
physical constants are important; see Ref.[4] for this. Also, corrections by the relativistic effect and the> 
finite sizes of d and t affect the energy non-negligibly; discussion of the correctious is beyond the scopt- 
of t,he present paper. See, for example, Ref.[25, 261 for it,. 

Table 9: Convergence of ~11, energy of the J = v = 1 state of muonic moleciilr dtp, with respect to t,hc, 
number of the three-body basis functions in the GEM [4]. (L‘ t cl er, it was improved to -0.66017 eV with 
2748 bases [97]; see Table 10). 

number of basis icli (eV) in C&/L 

1789 -0.660 038 

1848 -0.660 048 

2044 -0.660 070 

2240 -0.660 084 

2438 -0.660 096 

2662 -0.660 104 

Table 10: Three-body angular-momentum channels and Gaussian parameters for the J = v = 1 stak 01 
dtp molecule. The Gaussian basis set used in the calculation of the asymptotic normalization constain 
Cii is listed. The total number of basis functions is 2748 giving ~11 = -0.66017 eV. The same parameter\ 
are taken for c = 1 and 2 except for the first two lines. Taken from [97]. 

1 0 1 21 0.006 12.0 40 0.8 550.0 
2 0 1 21 0.006 12.0 18 0.8 28.0 
3 0 1 lo 0.4 6.0 10 0.4 6.0 

1,2 1 0 15 0.2 4.0 14 1.2 18.0 
3 1 0 9 0.4 6.0 8 0.4 6.0 

1,2 1 2 10 0.2 4.0 9 1.2 16.0 
3 1 2 8 0.4 6.0 8 0.4 6.0 

1,2 2 1 9 0.2 4.0 9 1.2 12.0 
3 2 1 8 0.4 6.0 7 0.4 6.0 

1.2 2 3 9 0.2 4.0 9 1.2 12.0 
3 2 3 7 0.4 6.0 7 0.4 6.0 

1,2 3 2 9 0.4 4.0 8 1.' 12.0 
3 3 2 7 0.4 6.0 7 0.3 6.0 

1,2 3 4 4 0.8 4.0 4 1.6 8.0 

Asymptotic behavior of the wave function of the J = 1, = 1 state of (dti~) molecle - 
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The important issues of the study of the J = v = 1 state of (dtp) are firstly to determine the energy 
&ii precisely, and secondly to determine the asymptotic normalization constant of the three-body wave 
function of the state. The latter is required to calculated the formation rate of the J = v = 1 state of 
(dtp) in the resonant collision of a Dz molecule with a (tp) atom in its ground state 

(Q)is + Dz + (dW)iidee! 

which is one of the key reactions in the &F cycle. 

(33) 

Since this is a very peripheral process, the amplitude of the (dt,~) wave function in the asymptotic 
region is of great importance. In the asymptotic region, a (dtp) molecule is separated into (tp)is and 
d, and therefore the J = v = 1 wave function, say QYg$, takes the form 

where K = ,/m/ ti with Mi the reduced mass of the tp and d. Cii is the asymptotic normalization 
constant. On the other hand, the asymptotic behavior of \IIllM(dtp) is given by the (tp)is - (d&L)** 
overlap function, ull(Rl), as 

wl(R1) = (KM(%) +@“(rl) IQ14dtp) )rl,gl (35) 

In t,he asymptotic region, ull(R1) is proportional to UP) (Ri) as long as qllhf(dtp) is accurate. The 
asymptotic normalization constant Cii is then determined by the ratio 

c = Ull(Rl) 
11 ___ u!?)(Rl) (86) 

independently of RI in the asymptotic region. Magnitude of Cl1 is sufficient to derive the formation 
rate of (dtp) and no other information on @‘llM(dtp) is necessary. 

Paying careful attention to the asymptotic behavior of Qii,+f(dtp), we calculated Cii in Ref. [97]. The 
Gaussian basis parameters used is listed in Table 10, which gave E = -0.66017 eV. Figure 25 illustrates 
ull(R1) and Cl1 @(RI) with Cii = 0.874. It is striking that, in the asymptotic region, they agree with 
each other within 0.1 % in the interval 30 < RI < 140 m.a.u. (muon atomic unit) which is sufficiently 

wide to determine the Cii value reliably. The ratio, ull(R1)/[Cll’(lj~‘(R1)] with Cii = 0.874 is shown 
in Fig. 26. 

It had been difficult to get such degree of agreement as in the figures before our wave function was applied 
to the problem, because the (dtp) wave functions in the literature had been poor in the asymptotic 
region. For example, Aissing et al. [98] obtained C 11 = 1.006 using the wave function obtained in [95] 

which gave the same value of ~11 = -0.66017 eV as in our case, but the ratio ~11(R1)/[Cllu~“‘(R1)] 
with Cii = 1.006 shown in Fig. 26 had no constant region; the strong RI dependence suggested a large 
error in their Cii value. 

Here. we again emphasize that the success of our wave function in the asymptotic region owes to the 
explicit use of the three rearrangement-channel component functions in the Jacobian coordinates and 
the long-range Gaussian basis functions in a geometrical progression: Such basis functions have no 
severe linear-dependence even for long-range basis. 

Prediction of double muonic molecules 

One can expect a possibility of observing, for the first time, double muonic hydrogen molecules, pp,r+, 
dd,ub, ttpp, pdph, pth,u and dtpp since the production of an ultra-high intensity muon beam is planned 
at JHF facility at KEK-JAERI. Therefore, we predicted [99] the level structure of the double muonic 
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Figure 25: Asymptotic behavior of ull(R1) Figure 26: As rmptotic 
5 

behavior of the rater) 
(dotts) and up)(R1)(solid line). The latter ~11(R1)/[C$~~j:8 (R,)]. The solid line is by i!U] 
is multiplied by C’~, = 0.874. RI = Rctp)-d in with Cl1 = 0.874 and the dashed line bp [9H] \vii i: 
unit of muon atomic unit. Difference is less Cl1 = 1.006. 111 = I?ctil)_d in unit of ~nuou ~:~IIIIIL< 
than 0.1 % in the interval 30 < RI < 140 unit,. 
m.a.u.. Given by [97]. 

molecules using our four-body calculational method based on infinitesimally-shifted Gaussian i)asi- 
functions described in Section 2.6. The Jacobian coordinates considered are given in Fig. 27 for tll~~ 

PPPP (d&+, tW) system. 

Figure 27: Jacobian coordinates of the p+p + h + p, system. Antis~mrnetrizarioll is t,o bc made brta-c’~~~ L 
two protons and between two muons. 

The predicted energy levels of ~I)~~,&&LLJL and ttpp are shown in Fig. 2X. The uumber of r.ho imiilicl 
states are similar to t,he cases of single muonic hydrogen molecules, rq+, ddi~ and tt~j. For t,hr ZXIIR 
.J”. the lowest state is lower but the excited state (if exist) is higher than in the case of single IUIIOILI~ 
molecules (for example, -325.1 eV for .I = v = 0) and -35.8 CV for ,I = 0. 11 = 1 iu d&j. ‘IL 15 
uxlderstandable since the adiabatic potentials between the two nuclei in the ground and the excitt,(i 
states are respectively lower and higher than those of the single muonic molecule due to the prescnc’o o! 
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Figure 28: Predicted energy levels of double 
muonic molecules pp/.+ d&b and ttpp [99]. 
Energies are with respect to the threshold for 

(pl-lhs+(~~hs, (d~)ls+(d~),s, (tph,+(tpL),sr 
respectively. 

Figure 29: Predicted energy levels of double 
muonic molecules pdpp,ptpp and dtkLp [99]. 
Energies are with respect to the threshold for 

(PP)I~ + (dpL)ls, (pc~h.5 + (t/~)ls, (dl/‘jl, + (tpL)~s> 
respectively. 

one more muon. Since the muon to nucleon mass ratio is not so small, non-adiabatic elect is manifest 
in the large isotope dependence between the three types of molecules; note that the dependence is 
negligible in the case of normal molecules. 

In the case of pdpp, ptpp and dthp, the predicted level structure is as shown in Fig. 29. It is very 
similar to Fig. 28; the difference is mainly due to the nuclear mass combination. The nuclear fusion 
rate in the J = PJ = 0 state of dthp, estimated in the same manner as in [loo], and is found to be - 10’” 
s-1 which is an order of magnitude larger than the rate in dtp. 

6 Antiprotonic Helium Atom: DeFermination of Antiproton 
Mass 

The mass of antiproton has been believed to be the same as the mass of proton, but there was no 
precise experimental information on it before 2000. In the 1998 edition of Particle Listings [loll. the 
Particle Data Group gave no recommended value of it. Instead, they only cited several scattered values 
obtained until that time. The reason why it is difficult to determine antiproton mass is as follow<. The 
charge-to-mass ratio was determined very precisely, with 9 x lo-l1 uncertainty [102]. from the periodic 
motion of an antiproton in a magnetic field. Another relation between the charge and the mass is given 
by the energy of the X-ray from ji atoms, but the experimental error is as large as 1O-5 to IO-“. 

In the Particle Listings 2000 [l], a recommended value of the antiproton mass was given for the first 
time; the relative deviation of the antiproton mass from the proton mass was within 5 x 10p7, which 
could be used for a test of CPT invariance. The 2002 edition [8] reported an order of magnitude smaller 
value of upper limit: 6 x lo-‘. These values were provided by a collaboration of theory and cxperimrllt 
on the antiprotonic helium atoms @He+ GHe’+ + e- + p), namely the precision three-body calculation 
by Kino. Kamimura and Kudo [31, 3; 32, lo] and thr high-resolution laser spectroscopy expermlent at 
CERN by Torii et al. [2] and by Hori et al. [9]. 

In this section, we review the calculation using the Gaussian basis functions for antiprotonic helium 
atoms, a Coulomb three-body system. Difficult but important issues in this problem are as follows: 

i) This is a Coulomb three-body problem of a heavy-heavy-light system. 
ii) The total angular momentum quantum number concerned is as high as J - 30 - 40. 
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iii) The excited states concerned are not true bound states but so-called Feshbach resonances. 
iv) The inter-nuclear motion between the helium nucleus (2 = +2) and t,he antiproton (2 = -1) (WI 

not be treated adiabatically when they are close to each other. 
v) The correlation between t.he elect,ron and the antiproton must be accurately taken into account. 
vi) Accuracy of eight significant figures in the transition energy (ten digits in eigenenergy) is requirrrt 

to compare with the laser experiment of the transition freyuenc!;. 

All of i) through vi) are difficult, but the calculation by Kino et ~1. [3, 10; 31. 32j using the Gaussian 
Expansion Method (GEM) has cleared all and made it possible to determine the lat,est value of the) 
antiproton mass mentioned above. 

6.1 Antiprotonic helium atoms 

Antiprotons injected into matter annihilate within a picosecond. It was therefore surprising that mu( 11 
delayed annihilation was observed at KEK in 1991 [103]; about 3 % of antiprotons injected into the 
helium target survived as long as a few microseconds. This phenomenon was soon understood due to 
be production of metastable states of antiprotonic helium atom. This exotic atom can be obtained 1)~. 
replacing one of the electrons in a helium atom by an antiproton. The principal quantum numbrr T! 
of the antiproton orbit is estimated to be 7~ x 38, highly excited states. about 3 57 of thp u!jrcW 
antiprotons are caught in one of the nearly circular orbitals (1 = n - 1) with r) z 38. 

Strong absorption takes place when the antiproton is in an s-state. Generally, the deexcitation proctrsscs 
of an atom are the Auger decay (or auto-ionization), radioactive decay, and the St,ark mixing. Rut. 
the Stark mixing is prohibited in @He+ because a strong antiproton-electron correlation removes rhc, 
degeneracy of angular momentum states. The radioactive lifetimes of the excited states a.re in the o&I 
of microsecond, because transition energies are a few eV. The lifetime of Auger decay is shorter thaIi 
several nanoseconds for the lower angular momentum states of the antiproton. 

In the vicinity of circular states where the angular momentum quantum number is t,he maximum vi1111c~ 
(L, = n - l), the Auger transitions are much suppressed, because the Auger electron ueeds a lar::c 
angular momentum gap (Al, 2 4 ). Thus, pHe+ is in a metastable state which is deexcited only t>y :I 
slow radiational decay. The first observation of this interesting phenomenon was made at KEK jlO3. 
The longevity was measured over a wide range of the target densit,y from solid to ga.s [104]. l\lorc, 
than a dozen transition frequencies between metast.able states of @He+ were measured with fine lasel 
spectroscopy in CERN (see Refs. [2, 91: and further references therein). Theoretical prediction bv 
Korobov [33, 341 played a. crucial role in this experiment, because the band width of the wavelrugth oi 
laser was narrower than the natural width of the metastable states and the number of pHe+ was quitt, 
small. 

The observation of long-lived antiprotonic atoms motivated spectroscopic studies from the viewpoint (11 
the physics of antimatter: CPT(C. P, and T represent the charge conjugation, parity, and time r~~ver-~al 
transformations, respectively) invariance, weak equivalence principle. interaction between matte1 alttl 
antimatter, etc.. In this Section. we focus on uncertainty in the determination of the antiproton mass. 
The symmetry of the proton and antiproton mass is related to the CPT invariance. 

6.2 Method of calculation for pHe+ 

In order to solve this three-body system precisely, we employ GEM which is suitable for describing t11(, 
different types of channels simultaneously and treating the electron-antiproton correlation. 
The three-body total wave function QJM is described as a sum of three components of rearrangement 
channels c = 1 - 3 (Fig. 30). 
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Figure 30: Three rearrangement channels (c=l, 2, and 3). Channel 1 is suitable for describing the 
atomic picture of the antiprotonic helium atom. Channel 2 is suitable for describing the molecular 
picture. Channel 3 is introduced to effectively describe the correlation between the electron and the 
antiproton. 

Channel 1 is suitable for describing the atomic picture mentioned above. Channel 2 is for describing 
the molecular picture. Channel 3 is for describing the electron-antiproton correlation which plays an 
essential role in long lifetime of the atoms by reducing the Stark mixing. 

Each amplitude @!$(I-,, R) is expanded in terms of the Gaussian basis functions of the coordinates I‘, 
and R: 

@!%(rcl R) = c At\c,~~~c [@%,(r,) @EL~(R)]~~~ (c = 1 - 3) 1 
nclc,~cLc 

f#$&) = fv,i + e?nrZ Ylm(F,) (n = 1 - nmax) : 

&&(R) = NNL RL e-xNR2 Y&i) (N = l- Nm,). 

The Gaussian ranges are chosen to lie in a geometrical progression. 

(88) 

(89) 
(90) 

vn = 1/r;, r’, = r1 a n-l (n = 1 - nmax) , (91) 
AN = 11% > RN = R 1 AN-’ (N = 1 - iv,,,,) (92) 

The number and range parameters of the Gaussians depend on I, and L, but the dependence is omitted 
here for the simplicity of notations (though given precisely in Table 12). 

The Hamiltonian is written as 

(93) 

where ,LL~, and ,LLR are the reduced masses associated with the coordinates rc and R, respectively, and 
the mass-polarization term of the kinetic-energy operator, Z&,, is given by 

Since the electron mass is very much smaller than the other two particles, the Jacobian coordinates were 
not used for Channels 1 and 3 to avoid the complexity and numerical difficulty in the rearrangement 
of the high-angular momentum components. But, the mass-polarization term of the kinetic-energy 
operator is exactly treated; this is crucial in the precision calculation. 

Since the metastable states with J - 30 - 40 concerned here are the Feshbach resonances, it is desirable 
to treat them, for example, with the complex-coordinate-rotation (CCR) method [105] so as to take the 
proper boundary condition into account. The work of Ref. [lo] took this method as described below, 
but in Refs. [3, 31, 321 the real-scaling method was employed. 
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The work of Refs. [3, 31, 321 examined the importance of t,aking the three rearrangement channels :l! 
the same time and convergence of the eigenenergy with respect to the number of basis functious. Tabk 
11 demonstrates this; if Channels 1 - 3 are employed simultjaneously. the convergence of t,hc three-l,cbtl\ 
energy with respect to increasing the electron angular momentum 1,,, is much more rapid than in I lit, 
case in which each chanuel is adopted separately. 

Table 11: Convergence of the eigenenergy of J = 35. LJ = 0 st,ate of p’He’ \vitli respect to increasiii;, 
1 rnax of the angular momentum of electron. The upper table is for the case in which all of Cl~an~lr:ls 1 ~ :$ 
are included at the same time. The lower table is for the case in which on]\- one of the three c~hamic~lr 
is included in the expansion. The table shows the import,ance of taking the three channels. Taken frow 

[106]. 

1 rnax E(a.u.) .Uo. of Basis Channels 

0 -2.9172152652 758 c=l 
0 - 2.9810324862 1408 (~Zl+‘-’ 
0 - 2.9833722109 1976 i-==1+i!+:i 
1 - 2.9840208137 3810 c_ zz 1 + 2 $~ :: 
2 - 2.9840209515 4962 i ==l$-2+:‘, 
3 - 2.9840209532 5929 c = I 4. 2 +- :: 

4 - 2.9840209534 6279 (‘= I +:!+;1 
5 - 2.9840209535 6851 i’ = 1 $- 2 + :i 
6 - 2.9840209535 7175 (‘Z I+:!-+;‘, 

_____ 

II___ -- 
~n,ax Channel 1 Channel 2 Channel 3 

E(a.u.) E(a.u.) E(R.ll.) 

0 - 2.9172152652 - 2.8328020372 - 2.6704002265 
1 - 2.9796718235 - 2.9802143284 - 2.8597272863 
2 - 2.9828204232 - 2.9823428527 -- 2.9310626650 
3 - 2.9835260466 - 2.9834589475 ~ 2.9579340569 
4 - 2.9836907910 - 2.9835786669 - 2.9656220436 
5 - 2.9837150242 - 2.9836022094 --~ 2.9668085907 
6 - 2.9837261297 - 2.9836106295 - 2.9673453010 
7 - 2.9837318218 - 2.9836142809 - 2.9676155022 
8 - 2.9837349872 - 2.9836160666 - 2.9677631326 ____ 

In order to obtain the transition energies with the accuracy of 7 -~ 8 significant figures, it is nccesxa~ L 
to calculate the relativistic and QED corrections. It was preciselv invest,igated in Refs. [3, 31. 321 usiu:: 
the first-order perturbation theory; the second order was found t,o be negligible. Here: we do not, discus+ 
the details of the calculation. We mention that, although the interaction derived from the Bright-Pauli 
Hamiltonian includes momentum, position and spin operators and has complicated forms, the use 01 
the Gaussian basis function enables one to calculate all of the matrix elements analytically without 
numerical integrals or multipole expansions. 
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Table 12: Three-body angular-momentum space for the J = 35, v = 0 state of p4He+ used iu the 
calculation of Table 11. Parameters for 1 5 2 are listed. Lengths are given in units of Bohr radius. 

C lc Lc %na.x rmin Tma.x N max &in Rnax 
1 0 35 6 0.00007 0.001 18 0.063 0.28 
1 0 35 25 0.002 4.5 26 0.062 0.33 
2 0 35 26 0.0003 4.5 25 0.062 0.33 
3 0 35 6 0.00007 0.001 18 0.063 0.28 
3 0 35 23 0.002 4.2 20 0.062 0.33 
1 1 34 16 0.035 3.0 16 0.074 0.25 
2 1 34 21 0.035 5.5 21 0.074 0.24 
3 1 34 15 0.035 2.5 15 0.074 0.23 
1 1 36 15 0.035 3.0 15 0.074 0.24 
2 1 36 22 0.035 5.5 21 0.074 0.24 
3 1 36 15 0.035 2.5 15 0.074 0.24 
1 2 33 15 0.075 4.0 15 0.050 0.24 
2 2 33 20 0.075 5.0 17 0.040 0.24 
3 2 33 7 0.075 3.6 8 0.056 0.24 
1 2 35 9 0.075 3.3 9 0.056 0.24 
2 2 35 12 0.075 4.3 12 0.056 0.24 
3 2 35 7 0.075 2.5 8 0.056 0.24 
1 2 37 9 0.075 3.3 9 0.056 0.24 
2 2 37 12 0.075 3.3 12 0.056 0.24 
3 2 37 5 0.075 2.5 5 0.056 0.24 

6.3 Calculated results 
First, under the assumption that the antiproton mass rng is the same as the proton mass mpz the 
calculation was made of transition energies between many states. The calculated energies agreed well 
with those in the work by Korobov [35]. Here we pay special attention to the two transitions (.I,. ol) - 
(Jf, of) = (35,3) - (34,3) and (34,2) - (33,2) since experimental data on those transitions are the 
most accurate, with the helium density correction taken into account. The results are summarized 
in Table 13 together with the experimental results. The relativistic and QED corrections reduce the 
discrepancy between the calculated and the observed values by about 40 ppm. The experimental data 
are well reproduced within the experimental error. The results show high-accuracy of the coupled- 
rearrangement-channel Gaussian expansion method for the Coulomb three-body systems with large 
angular momenta. 

The wavelength was recalculated using the antiproton mass scaled with 1 + 2 against the proton mass, 
‘rnD = (l+x)m,. Here, the antiproton charge was scaled simultaneously to keep the charge-to-mass ratio, 
ep = (1+ zr)ep. The uncertainty of antiproton mass (charge) Ax was estimated using an uncertainty of 
the experimental wavelengths Ax,,,. 

where (dX/ds),,i was obtained from the slopes of the lines in Fig. 31. The estimated A:r in Ref. 
[3, 321 are listed in Table 13. In the experimental paper by Torii et a2. [2], using discrepancies between 
theoretical and experimental values as Ax,,, instead of the uncertainty of experimental values mentioned 
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Table 13: Calculated [3] and observed [2] transition wavelengths which are given in unit of nm. XcaII, 

stands for pure Coulomb calculation, X nei that with relativistic and QED corrections, Xnxp experimental 
value. Ax is the derived uncertainty of antiproton mass. 

(JzPz)--(J!Pr) &“I &<.?I 
(nm) (nin) ,1Z) 

A.Z 

(35,3)-(34,3) 597.2290 597.2573 597.2570(3) 1 x10--7 

(34,2)-(33,2) 470.7048 470.7220 470.7220(6) 3~10-~ 
_ 

above, Amp/m, < 6 x lo-” was reported and this value was cited in Particle Listings 2000 [l]. This 
value of Amp/m, can be used for a test of the CPT invariance. 

597.2700 

+z 597.2600 
6 

d 597.2500 

597.2400 

Ax 

470.7350 

-470.7250 
E 
5 

d470.7150 

470.7050 
-6~10-~ -3~10‘~ OxlOo 3~10.~ 6x10.” 

Figure 31: Calculated transition wavelengths as a function of Ax. Closed diamonds show the calculatrd 
values and the solid line is the guide for eyes. Taken from [32]. 

Analysis with complex-coordinate-rotation (CCR) method 

The metastable states of pHe+ are Feshbach resonances which emit Auger electrons to decay into the 
bare PHe ‘+ atom. Therefore, in Ref. [lo] the states were studies using the CCR method which is useful 
for calculating resonance parameters. The complex rotated Hamiltonian, wave function, and Schodinger 
equation are given by 

Here, U(~X, 0) is a transformation operator, r + &“r, 01 and 0 being real and positi\:e numbers 

It is known that after the complex rotation, the resonance wave function quJ~[(cl, 6’) becomes L’ intc+ 
grable so that the expansion in terms of the Gaussian functions can be made in the same rnanner as in 
Eqs.(87)-(92). By diagonalizing H(a, e), the eigen energy E and the expansion coefficients A~~lc,vc,, 
are obtained as complex numbers. The resonant energy E, and the width r are obtained as the real and 
the imaginary parts of E respectively, namely E = E, - ir/2. In order t,o obtain a converged energy. 
one calculates complex eigenenergy trajectories as functions of B for different, valurs of cl. E~xarnple~ 
of the trajectories of E: on the complex E-plane are shown in Fig. 32. The position of the resonitir(‘(’ 
can be determined at the converged point where aE/% is minimum. The numerical mlcertainty of t ilc> 
position is estimated from the standard deviation for different values of N. It is marvelous that, theA 
present method can determine E, and r so precisely. 
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1 

-I.-- -3.37424 -3.31422 -3.3742 
Re(E) (au.) 

-3.37418 

Figure 32: Complex eigenenergy trajectories for 5=30, v=2 state of p*He+. The resonance is located 
at E,=-3.37421343(4) a.u. and r/2=4.988(3)~10-~ a.u., where numbers in the parentheses indicate 
the numerical uncertainty of the last digit. Taken from [lo]. 

In a new experiment by Hori et al. [9], six transition frequencies were reported as shown in the third 
column of Table 14. Kino et al. [lo] calculated the frequencies of the six transitions using the CCR 
method assuming mg = mP and taking the relativistic and QED corrections. The results are shown in 
the second column of Table 14. The best agreement with the data is seen in the first two transitions 
which are transitions between low vibrational states. The worst agreement is for the transition (34,1)- 
(33,3); the discrepancy is due to a unique character of the daughter state and the helium medium effect, 
but we do not discuss here about it (see Ref.[lO]). Observed and calculated Auger transition life t,ime; 
namely h/I, are compared with the data in Table 15. In accordance with the good agreement in the 
transition frequency, the decay of the state (J, U) = (32,l) IS well reproduced by the calculation. The 
discrepancy seen in the other two lifetimes might be due to the helium medium effect (see [lo]). 

Table 14: Transition frequencies between metastable states of FHe’. The notations are theoretical 
values (vu,) [lo], experimental values (z+,) [9], d’ iscrepancies between Vu, and v,,,, transition frequency 
shifts due to the scaling of antiproton mass and charge (mu,/ $h) and uncertainty of antiproton mass 

(A, 4 - (Jf, “f) k, uth-“ex~ uth/% 3 

(GH4 (l?) (13) 

(33,1)-(3’41) 804 633.127(5) 804 633.11(11) 0.021 2.56 0.054 
(32,0)-(31,O) 1 012 445.559 1 012 445.52(17) 0.039 2.45 0.094 
(35,3)-(34,3) 501 948.828(8) 501 949.01(13) -0.36 4.44 -1.6 
(35,1)-(34,3) 412 885.131(8) 412 885.18(12) -0.12 6.05 -0.72 
(34,2)-(33,4) 420 121.53(l) 420 121.9(10) -0.88 2.73 -2.4 
(34,1)-(33,3) 486 104.43(7) 486 102.6(7) 3.8 3.40 13 

Next, we examine the uncertainty in the determined antiproton mass by changing the antiproton mass 
within a range in which the calculated values are in good agreement with the experimental values. 
We scale the antiproton mass as well as the charge by a small fraction z, mg = (1 + z)nz, and eg = 

(1 + x)e, , which keeps the measured charge-to-mass ratio of antiproton unchanged. We recalculate 
transition frequencies as a function of the scaling parameter x. An example of the transition (33,1)- 
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Table 15: Auger decay lifetimes T (s). Theoretical values Ttt, are given by jlV]. 

(JP) 7th (s) GXP (s) 

(32;l) 5.45 x lo-” (5 zlz 1) x lo-’ Ref. /9] 

(33,3) 2.26 x 10-l’ (l.lf0.3) x 10-i’ Ref. [9] 

(33,4) 3.25 x lo-‘” (4.110.2) x 10-i’ Ref. [107] 

(32,l) is shown in Fig. 33. The uncertainty of antiproton mass (or equivalently chargej is given b> 
Amp/m, = Ae,-/e, = Ax = (uth - v,_)/$$ where % is given by the slope of the line in Fig. 33. 

804633.25 

804633.20 

g 804633. I5 
2 
> 804633.10 

804633.05 

804633.00 
-300 -200 -100 0 100 200 300 

x (ppb) 

Figure 33: The calculated frequencies of the transition (33,1)-(32;l) : f d5 a unction of t,he 1, mass &fl 
parameter z. Closed circles show the calculated values and the solid line is a guide for eyes. Xotationb 
are Amp/m, = Ae,/e, = Ax = (uth - LJ~~,)/% 

In conclusion, we obtained 5.4 x 10-s as the best upper limit of the relative difference of the antiprotoll 
mass from the proton mass. In the experimental paper [9], based on this value but t,aking son~(~ 
more statistics, Amp/m, < 6 x lo-* was reported which was cited in Particle Listings 2002 [8]. VW 
uncertainty is by a factor of ten smaller than the previously estimated value cited in Particle kTillgS 

2000 [l]: based on the calculation in Ref. [3, 31, 321 and the experimental data [a]. This demonstratr~ 
the power of GEM. 

7 Three- and Four-Body Structure of Hypernuclei 

In this section, we show examples of the applicat,ion of GEM to the study of the structure of hypernuclci. 
In the study of hypernuclear structure, there are many interesting and important subjects that call lw 

addressed by solving the Shrodinger equations for three- and four-body systems. The present authors 
have investigated the structure of light A hypernuclei with A = 4,6,7,9 and 13 and double A hypernuclei 
with A = 6 - 10. 

One of the primary goals ofliypernuclear physics is to extract information on baryon-baryon interactions. 
By making use of the YN scattering data and the complementary NN data, several types of E’:Z’ 
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one-boson-exchange (OBE) potential models have been proposed within the SU(3) and the SC’(G) 
framework. However, such YN and YY OBE models exhibit a great deal of ambiguity at present, since 
the YN scattering experiments are extremely limited and there is no YY scattering data. Therefore. 
it is important to obtain information on Y.li and YY interactions from hypernuclear structure studies. 

As already mentioned in Section 1, we obtain information on Y*N and YY interactions by combing theory 
and experiment in the following way: (1) We take as candidate YN and YY interactions. the ones based 
on the OBE model and constituent quark model. (2) We have hypernuclear T-ray spectroscopic data 
giving information on the YN and YY interactions. (3) Precision structure calculations using models 
of YN and YY interactions are compared with the y-ray data to test the quality of the assumed YN 
and YY interactions. Such calculations allow us to improve the models so that agreement of theory 
and experiment may be achieved. Our calculations of few-body systems play essential roles in this 
procedure. As a typical example, we discuss y-ray spectroscopy experiments and t,heoretical structure 
calculations related to the YN spin-orbit force. 

Once the Hamiltonian is determined, we can calculate precisely the structure of many-body systems 
consisting of neutrons, protons and hyperons. Another goal of hypernuclear physics is to study the new 
dynamical features induced by the A particle. It is highly desirable to predict new phenomena and 
guide experiments to find them. 

In this section we review our studies performed from the above viewpoints. All t)he three- and four- 
body calculations were performed using the infinitesimally-shifted Gaussian basis functions described 
in Section 2.6 and Appendix. 

7.1 Spin-orbit force and ;Be and i3C 

In this subsection, we review our 2cu + A three-body calculation and 3cr + A four-body calculation which 
contributed to discriminating the OBE-model based YN spin-orbit force and the quark-model based 
one by predicting the spin-orbit splitting energies in hypernuclei with those forces to which experimental 
results were compared later. This calculation was reported in Ref. [14] and details are therein. 

The reason why it is important to obtain information on YN spin-orbit force is that the antisymmetric 
spin-orbit (AU) forces are qualitatively different between one-boson-exchange (OBE) models [17, 181 
and quark models [19]. As a typical difference, the quark model [108] predicts that the ALS component 
of the AN interaction is so strong as to substantially cancel the LS one, while the OBE models [17, 181 
propose much smaller AL9 and various strength of LS. However, since there is no YN spin polarized 
scattering data, we have no direct experimental information on the strength of YN spin-orbit, force. 
Therefore, careful calculations of hypernuclear structure should be of great help because A spin-orbit 
splitting in hypernuclei are directly related to the spin-orbit component of the AN interactions. 

For this purpose, the structure study of :Be and i3C is useful. y-ray experiments of XBe and fi”C 
have been performed. In iBe, one y ray of E7 = 3.079 + 0.040 MeV has been observed so far [109], 
but the resolution was not good enough to separate the spin-orbit doublet, suggesting only the limit, 
aE(5/2:-312’) < 0.1 MeV. In i3C, only the 112: state has been observed with E1(1/2; + l/2:) 
transition energy ET = 10.95 f 0.30 MeV [110]. From analysis of 13C K-, n-)i3C reaction, the p state ( 
A spin-orbit splitting has been suggested to be 0.36 * 0.30 MeV [Ill]. 

Recently, two experiments with good energy resolution were performed for IBe and i3C at BNL. One 
(E930 [21]) was to measure y-rays from the decay of the 5/2: and the 3/2: states in iBe, and the other 
(E929 [20]) was to measure those from the 3/2; and l/2: states in XC. 

Before the high resolution measurements were made, it was requested to perform reliable and accurate 
calculations of energy splitting of the 5/2:-312: doublet in :Be and the 3/2;-112; doublet in i3C. 
It was well known that the wavefunction of core nuclei, sBe and “C, are described well within the 
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framework of 20 and 3a microscopic models. Therefore, we performed a 2~ + A three-body calculation 
for :Be and a 3a + A four-body calculations for gC [14]. 

(4 

rJ_f-a x3:X 
c=l c=2 c=3 c=4 

IBe 13C 
A 

Figure 34: Jacobian coordinates of all the rearrangement channels for (a) the 2a + A model of :Be and 
(b) the 3~ + A model of i3C. The cy clusters are to be symmetrized. 

The employed OBE based AN spin-orbit force [17, 181 and the quark-model based one [IS] arc ex- 
plained in Ref. [14]. The total wavefunction was described as a sum of components corresponding t,hc 
rearrangement channels of Fig. 34 in the LS coupling scheme: 

c=l IJo l,L,X n,N,v 

where the c denote the channel shown in Fig. 34 and S, the symmetrization operator for exchange 
between Q: clusters. x;(A) is the spin function of the A particle. As for &lm(r), ,Y,!J.vLM(R) and &$(pc). 
we took the Gaussian basis functions of Section 3, but replace them with t,he infinitesimally-shifted 
Gaussian basis functions when the three- and four-body matrix elements are calculated as mentioned 
in Sections 3 and 4. The Gaussian ranges were taken to be in geometrical progression. Eigenenergics 
of the coefficients C were to be determined by the Rayleigh-Ritz variational method. 

The Pauli principle between two o clusters is taken into account by the orthogonality condition model 
(OCM) [112]. We employed an ao potential which reproduced the observed ocv scattering phase shifts 
and the resonant ground state energy of *Be within the 2a OCM. The crcy potential, V,,(T), was 
constructed by folding the modified Hasegawa-Nagata effective NN potential [I131 and the pp Coulorr~b 
potential into the cy cluster density. This oa potential, however, gives rise to a significant over binding of 
the ground state of “C. We therefore introduced an effective, repulsive, 3~ potential. The Atr interact.iorr 
was derived by folding the AN G-matrix interaction (see Ref.1141) into the cu-cluster wavefunction. lise 
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of the AN interaction and the CYCY and 3a interactions reproduced the A binding energies of iHe, iBe, 
and fi”C (l/2: and l/2;) simultaneously. 

For iBe, we calculated the energies of the doublet states of 512: and 312: whose dominant cofiguration 
was ‘Be(2:) @ A(si,z). Calculated energy splitting, 83(5/2:-3/2:), was 80 - 200 keV depending 
on the Nijmegen OBE models. For ,, 13C, calculated energy splitting, aE(3/2;-l/2;), was 390 - 960 
keV depending on the Nijmegen OBE models. In these calculations, the ALS forces were more or less 
similar to each other, while the LS strength changed continuously over a wide range. As a consequence, 
the sum of LS and ALS gave rise to 20 - 40 % reduction of the splitting from that obtained with LS 
only. 

It is interesting to note that the cancellation is known to be more drastic for the quark-model based 
LS and ALS forces. Use of the quark-model based AN spin-orbit interaction gives nE(5/2:-3/2:) = 
35 - 40 keV in :Be and nE(3/2;-l/2;) = 150 - 200 keV in A%. 

Table 16: Spin-orbit splitting energy in in :Be and A%. Calculated values are given by Hiyama et al. 
[14] using the OBE-model-based and quark-model-based AN spin-orbit force. Experimental values are 
taken from [21] for !Be and from [20] for i3C. 

splitting CAL(OBE model) CAL(quark model) EXP 

(keV) (keV) (keV) 

:Be E(5/2:-312:) 80 - 200 35 - 40 31.4+;:; 
A 13C E(3/2;-l/2;) 390 960 - 150 - 200 15Ort54&36 

Recently, experimental data for these energy splittings of !Be [21] and i3C [20] have been reported to 
be 31.4?,2:: keV and 152 & 54 & 36 keV, respectively. 

The predicted values and the experimental results are summarized in Table 16. We see that the predicted 
energy splitting using the quark-based spin-orbit force can explain both data consistency, while any of 
Nijgemen models cannot. It is obvious that the analysis described above can be used to test any new 
YN interaction which might be proposed in the future. 

7.2 The first four-body calculation of $H and aHe, and A - C conversion 

Four-body calculation of :H and ;He using NN and YN interactions are much more difficult than 
that of four-nucleon bound state because one has to take explicit account of the NlliNA and the 
NNNC channels as well as be realistic NN and YN interactions. Historically. Gibson et u2 employed a 
coupled two-body model [22] of 3He(3H) + A/C w ic h’ h was originally due to Dalitz and Downs [114], and 
later carried out four-body coupled-channel calculations with central separable potentials [23]. Carlson 
performed four-body calculation with the NSC89 separable potential with Monte Carlo method [115] 
and obtained binding energies with statical errors of 1OOkeV. Akaishi et al. [24] recently analyzed the 
role of the AN - CN coupling for the Of-l+ splitting in the framework of the coupled two-body model 
of 3He + A/C. 

We recently succeeded in performing extensive four-body calculations without any restriction of chan- 
nels. Both the NNNA and NNNC channels were incorporated explicitly and all the rearrangement 
channels of these baryons were taken into account [15]. A s a results, we succeeded in analyzing the role 
of A - C conversion in light hypernuclei which had been investigated for many years by various authors 
122, 23, 241 to see its effects on the binding energies, the charge-symmetry-breaking difference, the role 
of ANN three-body force, etc. 
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Our main goals were, first, to solve the four-body :H ad ;He problem b>- t,aking into account explicit 1.x 
the !VNaVA(C) channels using realistic N,V and Y:V interactions and, second, to clarify the role 01 
the AI\’ - CN coupling in the A = 4 hypernuclei. As a first step. bcfor(> going to sophist icat cd 01~1~: 
models, we employed the AI%’ - CN coupled YN potential of Ref.[ll(i] with central, spin-orbit, md 
tensor terms which simulates the scattering phase shifts given by 1USC97f. The main reason for using rhc, 
simulated version of NSC97f was its computational tractability which allowed us to focus our wttentior! 
to the physical ingredients. The observed binding energy of “\H was rrprotluced reasonably well: Tlrc, 
interaction lead to the A binding energy, BI,(iH), 0.19 MeV which agreed well with the observed &II ‘L 
[B,\(iH) = 0.13 f 0.05 MeV]. For the NN interaction WC emplovrrl the AVS potential \63]. 

The total four-body wavefunction assumed is given iC3 il Slllll of the c~i~lrlponents for all l’P;trrall~:(‘lli(‘l!f 
channels (c = 1 - 4) of Fig. 35 in the LS coupling scheme: 

QJnr(iHe,i H) 
= ,-& $2 ,& CLL1t’ 

A{ [@Ply’;‘C)(rC,LPC) [!~.~~112)~~(3)],~~(Y)],~~ j,i 

x[[??r(l2)‘ii(“)]tut,(,;)1,=~} 1 1 100 / 

where the spatial wave functions have the form. with a set of quantum ~lurnbe~~ o = {,li. XL. li. I/X}. 

%tnl(r. R: P) = [[O,~(~)U~.~L(R)IK~,~(P!~,~,~. liii 

Here. A is the three-nucleon antisymmetrization operator and the \‘s md the ,/‘s are t hc spin arr( I 
isospin functions, respectively, with the isospin ty = 0 (1) for I’ = A (C). The &LinL(r) were taken 11, 
be t.he Gaussian basis functions, but. in actual calculation of the four-body mat,rix elements, they ww 
replaced by the infinitesimally-shifted Gaussian basis functions as done in Section 4 and Appendix. Till, 
Gaussian range parameters were chosen to lie in geometrical progressions as in Section 2.1. Eigerlenc~rgl~~\ 
of the Hamiltonian and the coefficients C were determined by the Ravleigh-Ritz variational rncthc~~l 
The angular momentum space of I; L. X 5 2 was found to be suffic:ient to get, a good c:ollvergcllcc~ ol 1 lll~ 

calculated results as described below. 

Figure 35: Jacobian coordinates for the rearrangement channels of the NflNll(X) system. The tlu<x(, 
nucleons are to be antisymmetrized. 

The calculations were performed for :He and AH. Calculated L?,, of the 0’ ground sta.tc and the I T 
excited state of ;He and :H arc illustrated in Fig. 36 in comparison with the observed values. tic1111 
states are unbound. The NNNC sector is divided into t.he (NNLV),,PL c al~tl jIV:V;“v-),,,z thalln~~is 
in which three nucleons are coupled to isospin 1 = l/2 and 3/2, respectively. \Vherl the (?iN_q;) ,!,!I 
channel is included, the O+ state becomes bound, but t,he l+ state is still unbound. The li sta1.c 
becomes bound only when the (NNN)s$ channel is switched OIL However, the hinding energy of t hc 
O+ state increases only slightly with the t = 3/2 channel. 

Thus, the C-channel components turn out to play an essential role in the binding mechauism of t.11~’ 
A = 4 hypernuclei, the (NNIV’)~,~C channel being particularly important in the 1' state. The calculated 
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Figure 36: Calculated energy levels of (a) :He and (b) ;H. The channels successively included are (i) 

(NNN)uzA, (ii) (NNN)& and (iii) (NNN)s$, where the isospin of the three nucleons is coupled 
to t = l/2 or 3/2. Energy is measured from the 3He + A(“H + A) threshold. 

binding energy of the O+ state almost reproduces the observed binding energy, while the 1’ state is less 
bound by 0.6 (0.4) MeV for :H (:H), and hence the 0+-l+ splitting is larger than the observed splitting 
The calculated value of BA(iHe(O+)) - Bn(iH(O+)) = -0.05 MeV d’ff is 1 erent from the experimental 
one, +0.35 MeV, although the Coulomb potentials between charged particles (p, C*) are included. This 
difference should be attributed to the charge-symmetry-breaking component which is not included in 
our adopted YN interaction. 

As listed in Table 17, the calculated probabilities of the NNNC-channel admixture are 2% and 1% for 
the Of and 1+ states in iHe, respectively. In the O+ state, the probability of the (NNN),X channel 
is much larger than that of the (NNN) ;C h c annel, while in the 1+ state they are nearly the same. 

We therefore confirm that the (NNN)zC h c annel is particularly important in the l+ state. The S-, 
P- and D-state probabilities of the chamiels are also listed in Table 17. It is remarkable that, in the 
NNNC channel, the D-state component is dominant both in the O+ and 1+ states, since the AN-EN 
coupling part of the present interaction is dominated by the tensor component. These properties are 
quite similar in the case of :H. 

Table 17: The probabilities (%) of the S-, P- and D-state and their total for each of the (NNN);A! 

(NNN)+C and (NNN)qC channels in the O+ and l+ states of iHe. (NNN)t denotes three nucleons 
whose isospins are coupled to t. This table is taken from [15] 

:He 0+ 1+ 

S P D Total S P D Total 

(NNN)$ 89.32 0.08 8.52 97.92 90.38 0.07 8.52 98.97 

(NNN)+C 0.84 0.04 1.16 2.04 0.10 0.01 0.40 0.51 

(NNN);C 0.01 0.01 0.02 0.04 0.09 0.00 0.43 0.52 

It is interesting to explore the spatial distributions of the N.A and C in the A = 4 hypernuclei. We 
calculated the correlation functions (two-body densities) of the NhT. AN and CN pairs in Fig. 37. and 
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the one-body densities of single nucleons, A and C hyperons in Fig. 38. The :V!N correlation function i:i 
;He exhibits almost the same shape as that in the “He nucleus, indicating that t,hc dynamical ~llang~~ 
due to the presence of A is small. The AN correlation function has a lon, ~7 range and is flatter than 
the NN one, because the AN interaction is significantly weaker than the NN interaction. The CS 
correlation function is much shorter ranged than the AN one due to the large virtrial excitation r>ucrg> 

(80 MeV) of A -+ C. It, is interesting to note in Fig. 37 that, in spite of the small probability of t,he 
C admixture (2 %), the CN components is not so small at short distances in comparison with the A:L’ 
one. This enhanced short-range distribution of the C is expected to be reflected in the nonmesonic~ 
decay of CN + NN 

Figure 37: Correlation function (two-body deu- 
sities) of NN, AN and CN pairs in the O+ state 
of :He together with that for the NN pair in 
“He. That of the CN pair has been multiplied 
by a factor of 2 to make the behavior of this 
function clear. The r.m.s. radius of each den- 
sity is TNN = 2.86 fm, FAN = 3.77 fm and 
?n,v = 2.24 fm. This figure is taken from [15]. 

0 2 4 6 8 
W@ 

Figure 38: Calculated one-body densities 01 
N, A and C particles in the O+ state of “,He 
Volume integrals of the densities are 1.0.0.98 
and 0.02 for N! A and Z: particles. respectivelv 
The r.m.s. radius of each density is ‘FI\. = 1.65 
fm, ?,I = 3.39 fm and Q = 1.67 fm. This figurc~ 
is taken from [ 151. 

In order to illustrate the effect of the C mixing in more detail, we separate the contribution of A2 - X7:L. 
coupling into the two processes illustrated in Fig. 39. The first one is the process (i) which can I)(’ 
renormalized into the effective AN two-body force and the second one is the process (ii) which can bc 
represented by the effective ANN three-body force acting in the NNNA space. We solve t,he Schroclingei 
equation by excluding the three-body process (ii) so as to evaluate the contribution of proc’ess (i) a1011c 
and then including both (i) and (ii). A s s h own in Fig. 39, process pi) is large enough to make both the 
O+ and 1+ states bound. The contribution of the three-body process (ii) is also substantial, viz. :I II 
additional attraction of 0.62(0.62) MeV in the Of state and a repulsion of 0.09 (0.08) MeV in the ! 
state of iHe( 

Thus, we have developed a method of calculation for bound-state problems capable of precise four-botlh 
calculations of :H and AHe, taking both the NNNA and NNNC channels explicitly into account and 
using realistic NN and YN interactions. As a result, we have succeeded in clarifying the role of A - LX 
conversion and quantitatively estimating the size of the C mixing in the A = 4 hypernuclei. Recernly. 
Dirogga et al. [117] performed four-body Faddeev-Yakubovsky calculation of ;He and ;H using rnodrl,rl 
realistic NN and YN interactions. They claimed that none of the YN interactions available so far wcr(‘ 
adequate for reproducing the binding energies of 0’ and 1+ states, although the ground state energy- 
of ;H was in good agreement with the experimental data. It is left as a future problem to explore the 
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Figure 39: Calculated energy levels of (a) :He and (b) iH f or case (i) and case (i)+(ii); here, (i) denotes 
the two-body process and (ii) denotes the three-body process. This figure is taken from [15]. 

features of A - C conversion in A hypernuclei using more refined YN interactions and to ca.rry out 
systematic studies of the structure of heavier hypernuclear systems. 

7.3 Novel dynamical properties of hypernuclei 

As described in the previous subsection, we can extract novel information on YN interactions by means 
of highly accurate structure calculations. Once the Hamiltonian is given, we can calculate precisely 
the structure of many-body systems consisting of neutrons, protons and hyperons. Another purpose 
of hypernuclear physics is to study the new dynamical features induced by the A particle. It is very 
desirable to predict new phenomena and guide experiments to find them. 

Nuclear shrinkage in LLi 

It has long been thought that the nucleus cannot be significantly compressed. How is the structure of 
a nucleus modified when a A particle is injected into it ? There is no Pauli Principle acting between 
the A and the nucleons in the nucleus. Therefore, the A particle can reach deep inside, and attract the 
surrounding nucleons towards the interior of the nucleus (this is called “gluelike role” of A particle). 
However, how do we observe the shrinkage of the nuclear size by the A participation? In the work 
of Ref. [118] based on the microscopic cv + z + A three-cluster model (Z = d, t,3He) for light p-shell 
hypernuclei together with the CY + z two-cluster model for the nuclear core, the reduction of the nuclear 
size was recognized in the reduction of the B(E2) strength which is proportional to the fourth power 
of the distance between the LY and x clusters. 

More precisely, in Ref.[13], we suggested the measurement of B(E2; 5/2: + l/2:) in ILi and proposed 
a prescription to derive hypernuclear size for the first time with the aid of the empirical values of 
B(E2; 3: + 1:) and the size of the ground state of 6Li. Afterwards, the experiment of Ref.[119] was 
performed and the result was compared with our prediction on the size of LLi. 
We employed a microscopic iHe+n+p three-body model for ;\Li. It was examined in Ref. [13] that the 
:He is a good cluster. The total three-body wave function is constructed on the Jacobian coordinates 
of Fig. 40 in the same manner as in the three-body calculations in the previous sections. Interactions 
employed are described in Ref. [13]. 

The observed energies of the 112: and 512: were well reproduced by the calculations, and the value 
B(E2; 5/2: + l/2:) = 2.42 e2fm4 was predicted. This is much smaller than the observed B(E2; 3: --f 
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core core core 

Figure 40: .Jacobian coordinates of the ;He + ‘n+ p system 

1:) = 9.3+2.1 e2fm” for the “Li core which is well reproduced by our “Li = ‘He+ II +p three-body model 
whose prediction is 9.26e2fm4. It should be noted, however, that one cannot conclude the size-shrinkagc~ 
from the reduction of the B(E2) value alone since the B(E2) p o era or r2 YzP(b’, 4) includes the angle t 
operator. Furthermore, we should note that the shrinkage of LLi can occur both along the n-p relat,ive 
distance and along the distance between the 4He core and the cm. of the (np) pair 

Figure 41: (a) the n - p relative density of LLi as a function of rTL--y and (‘0) the (np) cm. densit,y as 
a function of R,,,,_(,,) together with the corresponding densities in “Li core. This figure is taken from 

1131. 

We show in Fig, 41 the n - p relative density p(,~,_~) and the np C.III. density p(ll,,,,+,,,~j t.ogethei 
with the corresponding densities in ‘jLi core. The 1% - p relative density exhibits almost the same shapes 
for the ground state of 6Li and that of ALi, namely, the shrinkage of the n - p distance due to I 1~ 
A participation is negligibly small. On the other hand, the n - ?-, cm. density distribution of 7\Li is 
remarkably different from that of 6Li, showing a significant contraction along the R,,,,_(,,~ coordinate 
due to the A addition. In fact, the r.m.s. distance ficore_(+ is estimated t,o be 2.94 fm for iLi(l/? ) 
vs 3.85 fm for ‘Li(l+). 

Thus, we conclude that, by the addition of the A particle to “Li(l+), contraction of :Li occurs betwcc>ii 
the cm. of the (np) pair and the core whereas the 71 - p relative motion remains almost unchanged. 
In this type change in the wave function, the angle operator in B(E2) d oes not significantly affect the 
magnitude of shrinkage. We predicted in Ref. [13] that the size of R,,,.,_~,,~ in “Li will shrink bv 25 ‘A L 
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due to the participation of a A particle. In a later calculation [120] based on more precise “He+n+;o+h 
four-body model, we predicted it to be 22 %. 

The first observation of the hypernuclear B(E2) strength was made in the KEK-E419 experiment for 
B(E2;5/2+ + l/2+) in LLi. The observed B(E2) va ue was 3.6 5 0.5?::: e2fm4 [119]. From this: the 1 
shrinkage of Rcore--(71p) was estimated to be by 19 * 4 %, which was consistent with our prediction. It 
is to be emphasized that this interesting discovery was realized with the help of our precision few-body 
calculations. 

Nuclear shrinkage in fi”C 

One may ask the next, question “Are all nuclei compressed by the injection of a A particle’!” Our answer 
is No. We shall show an example in “C and i3C studied in Refs. [12] and [14]. 

It is well known that the ground 0: state in “C has a shell model like structure while the 0: excited 
state at E, = 7.65 MeV is a well-developed clustering state and that both states are simultaneously 
well described by the microscopic 3a cluster model. Using the same 301+ A four-body model for yC as 
in Section 7.1 we studied the shrinkage problem. 

The calculated A separation energies of l/2: and l/2: states in ,, i3C are 11.69 MeV and 8.59 MeV, 
respectively. The l/Z: state is dominantly composed of the 0:(12C) core and a OS A particle (99 %) 
and the l/2: is composed of the 0.$(12C) core and a OS A particle (77 %). 

ri-a (fm) Ta+ (fm) 

Figure 42: Probability densities of finding two o at a distance T,_, in the states (a) ‘“C(0;) and 
i3C(1/2:), and (b) i2C(O:) and pC(l/2:). Shrinkage of the excited 0, + in i2C is drastic, but that in 
the ground state is little. This figure is taken from j12J 

In the excited l/2+ state in ,, 13C, the r.m.s. distance between the two o clusters, Fa-a, is estimated 
to be 4.5 fm which is much reduced from 6.3 fm (by some 30 %) in the excited 0’ state in i2C. This 
contraction is more vividly seen in Fig. 42a, which illustrates the probability density of finding the two 
as at a distance T,_,. In contrast, in the case of the ground-states pair, little change of a - o distance 
is seen in Fig. 42b ; the reduction in Fa-, is from 3.0 fm in “C(Ot) to 2.9 fm in i3C(1/2:). 

This results indicates that shell model like states are not easily contracted when a A particle joins. We 
then predict that the nuclear density of the ground states in the stable nuclei heavier than A N 10 will 
be compressed very little by the addition of a A particle. On the other hand, the matter radius in some 
excited states will shrink by as much as some a few ten % by the injection of a A particle. It is to be 
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emphasized that this interesting property has been found by the studies taking account of the thrrtj- 
and four-body degrees of freedom in nuclei. 

Nuclear shrinkage in :H and :‘,He 

One may ask the question, “what is the effect of the A-C conversion on the shrinkage in A-hypernuclei’l” 
An answer was given in our recent work [15] on the structure of :H and :He already mentioned in Section 
7.2. We briefly describe it here again. 

We note that the A particle resides well outside the core and therefore the dynamical change in rhc 
core nucleus due to the A particle is small. In the ground state of iHe, the nucleon r.m.s. radius is 
T,v = 1.65 fm which is smaller by 8 % than the corresponding F,v = 1.79 fm in “He. On the othci 
hand, the C hyperon lies close to the nucleons (see Figs. 37 and 38) and, therefore, generates a large 
dynamical contraction of the core nucleus in the NNNC-channel space; ?:.v = 1.49 fm is obtained by the 
calculation including the C-channel amplitude only and the reduction amounts to 17 % in the channei. 
From this reduction, it is expected that 3N in the NNNC space is strongly excited. In fact, calculated 
probability of finding the ground state of triton in the NNNC space is only 30 o/r. 

Neutron-rich hypernuclei and halo structure 

Another interesting gluelike role of A particle is to give rise to more bound states. This feature oi 
light hypernuclei has been studied mostly in systems consisting of a stable nucleus and a A particlr). 
Recently, the neutron halo states have been observed in light nuclei near the neut,ron drip line. If :I 
A particle is added to such a halo nucleus a very weakly bound system, the resultant hypernuc~k~~u~ 
becomes substantially more stable against the neutron decay. Thanks to the gluelike role of thca :\ 
particle, there is a new chance to produce a hypernuclear neutron (or proton) halo state even with o 
core nucleus in a weakly bound state or in an unbound (resonance) stat,c with an energy above tl~c> 
particle decay threshold. 

As a result, hypernuclei have the interesting possibility of extending the neutron (proton) drip line from 
that of ordinary nuclei. At J-PARC (Japan- Proton-Acceraletor-Research-Complex), BNL and TJLAB, 
it is planned to produce many A hypernuclei near the neutron and the proton drip line. Therefore. it 
is desirable to predict structure of these A hypernuclei prior to the measurements. As an example. we 
studied in Ref. [ll] the structure of 6,He, :Li, iHe, :Li and ;B e, employing 01 + A + N three-hoti\ 
model for :He and :Li, and :He + N i N three-body model for ;\He) :Li and 7\Be, and predi&d ~oI~I(’ 
halo states in those hypernuclei (see Ref.[ll] for details). We hope that many neutron- and protonric,h 
A hypernuclei will be observed in the future. That will much stimulate the study of many-body systems 
composed of nucleons and hyperons. 

7.4 Double A hypernuclei 

So far; we have discussed the structure of single A hypernuclei. What is the structure change when 
one or more As are added to a nucleus? The extreme limit is the core of a neutron star which contains 
many As,. In order to understand the structure of a neutron star core. it is essential to understand the 
Ah interaction, or in general YY interaction. However, we have little knowledge of the YY interaction 
because there exist no YY scattering data. 

Recently two novel data from KEK-E373 experiment have offered a new basis for constraining the AA 
interaction. One is the observation of the double A hypernucleus i,He, which is called the NAGARA 
event [121]. The formation of ahHe was uniquely identified by the observation of sequential weak decays. 
and the precise experimental value of the 2A binding (separation) energy, B,,,, = 7.25 & 0.19$:$ MeV. 
was obtained. The AA bond energy, estimated by BAA - 2Bn was about 1.0 MeV. Historically, there 
were some more observations of double A hypernuclei, but no unique identification had been made. In 
this respect, the unambiguious observation of the NAGARA event was epoch-making. Analysis of SOIW 
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more emulsion data is still in progress. Furthermore, it is planned to produce many more double i\ 
hypernuclei at J-PARC, GSI and BNL. 

Here, the important issues are: (1) Does the AA interaction which is designed to reproduce the binding 
energy of i,,He also consistently reproduce the Demachi-Yunagi event explained later? (2) Using this 
AA interaction, what is the level structure of other double A hypernuclei? In order to answer these 
questions, we studied the structure of double A hypernuclei i*He within the cr+A+A model, and ii\He, 
ii\Li, i,,Li, iALi, i,,Be and Ah lo Be within cy + z + A + A four-body model, where x = 7~, p, d, t,3He and a; 
respectively. It is known that the nuclear core parts are very well represented by LY + IC cluster models. 
We emphasize that these extensive calculations were presented for the first time for A = 7 N 9 double-A 
hypernuclei and that our old predictions on i*He and iZh lo Be was updated using the same model but 
with the new information on the AA interaction. 

CL4 c=5 C=6 

cz7 C=8 c=9 

Figure 43: Jacobian coordinates for all the rearrangement channels (c = 1 - 9) of the o -t z i- A -I- A 
four-body system. Two A particles are to be antisymmetrized, and (Y and 2 are to be symmetrized 
when x = Q. 

All nine sets of the Jacobian coordinates of the four-body system are illustrated in Fig. 43 in which we 
also take into account the antisymmetrization between two A particles and the symmetrization between 
two Q: clusters when z = cy. The total wave function is described as a sum of the components of 
rearrangement channels (c = 1 - 9) in the LS coupling scheme: 

Here the operator & stands for antisymmetrization between the two A particles, and S,, is the sym- 
metrization operator for exchange between a clusters when z = cu. xi(Ai) is the spin function of t,he 
i-th A particle. The eigenenergy E and the coefficients C in Eq. (102) are to be determined by the 
Rayleigh-Ritz variational method. 
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The angular-momentum space of the wave function with 1, L, X 5 2 was found t,o be sufficient for gc‘t tmg 
good convergence of the binding energies of the states studied below (note that no t,runcation is done to 
the znteructions in the angular-momentum space). As for the numbers of th(> Gaussian basis. ii,,,,,,. .I-,,,,, \ 
and vmax, 4 - 10 are sufficient. 

In the present four-body-model study, it is absolutely necessary to make it, SUXX, before the four-botl> 
calculation, that the model and the interactions adopted are able to reproduce reasonably well t,hci 
following observed quantities: (i) energies of the low-lying states a.nd scattering phase shits of the (1 -;- , 
nuclear systems, (ii) BA of hypernuclei composed of :): + A, 5 being tl. t .3 He, <x. (iii) B,, of hypernuc+l 
composed of cu + z + A, s being n, p, d. t,” He. (L and (iv) B ,t,,\ of inHe = o: + A + A. Then we perform 
the four-body calculations. with no adjustable parameters at this stage, expec~t,ing high relinbilil,y (ii 
tlw results. The paramet,ers of the c~zr, As. AN and Ah interactions are listed in Rcf.[lG]. The I’iluli 
principle between t,he nuc~leons in the o clusters are taken into acc~o1ult by thca 0Cnl 

It is of particular interest to compare the present result with anot,her datum whic,h is not used 111 ill<, 
fitting procedure. There is an event found in the E373 experiment, named tllc, Dcmuchr- YU~IU!II P\WI~ 
[122. 1231. The most probable interpretation of this event is the production of a bo~lnd stat<, of :(‘,Bca 
having B1;“,P = 12.331::;: MeV. In the emulsion analysis there was no direct evitlcnc~c for the prodl~ction 
of &Be in an excited state. However. if the produced !,), lo Be were in the ground state,, the resnlt,ant, ?2.\ 
bond energy would be repulsive. in cont,radiction to what was found in the NAGARA event. 
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Figure 44: Calculated energy levels of ‘Be, ;Be and ,,,, lo Be on the basis of the u + (1, o i o + :1; iul(l 
n+a+A+A models, respectively. The level energies are measured from the particle breakup thrcsholtls 
or are given by excitation energies E,. This figure is taken from [16]. 

It is striking that our calculated value of BAk(i:,Be(2+)) is 12.28 McV that agrees with the ai)ov(~ 
experimental value as shown in Fig. 44. Therefore, the Demachi-Yunayi event can be interpreted as 
most probably the observation of the 2+ excited state in ,,,, lo Be This good agreement suggests that 
our systematically calculated level structures are predictive and useful for interpreting upcoming events 
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expected to be found in the further analysis of the E373 data. Thus, we have understood the consistency 
between the experimental data and our theoretical results for ,,,, lo Be Therefore, in some reality, we can 
predict energy spectra of double-A hypernuclei with A = 6 N 10 as shown in Fig.35. We expect they 
will be examined by the future double A hypernucleus experiments. 
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Figure 45: Energy levels of double-h hypernuclei, i,,He, i,,He, L*Li, i*Li, ihLir i,,be and i\Be calcu- 
lated using the cy + z + A + A model with 5 = 0, n, p, d, t,3 He and cy, respectively. This figure is taken 
from [16]. 

In conclusion, these extensive four-body cluster-model calculations should serve to motivate extensive 
spectroscopic studies of double-A hypernuclei. 

8 Coulomb Three-Body Reactions 

The GEM method is applicable to three-body reactions. So far, it has mostly been applied to Coulomb 
three-body reactions which appear in the cycle of muon catalyzed fusion (&F) [25, 26, 27, 281. In this 
section, we review our work [41, 421 on two types of important Coulomb three-body reactions which 
have been stimulating the development of three-body reaction theory. 

i) Muon transfer reaction: 

(db)ls + t -, d + (@)I~ + 48eV (103) 

is a doorway to the muon catalyzed d - t fusion as mentioned in Section 5. Calculation of the cross 
section of this reaction at EC, = 0.001 - 100 eV has been a stringent benchmark test to calculational 
methods of Coulomb three-body reactions. Since the muon mass is 207 times the electron mass: fully 
non-adiabatic treatment is necessary. GEM gave [41] one of the most precise results reported so far. 
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ii) Decay branching ratio of three-body Feshbach resonance (dHep)J,l: 

(dp)n + He + (dHep)J=i ---f (Hep)i, + d + hv (- 6.7keV) 

+ (Hep)n + d + 8.2 keV (104, 

Muon transfer to helium nucleus is a poison reaction iu @ZF as much as muon st,ickmg to heiuur~ 
nucleus after fusion; both processes cause muon loss t,o the deeply bound (He/L) is state. Since mu011 
transfer from (dh) to (Heb) occurs dominantly via the (dHe1) = J I molecule, study of t,he property (11 
the molecule is of importance in &F. Using GEM, Kino and Kamimura [42] predicted presence of t 1~ 
strong second branch (particle decay without emitting photons). The branching ratio was found to b(, 
sensitive to the reduced mass of the d-He system (namely, the nuclear kinetic energy in the molecuic~~. 
and hence generates a strong isotope effect i.e. dependence on the mass number of the He nucleus :I 
or 4. The molecular state is a Feshbach resonance embedded in the coutinuum of (He//,) ,,, -- tl chamrel 
at E,, = 8.2 keV. This prediction was later confirmed experiment,ally [124. 1251. This fact motivated 
many calculations to examine it in the literature. 

The subjects i) and ii) give good tests to three-body reaction theories for elastic aud transfer proccsscs 
in the presence of strong three-body distortions (correlations) in the intermediate stage. 

8.1 Muon transfer reaction 

We consider the reaction (103) at incident c.m. energies 0.001 - 100 eV which are much less than the, 
excitation energy of the n = 2 state of (tp) and (dp), 2 keV. The tot,al Hamiltonian of the d + f 1. /I 
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Figure 46: Three Jacobian coordinates of the d + t + LL system. 

system (Fig. 46) is given by 

H = -$7;c _ &kc _ < (c= 1,20x3): 
c c r1 r2 7-3 

( 10; I 

where m, and M, are the reduced masses associated with the coordinates rc and R,; respectively. The 
wave function which describes the reaction (103) and the elastic (tp)is - d scattering simultaueousl>- 
may be written as 

The first and the second terms describe the open (dh)n --t and the (tn)is- d channels, respectively. The 
third term, @Fed), describes all closed-channels. This term vanishes asymptotically, and can properl\i 
be described in the following way. 

In Section 5, the three-body Hamiltonian is diagonalized for each J in a space spanned by a fimt,c, 
number, say A&&i, of the three-body Gaussian basis functions written in Jacobian coordinates r, and 
R, as 

[&$<(rc) Q$&,(Rc)] JM (c = 1 - 3) (107) 



salouap %‘“( ) ‘alaH 

Pup 

sp [6S] 
‘( 1;~) (6X ~03 suoymb3 

(601) (1 

:las a?aIduroa a~wyxo~dda sgl30 steal II! papuedxa [IaM aq 1183 cpasiy$g, 
warroduros [auusya-pas013 ay$ $sy$ Jap!suoD uayl aM mua@ bpoq-oti) 30 as83 ay$ u! sapls-opnasd 
30 &ado.Id s!y$ paluasald ah ‘z uoyag II! ilay$o y3za lcmat$u! saI3ymd aalyl ayq alaym uoymu!xo.7dm 
poo2 UT amds alrug v UT las a$aIdwoD v ux.103 ore salvls-opnasd ayl l~y$ amnssv aM m.103 pazga.m!p 
v II! umnu!$uoD spoq-aalyl aqrmap Qaymgxoldde qa!q~ sap$s-opnasd pm sal?zls punoq ffIaa!pads 
-al am pIoqsa.yq p - SI(71J) ayl aAoqv pm MoIaq “fg sa@JauauaS!a ayl q$!~ n‘wf@ say+suaS!a aq~ 

(801) (I”lOli\l - 0 = ,n ‘n) tnnynr3 = (,n’WffiIHln’y\if,&) 



282 E. Hiyama et al. / Prog. Part. Nucl. Phys. 51 (2003) 223-307 

Calculation of the non-local potentials can be performed analytically. We t,hen solve the mt,egr~~-- 
differential equations (116) using the direct numerical method (almost the same result was obtaincsti 
using the Kohn-type variational method of Section 2.5 with the Gaussian basis functions as t,rial ~LUICV 

tions [5]). 

Calculated cross sections converged quickly as increasing number of the pseudo-states tlrJM,l:. summatiorr 
up to w z 50 (EJ, - E < 3 keV) is sufficient for thr accuracy needed in the present calculations. Thc~ 
form of bJ, in Eq. (115), looks singular at E=EJ,,,. However, b .J~ changes smoothly except for an 
extremely small vicinity of E=EJ,+ since the numerator of Eq. (115) is nearly proportional to E - E,,;, 
around E=EJ,,; in actual calculations with 15-decimal-digits arithmetics, hJ,, is found to be a smooth 
function of E except for the region ]EJ, - El < 10ml’ eV which ran be m’glectrd. .4s seen in F’ig.47. 
we have smooth functions of the cross section as a function the scattering energy. 

Figure 47: Calculated transfer cross sections opl of (d~~)r& + I i (ii- ~tp!r, + -28 CV b!. GEhl [41_ t?ti, 
(solid line), by Cohen and Struensee [127] ( o en p b oxcs) and by Chiccori el a1.[128j (open circles). Dottt-tl 
lines are partial-wave cross sections for each J by GEM. EC,, (I) = E - zi:j is the collision energy in thus 
incident channel. 

Calculated cross section ~21 for the transfer reaction (103) at Eir& = 0.001 - 100 eV were given m 
Ref.[41] and afterwards revised slightly [126]. The result was rompared wit,h that r,eportcd by (,‘ohc,n 
and Struensee [127] obtained with the improved adiavatic: calculation and b\- c’luccol~ et u/. ‘I”$ 
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Table 18: Calculated J = 0 cross section of the transfer reaction (&)I~ +t + d+ (tp)ls + 48eV by Kino 
and Kamimura [41, 1261 and Tolstikhin et al.[129]. E,,, 0) is the collision energy in the initial state, in 
eV. Cross section is in units of cm2; a[b] = a x lo*. This may be used for a benchmark test calculation 
of any Coulomb three-body method. 

EblA, Kino k Kamimura Tolstikhin et al. 

0.001 1.415 [-191 1.436 [-191 
0.005 6.308 [-201 6.405 [-201 

0.01 4.555 [-201 4.514 [-201 
0.05 1.968 [-201 1.979 [-201 

0.1 1.374 [-201 1.373 [-201 
0.5 5.650 [-211 5.637 [-211 

1 3.754 [-211 3.749 [-211 
5 1.379 [-211 1.377 [-211 

10 8.827 [-221 8.808 [-221 
100 1.907 [-221 1.905 [-221 

1000 3.411 [-231 3.177 j-231 

with an adiabatic expansion in terms of the two-center Coulomb basis. Agreement among the three 
calculations was good except for the lowest and the highest energy regions. Since Chiccori et (21. did 
not calculate the higher partial wave components (J > 4): they could not reproduce the second peak 
due to the J = 4 component. Recently, the cross section for the J = 0 component only was reported 
by Tolstikhin and Namba [129] calculated with hyperspherical coordinate method and by Kvitsinsky et 
al. [130] calculated with the Faddeev method. The former authors reviewed many calculat,ions of the 
cross sections (J = 0) in the literature and concluded that their values agreed excellently with those of 
our GEM calculation. The values are listed in Table 18 for the sake of future benchmark test. by any 
method for Coulomb three-body reaction calculation. , 

Computation time was very short,; for a particular total angular momentum J, the time for all t,he local 
and non-local potentials was about 100 set and that for solving the coupled-channel equations (116) was 
only 15 set per one scattering energy on FACOM VP2600 in 1992. This high speed computation will 
be useful for systematic studies of various muonic atom-nucleus collisions at thermal and epithermal 
energies. 

Finally, we remark that the equation (116) through (119) can be used for the calculation of (@)ls + t 
elastic scattering just by taking CO = 2. Calculated result in this case was given in [41] 

8.2 Decay branching ratio of three-body Feshbach resonance 

Since energy of (Hep)ls is much lower than that of (&) Is, no molecular orbital associated with the 
(Hep)ls is formed and therefore (dHep) molecule has no bound states. However, there are two metastable 
states, (dHep)J=l and (dHep)J=o, below the (&)I~ - He threshold both for He = 3He and “He; they 
are Feshbach resonances embedded in the the (Hep) Is - d continuum. The (dHep)J=” resonance is of 
little interest since it is not generated in /ICF; the Auger transition from the (dHep)JY1 state to the 
lower-lying (dHep)J=o state is hindered because the energy difference between the two states is small. 
Spectrum of the bound-to-free X-ray in the first branch of (104) was beautifully observed. in the case of 
He=4 He, by Matsuzaki et al. [131], and this is regarded as the first observation of the direct signature 
of the existence of muonic molecule (recently, the X-rays were observed more precisely in [125]). 
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However, before another X-ray measurement on (d3Hep)J,r was reported, Kino and Kamimura pr P 
dieted that the X-rays from this molecule would be very much suppressed compared with t,hose fron 
(d”Hep)~,r, and those from (p4Hep)~,r would not be observed at all since the suppression is even 
stronger. This prediction was corroborated by the experiment [124. 1251, and the reason of this isotopt> 
dependence turned out to be interesting as we report below. 

The Jacobian coordinates of the d + He + /L system are given in Fig. 48. 

IJ era t-1 
RI 

He d 
c=l 

He d 

c=2 

P 

J-a R3 

r.? 
He _ d 

c=3 

Figure 48: Three Jacobian coordinates of the d + He + 1~ system, 

The total three-body Hamiltonian is given by 

(120) 

Kino and Kamimura [42] made similar calculation as in the previous subsection introducing the total 
wave function 

(121 I 

The first term describes the open (Hell),,-d channel (c: = 1). The (db)rS- He channel (c = 2) is closed :at 
the energy of the relevant Feshbach resonance, (dHeh)J=r. The second term, Qyy)~ stands for all thca 
closed channels and is expanded in the three-body eigenstates (pseudo-states) {Q,,u, “; 7) = 0 - N,,,,, 1: 

The three-body pseudo-states { @JM, U} are obtained by diagonalizing the Hamiltonian using the Gaus- 
sian basis functions 

The Gaussian parameter set is listed in Table 19. 

The partial cross section for each J of the elastic d-(Hep)r, scattering is defined by- 

OJ(E) = G(2.7 + l)l$, - 112 

Calculated partial cross sections for J = 1 at energies in the vicinity of the resonances (d “Hepjj=r and 
(d4Hep)J=r are illustrated in Fig. 49 with the closed circles. The solid lines are t,he best fit to them 1)~. 
the single-level resonance formula 

a,?(E) = j(2s + 1) e-226bS. - 1+ 
71 2 

1 E - E,,,. + C/2 
(1Z) 
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Table 19: Parameters of the Gaussian basis functions for (dHep)J=i. 

285 

C 1 nrnax ~1 -TN,, (fm) L ih, RI - RN,, (fm) 
1,2 0 20 2 - 4000 1 20 50 - 8000 

1 17 35 - 4400 0 18 60 N 6600 
1 14 60 - 1500 2 14 100 - 3500 
2 15 70 N 3700 1 15 100 N 4500 
2 9 70 N 1500 3 9 200 - 3500 
3 9 70 N 2500 2 9 200 N 3500 

3 0 13 50 - 3000 1 13 100 +- 2000 
1 10 100 N 1500 0 10 100 - 1500 
1 8 100 - 2000 2 8 100 N 2000 
2 8 100 N 2000 1 8 100 - 2000 
2 7 100 - 1500 3 6 100 - 1500 
3 7 100 N 2500 2 6 100 N 1500 

where r is the width of the resonance and 6 b+ is the background-scattering phase shift calculated at 
off-resonant energies. Closed circles are precisely fitted by the solid curves whose parameters are listed 
in Table 20; the values of the resonance energies are shown for E,,, - ~2. 

It was found that the widths of the resonances are affected only by a few parts of 10m6 eV by reasonable 
change of the parameters of the basis functions. The numbers in the parentheses in Table 20 are for the 
limited case in which we employ those only pseudo-states J = 1, u = 0 which are located in the vicinity 
of the resonances; the effect of the non-resonant pseudo-states could not be neglected in the calculation 
of the resonant widths. Stimulated by the interest of the problems, several other calculations were 
performed later on the energies and widths of those two resonances, but the results were significantly 
different from that of GEM. Finally, Korobov [132] showed, on the basis of a precise calculation using 
the complex-coordinate-rotation method, that his result agreed very well with that of GEM as shoal 
in Table 20. 

Successful prediction by GEM 

It is striking that Table 20 shows that the probability (width) of particle decay is three times higher for 
(d3Hep)J,i than for (d*Hep)J=i. The reason for this is that the probability of the particle decay into 
d-(Heb)i, scattering states is very sensitive to the tail of the wave function of the (dHep)J=i state, and 
the tail of (d3Hep)J=i is longer than that of (d4Hep)J,i due to the small binding energy with respect to 
the d-(Hep)n=2 breakup threshold; this comes from the fact that the kinetic energy of relative motion 
is larger in d - 3He than in d - *He due to the mass effect. 

The X-ray decay rate of (d4Hep)JEl was estimated [133] to be Xx = 1.69 x 10” s-l which is the 
same as the particle decay rate A, = F/ti = 1.67 x 101’ s-‘. On the other hand, that of (d3Heh)~r=i, 
XX = 1.55 x 1011 s-l is three times as small as A, = 5.06 x 101i s-l. This is the main reason for the 
isotope dependence of the X-ray yields from the two kinds of molecules (branching ratio is summarized 
in Table 21). In the observation of the X-ray in the reaction (104), the formation rate of the muonic 
molecule (dHeh)_r,r also affects the X-ray yields. Taking this into account, Ishida et al. [124] compared 
t,he observed and predicted values together with the case of (p4Hep)_rZl; this is summarized in the lower 
part of Table 21. One sees that the observed isotope effect is well understood by the theoretical finding 
mentioned above. 
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Figure 49: Energy dependence of elastic (Hep),, - rl scatterin, 0 cross sections in the visinit\- of tllc 
molecular resonances of (d”Hep)JZl and (d’HebL)J=,. Closed circles represent calculated results anti tl1(5 
solid lines the fit by formula (125). Energy of the horizontal axis is measurf~tl from t,he (d//,)1, -- ffo 
threshold; scattering cm. energy of (Heb)l, - d is -8.1 keV at, the resonances. This figure is takcan 
from 1421. 

Table 20: Calculated resonance parameters of (dHeb)J=l by Kino and Kamimura 142) with GEL1 anti 
by Korobov [132] with the complex-coordinate-rotatiou method. The numbers in the parenthi>scs ark 
for a limited case where we employ, in the calculation of the coupling pot,entials. the only pseudo-stat< 
J = 1, u = 0 at which the Feshbach resonance is located. 

l- (CV) 

Kino & Kamimura [42] 

(cl”Hebc)J=l -48.419(-48.419) 3.33 x II)-“ (3.9 x lo-‘) 6.55 (3.7) 

(d’HeLL)J=i -58.221(-58.221) 1.10 x lO_ (1.4 x 10“) 6.25 (1.3) 
___. I_...--. 

Korobov 11321 

(d3HelL).I=l -48.421 3.48 x lo-” 

(d*Heb)J=l -58.225 1.18 x lo-” 

9 CDCC Method for Four-body Breakup Reactions 

The method of Continuum-Discretized Coupled Channels (CDCC) w nc I was tlevchpfxi lq L~IP I\~IIS~II: 1 1 
Group [43] has been successful in describing nuclear reactions involving breakup processes of wc>akl\ 
bound projectiles [44. 45, 46. 47, 48, 49, 50, 51. 521 and of unstable nuclei [53, 541. CDCC is a IIIIIJ, 
quantum-mechanical way of treating three-body breakup processes. It solves the three-body tlynannc~~ 
by discretizing continuous intrinsic states of the projectile into a finite number of discret<, ones. 

CDCC is attracting a great deal of attention due to the advent, of many [Jxperimraurs using ratlioal~t ivc, 
beams since projectilr breakup processes are in general essential to sllch reactions. CDCC is I.~IILS 
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Table 21: Calculated branching ratio of X-ray decay to (X-ray decay + particle decay) in (d”,“Hep)J=l 
and (p4Heb)J,1 (upper part), and relative X-ray yields wit,h the formation rate of the molecule is taken 
into account (lower part). 

xx/(Xx + A,) [42] 0.503 0.095 

X-ray relative yield 
EXP [124] 

CAL [124, 421 

important in the spectroscopy of unstable nuclei by scattering experiments. So far, the projectile has 
been assumed to be composed of two particles in CDCC calculations. However, reactions induced by 
some important unstable nuclei such as 6He(= CI! + n + n), *B(= cy + 3He +p),l’ Li(= ‘Li + IL + n) are 
t,ypical examples of projectiles composed of three particles (clusters). 

It is possible to extend CDCC, in combination with GEM, to projectile breakup processes in which 
the projectile is formed by three particles. From the studies in the previous sections, we consider that 
eigenstates of three-body systems obtained by GEM form an approximate complete set in a finite space 
sensitive to the projectile breakup processes. 

This idea is supported by a recent CDCC work by Matsumoto et al. including two of the authors (E.H. 
and M.K.) [134]; breakup continuum states of two-body projectiles were found to be well approximated 
by discrete eigenstates (pseudo-states) obtained by diagonalizing the intrinsic two-body Hamiltonian 
with the complex-range Gaussian basis functions proposed in Section 2.3. 

In this section: we briefly introduce the work of Matsumoto et al. and suggest an extension t,o four-body 
breakup processes induced by (unstable) projectiles composed of three particles. 

9.1 Pseudo-state CDCC 

CDCC treats a three-body system shown in Fig. 50 in which the projectile (B) is composed of two 
particles (h and c) and the target nucleus (A) which is assumed to be an inert, core. Assuming a model 
Hamiltonian 

H = ffbc + TR + UbA(%I) + UcA(rd) + U,(R), f&c = Z + xc(r). (126) 

vbc is the interaction between b and c, while &A (U&) is the optical potential between b (c) and A. For 
simplicity, the spin part of each potential is neglected. Furthermore, the sum of the Coulomb parts of 
the optical potentials are treated approximately as the Coulomb potential acting on the center of mass 
of the systems b + c and A, U,(R). W e neglect the Coulomb breakup process and focus on nuclear 
breakup. 

In CDCC, the three-body wave function Q’~bf is expanded in terms of a discretized orthonormal set of 
eigenstates {$,‘i’(~) ; i = 0 - i max> of Hbc: 

(127) 

where x$ describes the center-of-mass motion of the b-c pair in the state $,‘2’. The state /: = 0 denotes 
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Fitst, the continuous T-matrix element is defined by 

(131) 

where u = UbA (TbA) + Uc~(rc.4). Using an approximate COXIIplete set {$J/“}~ TIL(!%) may be rewritten as 

where P has been replaced by a Pi in the spherical Bessel function j,(PR). This replacement is valid, 
since the /c-distribution of ($~(k, r’) / $?)(T’) ) is sharply 1 ocalized at Ic = ii. We shall show below that 
the approximation (132) is very good. The second matrix element ( ) in (132) is nothing but the 
T-matrix element of CDCC. Since the breakup T-matrix element is propotional to the corresponding 
S-matrix element, the continuous S-matrix element &(k) is expressed as 

SlL@) = c ($dk T) Id%-) ) s&&, (133) 
i=O 

The two expressions (130) and (133) 1s compared to each other below. 

Test for 6Li projectile breakup 

Test of the pseudo-state CDCC method was done in [134] on the ‘jLi (= o + d) projectile breakup in 
6Li + 40Ca at 156 MeV. This was a good example since ‘jLi had d-wave resonance and s-wave non- 
resonant continuum states. For simplicity, the intrinsic spin of ‘jLi was neglected. We took the same 
a - d potential as in Section 2.3; V&(T) = VO &r/b)2 with Vo = -74.19 MeV and b = 2.236 fm which 
generates an 1 = 2 resonate at eres = 2.96 MeV with width 0.62 MeV. U,--40Ca and Ud-40~~ are the 
optical potential of a+40Ca scattering at 104 MeV [135] and that of d+40Ca scattering at 56 MeV [136]. 

The model space sufficient to describe breakup processes in this scattering was Ic,, = 1.8 fm-’ and 
1 = 0,2. In the momentum bin method, the d-wave Ic-continuum is further divided into the resonance 
part [0 < k < 0.551 and the non-resonant part [0.55 < k < 1.81. The Ic-continuum of $l(lc,r) in the 
resonance part varies rapidly with k. In principle, the bin method can simulate the rapid change with 
a large number of dense bins. Such a CDCC calculation was done to obtain the accutrate breakup S- 
matrix elements. Clear convergence was found for both the elastic and the breakup S-matrix elements 
with 30 bins of a common width for the resonance part and with 20 bins for the entire region of the 
s-wave k-continuum and the non-resonance part of the d-wave &continuum. The S-matrix elements 
so obtained were compared with the pseudo-state method. In the latter, convergence of the S-matrix 
elements was achieved with 21 pseudo-states for the s-wave k-continuum, 13 pseudo-states for the d- 
wave non-resonant k-continuum and 8 pseudo-states for the d-wave resonance part. The parameter set 
of the complex-range Gaussians were {rl = l.Ofm, ~20 = 2O.Ofm, cy = 7r/2,2n,, = 40 }. 

The momentum bin method and the pseudo-state method gave the same differential cross section of 
the elastic scattering up to 180”. The squared modulus of the breakup S-matrix element lSlLJ(k)j2 at 
grazing angular momentum J = 43 is illustrated in Fig. 52. The pseudo-state method well reproduces 
the accurate solution calculated by the bin method with dense bins. The resonance peak is expressed 
by only 8 pseudo-state channels, while the corresponding number of breakup channels is 30 in the bin 
method. The pseudo-state method with the complex-range Gaussians is thus useful for describing both 
resonance and non-resonant states. In a sense, it is more convenient than the bin met,hod, at least in 
dealing with the nuclear breakup; study of applicability to the Coulomb break up is in progress. 

In conclusion, we have confirmed that the set of of pseudo-states {$‘1(2)(~) ; i = 0 - i,,} can forms an 
approximate complete set in a finite (rather large) space that is important to the breakup reaction. 
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Figure 52: The squared modulus of the breakup S-matrix element as a function of k, at the graxing 
total angular momentum J = 43 for 6Li + 40Ca scattering at 156 MeV. The solid line is by the pseudo- 
state method, while the bars by the momentum bin method wit,11 thse l)iiis. (a) b-state breakup 
(I = 0, L = 43) and (b) d-state breakup (I = 2, L = 41); similar result is obtained for (i = 2.1, = 4345 /, 
This figure is taken from [134]. 

9.2 Extention to four-body breakup processes 

In this subsection, we discuss a feasibility of the pseudo-state CDCC for four-body breakup proccsscs. 
Reactions induced by unstable nuclei composed of loosely bound three particles give important informa- 
tion on the structure of such nuclei. In principle, these reactions are to be treated as four-body breakul: 
processes in theoretical studies. It is possible to extend the pseudo-state CDCC. in combination with 
GEM, to such processes. 

Figure 53: Illustration of a four-body (A+b+c+d) system in CDCC. Two other sets of Jacobian u~w 

dinates of the projectile (b+c+d) are omitted for simplicity. 

The momentum bin method needs the exact (continuous) wave functions the three-body system which, 
in general, are quite hard to obtain. But. we can circumvent this problem with the pseudo-statr 
method. In the method, it is possible to prepare the approximate three-body complete set of wave 
functions {a!‘; i = 1 - i ,,} by diagonalizing the Hamiltonian of the projectile in a space spanned 

by bases of L” type (see Section 3). Regarding {Qj”‘} as the intrinsic wave functions of the breakup 
channels, we expand the total wave function @&‘Icc m the same manlier as Eq. (127) (Fig. 53): 

Insertion of Eq. (134) int,o the four-body Schrodinger equation. (H - E)QIIJI\.r = 0. leads to a set of 
coupled differential equations for xIoL, (‘I (R) and x~~(P~,R). The diagonal and the coupling potent~ial~ 
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are given in the form 

(135) 

where U is the sum of the three optical potentials between the target nucleus and each of t,he particles in 
the three-body projectile. The asymptotic boundary condition for xFL(P%, n) is the same as Eq. (129). 
generating the S-matrix elements S~&OLO to the pseudo-states @p’. 

From the S-matrix elements we can calculate the differential cross sections of the elastic scattering and 
projectile-inelastic scattering (projectile-breakup) to the pkeudo-states a?‘. Experimental differential 
cross sections to breakup states is sometimes given as a sum of the cross sections for projectile continuum 
states within an energy interval. In such a case, the corresponding calculated cross section may be given 
as a sum of cross sections to pseudo-states in the same energy interval. Analysis of the effect of the virtual 
breakup of the projectile on the differential cross sections of the elastic scattering of 6He(= N + 71 + n) 

and “Li(=gLi+n + n) projectiles is underway using the three-body GEM wave functions of thp bound 
states and pseudo-states of those projectiles. Recent experimental data on “He scattering and “Li 
scattering are of particular interest. Very recently, Matsumoto et ul. [137] reported a four-body CDCC 
analysis. for the first time. They analyzed elastic 6He + I2 C scattering at Elab = 38 MeV/nucleon: 
observed differential cross section was well reproduced by the calculation including the .s-~va\-c and 
d-wave three-body breakup pseudo-states of 6He. 

Explicit breakup T-matrix element can be calculated by inserting Q CDCC, in place of the exact total 
wave funct,ion: in the exact form of breakup T-mat,rix elements, which leads to an approximate form 
[lY4] 

G = ( 
ez(P.R+k-r+q.P) , u, , q,CDCC ) , (136) 

where CT4 is sum of all interactions in the four-body (A+b+c+x) system and k and q are momenta 
cori,jugate to r and p, respectively. Accuracy of Eq. (136) depends on how precise the approximate 
complete set is within a finte region sensitive to T4. Analyses based on this formulation are of much 
int,erest as a future work on breakup reactions induced by three-body unst,able nuclei. 

10 Summary 

WP have reviewed our method of calculation, Gaussian expansion method (GEYI), for bound and 
scattering states of few-body systems and its applications to various subjects. Major points t,o be 
emphasized are as follows: 

i) We introduced three types of basis functions for GEM: Gaussians, infinitesimally-shifted Gaussians 
and complex-range Gaussians in which range parameters are chosen to form geometric progression. As 
for two-body systems. we demonstrated that the former two types (mathematically equivalent to each 
other) were quite suitable for describing short-range correlations and long-range asymptotic behaviour 
simultaneously, while the third type was good at describing highly oscillatory wave functions of both 
bomld and scattering states. 

ii) Bound-state wave functions of three- and four-body systems are expanded in terms of a set of 
(complex-range) Gaussian basis functions of a set of Jacobian coordinates in each of all the rearrange- 
ment channels. This multi-channel representation makes the functional space much wider than that 
spanned by single-channel basis functions. Therefore, the multi-channel basis functions are particularly 
suitable for describing both the short-range correlations and the loose (halo-like) binding of any pair of 
particles in the system. 

iii) With the use of the (complex-range) Gaussian basis functions, calculation of three- and four-body 
matrix elements between rearrangement channels can easily be performed for potentials with arbitrary 
shape. A technique of using the infinitesimally-shifted Gaussian ba,sis functions in place of the Gaussian 
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basis functions is very powerful ! ! and is used in all the four-body calculations described in thus paper 

Accuracy of the results has been demonstrated in a stringent benchmark test calculation for t,he four- 
nucleon bound state using a realistic NN interaction. 

iv) An advantage of GEM is that the diagonalization of a Hamiltonian using the Gaussian basis functrou~ 
generates not only the lowest eigenstate but also excited eigenstates with the same J” simultaneouslv. 
For two-body systems, we found that the eigenstates (bound and discretized continuum states) form 
an approximate complete set in a finite but sufficiently large region of the coordinate space. The sarrlc> 
is also true for the four nucleon system: a GEM calculation well explained the ground and the seloncl 
O+ states of 4He and demonstarted that the O+ eigenstates obtained by diagonalizing the four-hotI> 
Hamiltonian exhausts 99.99 % of the energy-weighted monopole sum rule. 

v) We took full advantage of GEM mentioned in ii) and iv) when we performed high-precision Coulo~nb 
three-body calculation of exotic atoms/molecules: (a) the very weakly bound J = 7: = 1 state of the dtj/ 
molecule which is a key to the muon catalyzed d-t fusion, and (b) the metastable, vibrationally-excited 
states (J x 35, ‘u 2 5) in antiprotonic helium atoms (He” + P- + ir,) observed by laser experiments. Iu 
the latter, the GEM calculation was so accurate as to become the first recommended value of antiprotou 
mass cited in Particle Listings 2000 and the latest value in the 2002 edition. 

vi) The advantage of iv) of GEM has been t,aken in a new treatmeut of breakup continuum in t,hc‘ 
method of CDCC (continuum-discretized coupled channels) for threr-body nuclear reactions inrolvirrg 
breakup proceses of weakly-bound projectiles (ejectiles) such as unst,ablc nuclei. Conrinuum states o! 
the projectile (ejectile) can properly be treated by the discretized eigenstates (pseudo states) obtaincri 
by GEM. Smoothing of discrete breakup S-matrix of CDCC into act-mate ro111 inuous breakup S-mat I ix 
becomes possible by the treatment. The CDCC calculation of elastic scattering of “He (= ck + rI t 1, j, j 
typical three-body halo nucleus, with its virtual three-body breakup states taken into account. is now 
feasible using the techniques of this paper: differential cross section of “He+‘“C at ,!$,r>l.-t = 38 MeIF ih 
found to be well reproduced bv this ‘four-body’ CDCC. 

vii) Application of GEM is possible to low-energy Coulomb three-body reactions based on the S~LIIW KIW 

as in vi). Examples were presented for muon transfer reactions and thr decay of Feshbxch-type 111uo1: 
molecular resonances. The three-body scattering wave function was given by a sum of two compollt~~~t,s: 
one for (rearrangement) open channels and the other for closed channels. The latter LZ integrable com- 
ponent was presented as a superposition of three-body cigenstates which were obtained by diagonalizirrg 
the total Hamiltonian using the three-body Gaussian basis functions of all the rearrangement .Jacobi;tll 
coordinates. The eigenfunctions constituted an approximate complete set in a finite coordinate spac’e 
The calculated results agreed with those obtained by completely different methods, which showed thar 
GEM is valid at least in some cases of Coulomb t,hree-body reactions 

viii) Studies of light hypernuclei based on three- and four-body (cluster) models have been quite uset11l 
in constraining ambiguities of hyperon(nucleon(N) and hypron(Y)-hyperon interactions for which 
information from scattering experiments is scarce (YN) and none (YY). Good examples are as folloa;~. 
The spin-orbit splitting energies in iBe(= 2a+A) and KC(= 3a+A) predicted with a quark-model-basrci 
YN spin-orbit force agreed with the energies given by later 7 spectroscopy experiments, whereas thoso 
predicted with the meson-theory-based YN spin-orbit force was several times larger than the observed 
values. Regarding the YY interactions, a AA potential designed to fit the 2A separation energy, U,,.,., (11 
:,\He (NAGARA event) was found to reproduce B,,,, of the 2+ excited state of ;,\Be (Demachl- 1;2,~qi 
event) consistently. With the same AA potential, energy levels of double A hypernuclei with A = 7 - ! 0 
were prectited to be compared with future experiments for further studies of the YY interact.lori. .\ 
definitely important role of A - C conversion in :H ($,He) were made clear using a (3N + ,I) + (3N + 13 j 
four-body model with reaiistic NN and YN interactions. 

ix) Some of light hypernuclei were found t.o show significant dynamical change by addition of A part,- 
cle(s) to them. This phenomena is well described by three- and four-body (cluster) model of single anti 
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double A hypernuclei. A significant shrinkage (22 %) of the core nucleus of LLi was predicted, together 
with a suggestion of how to determine it. The prediction was afterwards verified experimentally (19 i 4 
%). Addition of A particle(s) makes the core nucleus more stable and extends the neutron drip line 
in the nuclear chart and gives rise to many ‘neutron-lich’ hypernuclei. Level structure of some of such 
neutron-lich hyper nuclei was predicted. 
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Appendix 

In Appendix, we shall describe some technical details of Gaussian and infinitesimally-shifted Gaussian 
basis functions. In Appendix A.l, the calculational method for three-body matrix elements is presented. 
Appendix A.2 explains how to construct the infinitesimally-shefted Gaussian basis functions. Calcula- 
tional methods for three-body and four-body matrix elements with the infinitesimally-shifted Gaussian 
basis functions are provided in Appendix A.3 and A.4, respectively. 

A.1 Three-body matrix elements using the Gaussian basis functions 

We outline the calculation of matrix elements using three-body Gaussian basis functions which appear 
in Section 3. Spin and isospin parts are omitted for simplicity of expressions. 

Interaction potentials 

As an example, we consider how to calculate a central-potential matrix element of the following type: 

(137) 

in which the ket- and bra-vectors are from different channels a and b(a # b) and the potential is a 
function of r,, (c # a, c # b). We transform both the u-channel and b-channel functions into c-channel 
functions and to perform the integration over r, and R,. 

Assuming the coordinate transformation (I-,, R,), (r-b, R,,) + (rc, R,) in the form 

(138) 

and using the formula 

4~(21 + l)! f 

(2X + 1)!(2(1- X) t l)! 1 
(oacr,)~-X(P&c)X [Y,(Qk;-x(RC)]I_ (139) 

we can rewrite the u-channel three-body basis function as a function of rc and R,: 
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This expression can be summarized in the form (denoting X + A as 121) 

and the transformation coefficients (1, I,, J / 1, L, K J ) a_c can be calculated and stored prior tu th, 
computation. The same transformation can be made for the &channel basis function as 

Using the coordinate relations in Eq.( 138). the remaining Gal&an part, (‘an 1~ trnnsfol.mc’d ;I-, 

where Z&(z) is the modified Bessel function, I&(Z) = (-i)‘~l(iz). 

Combining Eqs. (141).( 142) and (143), we are ready to perform the integration in Eq.(W) OIY’I I’. 
and R,. The integrations over R, and then over P, can be performed analytically after some ang~~lar- 
momentum algebra though the result is not written here explicit,ly. 

Numerical integration of an arbitrav V(r,‘i 

\Ve are finally left with a one-dimensional radial integration in the form 

where (I depends on the Gaussian sizes (l/n,, XIV,, v,~~, A,) and the coordinate trallsi’or~lli~tio~~ c~~+li- 
cients (a,,. A,, xc3 6,,, abc. Bbc3 3bc% f5bc). (1, + L,, + Ib + Lb)/2 is an integer because of the paritic+ 
(6) L-tL, = (_)lb+Lb, When numerical integration of Eq.(144) is necessary for a specific Vjr,i.). it I> 
time consuming to perform for each combination of basis functions: especially in the case of a !arg:c’ 
dirnensional matrix. 

For an arbitrary shape of V( r,), the authors recowuend the follo\virlg intt~qmlatiou teclmiquc ~vl~ic II 
requires only a short computation time but keeps a high accuracy (this is au advantage of inking 
the Gaussian basis functions): Since V,, is a smooth function of log (I for any I)?. thirtl-ol,der ((,II~II(, i 
interpolation with respect to logcu is satisfactory. First, estimate the possible minimum and maximum: 
of logcy using the shortest and longest ranges of Gaussians and calculate the integral Eq.( 144) tc,~ 
{(log cy),; n = 1 - N}. ?J being the number of equidistant grid points. High accuracy, say 10--lo, ill t 1~ 
interpolation is accomplished with a few thousand points for which t,he computation time in pl,eparil:x 
the integration is negligible; the radial integrand can be accurately done with the Gauss quadrature%. 

Other matrix elements 

Three-body matrix elements of the norm-overlap and those of the kinetic-energy operator art: rrn~cl~ 

easier by simply transforming the cL-channel basis functions into tile b-chanuel fuuctious b>- Eq. i Iii I 
(or from the b-channel to the c-channel). 



E. Hiyama et al. / Prog. Part. Nucl. Pliys. Sl(2003) 223-307 295 

Matrix elements of non-central forces are more tedious but straightforward, though explicit results art 
not shown in this paper. In the study of three-nucleon bound states (3H and 3He) based on the present 
method using realistic NN forces [63], the non-central forces employed are the spin-orbit, tensor: 12, 
quadratic spin-orbit and momentum-dependent forces as well as the Tuson-Melbourne three-body force 
[64] (See Section 3). 

A.2 Construction of the infinitesimally shifted Gaussian basis functions 

The infinitesimally-shifted Gaussian (ISG) b asis functions are generated in the following way. As an 
example, we give the ISG function which is equivalent to the p-wave (I = 1, m = 0) one-body Gaussian 
function 

Ze-VT2 = liimn &c-v(JZ+YZI [e-u@ - EY _ e&z +Q]) (145) 

where F is the shifted distance of the Gaussian. The term in [ ] can be written as 

e-v&# _ e-u(z+Q = ev(r2+EZ) 
k 

2uez _ e-2vez 
]=e u(zz+Fz) [4&VZ + ;(ZEVZ)s + ’ .I. (146) 

and the RHS of Eq. (145) converges to the LHS for E + 0. The procedure E -+ 0 in actual calculations 
is to be performed after the analytical calculation of the matrix elements, as was emphasized in Sections 
2.6. 

More generally, we have the following expression: 

(a. I-)~ ePT2 = !l.o (c)n [e-:!r--Ea)2 - e-:(~+‘42]rL ~ 
i 147) 

where, a is a dimensionless vector to indicate the shift direction (E has the dimension of lengt,h). With 
respect to E, the leading-order term of the quantity [ ]” is (4v&/n)n(a~r)neC'r2 and all the lower-order 
terms vanish. We define three shift vectors a,, azy and a& as 

Z for a = a, = (O:O,l) 
a,r= 

( 

z +iy for a= a,, c (1,i;O) (148) 
x - iy for a = a* ly = (1, -i, 0) 

and use them below in the definition of the ISG basis functions. The spherical harmonics yl,(S$) 
multiplied by r1 are described in term of Cartesian coordinates as follows (for m > 0): 

~%m(Q, 4) = 
[ 
(21 + 1N - mY + rlpm(cosB)eim~ 

4n(l+ m)! 1 
1 

(21+1)(1-m)! 8 (I+m)! 1 .?I (_)” co~&~~~-23~ sin230 

47r(1 + m)! 
-# (sin0 ezd)m C 

j=. 42 j!(m + j)!(l - m - 21)! 

r%? 
= (x + iy)” c Alm,J ~‘-~-~j (I? + y2)3 

J=O 

r+? 
= c Alm,j z’-“-~J (z + iy)m+3 (z - i~)~ 

j=o 
(149) 

with 

A 
(21f 1)(1 - m)! t (1+ m)! 

lrn,j = 
47r(l + m)! 1 2m @j!(m+jjTiJm-2J). I 

Using the trivial relation (1 # 0) 

(150) 

Z1-m-23 (X + iy)m+3 (X - iy)j e-v’z = [(a, r) e-7 ] - - "4 1 m 23 [(a,, . r) e -?r2]m+J [(g:, .r) e-V]J, (151) 
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and replacing u with un/l in Eq. (147), we have an alternative expression for the normalized Gaussian 
basis function Eq. (7) in the following form: 

4:(r) = NV1 ~‘e_~~‘yl~(?) 

x [C-;(‘-‘ad _ f:-p(,+,azq~+J [e-f(r-ER:g)i _ e_yr+Ea;,)2p I (1.52) 

Expanding the [ ] terms we can rewrite the above equation (introducing p = I - m - 23 and q = /n -t J) 
as 

(IW! 

xl5 t 0 4 e2(2t-q)Eva,y-r/l 3 J IO e2(2u-7i""a:y.r/l t=o ii=0 21 

with 

p = l-m-2j: q=l+m (156) 

D = (2/l) [ (2s - p) a, + (2t - q) aXY + (2~ - j) ai;, ] (157, 

Here, we have neglected the effect of the C~(E~) terms in the argument of the exponential functions 

Equation (155) gives connecting with the Gaussian basis functions b$(r) defined by Eqs.(7), (8) autl 
(9) in the form 

with 

CL-m,ic = (-YLCLm,k > Wm,k = D;nl,k (159’1 

The coefficients C lrn,k and the shift-direction vector D lm,k are dimensionless numbers ndepeudent of 1) 
and E. Clm,k and the z- and z-components of D lrn,k are real numbers. The y-component of DlvL,k is 
purely imaginary. With this in mind, one can treat the Dlrn,k with no explicit use of complex variables 
in the computation. It is to be noted that the choice of the shift-direction vectors is not unique, t,hough 
the final result of the matrix element calculation is the same. For example, we can take a, z (1, Cl. O!, 
a, = (0, 1,O) and a, s (O,O, 1) and make a similar calculation as above resulting in another set of 
{C~m,kr Qm,k ; k = 1 - k,,} with Ic,, becoming slightly larger and Clm,l; being complex, but use of 
this set is mathematically equivalent to Eq. (158). 

Here again, (Y&Y)’ is the leading order of the summed quantity in Eq. (158) and is canceled by l,/(v;~! 
leaving T’; the lower-order terms vanish through the summation and the terms of higher order ihan 
(VET)’ disappear after E + 0. This property is the key advantage of the present method and is ofr,c~~ 
used in the calculations below. 

A.3 Three-body matrix elements using infinitesimally-shifted Gaussian 
basis functions 
We outlined in Appendix A.1 how to calculate the energy matrix elements using three-body Gaussiau 
basis functions Eq.(137). The angular-momentum algebra (Racah algebra) to perform the iutegratioii 
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over all anglular coordinates is straightforward but rather tedious, especially in the case of compli- 
cated interactions. Also, the algebra will be much more laborious for four-body systems. Use of the 
infinitesimally-shifted Gaussian (ISG) basis functions makes such a calculation very easy with no tedious 
angular-momentum algebra required. An outline of this calculation is given in this section. We note 
that Suzuki and Varga utilized [72] another method for matrix calculations using Gaussian functions. 

In the calculation of the matrix element Eq.(137), Gaussian basis functions #~z~,(r) and GELAt are 
replaced by the mathematically equivalent ISG functions, Eq.( 158): 

The matrix element in Eq.(137) can then be written down explicitly in the form 

( V(Tc) )r,,R, (163) 

+ ~na(ra - ~&,,,,k,)~ e-X~‘(Ra-~~D~o~o,~a)2/ v(r,) ) e-% (‘b - dh,m,,~,~2e-h,(Ra - Q~L+M~.K,)~ 
:/rc.Rc 

The coordinate transformation (ra, R,), (rb, Rb) --f (r,, R,) in Eq.(138) IS simply performed within the 
arguments of the Gaussians of Eq.(163); th’ IS is an advantage of the ISG basis functions. 

For simplicity in the expressions below, the following definitions are introduced. 

El = &a, E’2 = &A, E3 = Eb, E4 = EB, (164) 

Di = D;am,,rc,i Dz = D;Ofif,_,O, D3 = Dibmbrkb, D4 = D.w~,Kb. (165) 

L(“““) = (1, + L, + lb + ,&)/2. 

where (1, + L, + lb + Lb)/2 is an integer because of the pary relation (-)ln+Ln = (-)lb+Lb. 

(166) 

Gaussian potential 

In the case of a Gaussian potential, V(T,) = 710 e-~‘~, Eq. (163) is easily evaluated and can be represented 
in the form 

( v(Tc) )rc,Rc = Gab exd 2 gijsz EJQ D,) (167) 
lZi<j 

where the terms of {O(~i);i = 1 - 4) are already dropped in the argument of the Gaussian since 
they are of no use. Though not explicitly given, the factors Gab and gij depend on the Gaussian sizes 

(i’n,, ANa, %> AN*), the coordinate transformation coefficients (a,,, &, ‘yaC: &,, a&, /?bC, ‘&, 6bC) and 
the potential parameters (~0, p), but not on the shift parameters. 

In the same manner as in Section 2.6, we expand Eq. (167) in terms of E’S and retain only the terms 
proportional to & & ~136 ~46. This is accomplished by the following three steps: Firstly, in the expansion 
of the exponential function, we take only the term 

Gab ( 5 gzjei c,Di D,)L’s”m’/L(SUm)! 
l=i<j 

(168) 
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since only this term includes the order of E? & $ ~2~. Secondly. we expand 

imposing the constraint 

& nl,, = L(SU”) 
i=i<J 

Thirdly, in the summation in Eq. (169), we pick up only the terms which satisfy the relation about the 
powers of E’S: 

As the result of these three steps, Eq. (162) can be represented in the form 

x (Dr D2)m1a(D1 D3)-(D1 D4)m1.i(D2 D3)m23(D2 . D<,)‘n24(D3 D4)mJ4 

X~nL,,+m,,+m,., ,l, L,z+nL23+m24 .L" 6 m13irrm+m3* ,16 (5 m,qTn1LL.8-r,rQ, ,I+ 

Tw‘l 
X.Y? !?EF 97 g;? g3” g34 

We then sum up the coefficients t,hat are associated with the same powers of gzl ‘s: 

m34 922 gz3 g;nq14 g;y g? g34 ( 173) 

The result can be summarized in the following form, which is much more useful for rapid computation: 

with 
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No complicated angular-momentum algebra is needed. The computer algorithm for calculating the 
coefficients 5’ and mci) and i m&x is simple. A good test of the calculation is to verify that S is independent 
of M. 

It is to be emphasized that the coefficients S depend neither on specific three-body systems nor 011 the 
Gaussian range parameters, and therefore they can be stored in a data file and universally used for an) 
three-body calculation. This is an advantage of the ISG basis functions. 

Needless to say, the authors examined numerically that the matrix elements calculated with Eq.( 174) 
are exactly the same as those calculated with the expressioii obtained in Appendix A.1 for the original 
Gaussian basis functions. 

The structure of the final expression of the matrix elements in. Eq. (174) 1s very suitable for vector- 
processor computation. The ‘do loop’ to sweep the matrix elements (by changing n,: Ka. at,, IV, in a 
one-dimensional manner for a given set of I,, L,, lb, Lb) should be placed znside the ‘do loop’ for the 
summation over i. This makes the computation time shorter by a factor of 10 - 20. This is also an 
advantage of the ISG basis functions. 

Central potential V(T~) of arbitrary shape 

For any arbitrary functional form of V(T,), it is possible to calculate the three-body matrix element in 
Eq.( 162). Performing the integration over R, first and then over f;,, we obtain the following type of 
expression for ( V(T,) )r,,~,: 

(176) 

where 

4 

P= c pi,~i~JDi.D3, Q = 2 yij GE& D, 
l=i<j I=i<j 

v, = 
.I 

M rzm eP’2 V(T,) T,” dr 
0 c 

(177) 

(178) 

Here, though not explicitly given, Ghbl p,, and qij and cy are numbers which depend on the Gaussian range 

Parameters (%, , ANa, vnb, &) and the coordinate transformation coefficients (cy,,, /&, Tab, 6,,: &c, &: 
In the T;rse of calculations, we have used the expansion of the modified Bessel function Z,(Z) = 

c:=o (2m+l)l t but the upper limit of the summation is L csum) in Eq.(176) due to the consideration on 
the powers of E’S. V, should be calculated by the interpolation with respect to LY in the same manner 
as the integration Eq.(144). 

In the same way as before, we expand ep Q” with respect to the E’S and pick up the terms which have 
appropriate powers of the E’S, namely E? &in & $. The resulting expression is similar to Eqs.( 174) and 
(175). The computer algorithm is still simple. 

Other operators 

Calculation of the matrix elements of norm-overlap and kinetic-energy operators is simpler than the 
above cases. The coordinate transformation (r,, R,) + (rb, Rb) is recommended. 

In the case of a momentum-dependent force such as 

K = V;c V(T,) + V(7.J V;< 1 (179) 

the operation of 0% on the bra and ket functions is easily performed since they are simple functions 
of r,. The structure of the final expression of ( V, )=_ R, is similar in style to Eq.( 176); but the part 
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associated with the radial integration appears in the form 

As for the spin-orbit force and the tensor force, with some spin angular-momentum algebra, the final 
expression is given in a similar style to the above but slightly more complicated. The part associated 
with the radial integration appears in the form 

@ml 

c (m + l)! 
7n=0 m! (2(7n + 1) + l)! 

Q” Vn+l for spin-orbit forcr’, (lr;lj 

L(SUrn) 

c 
(m + 2)! 

m=O m! (2(m + 2) + l)! 
Q”” Vm+2 for tensor force. (182) 

In our test calculation of the three-nucleon bound state, we verified that the method used in t,hi-; 
Appendix with realistic NN forces with central, spin-orbit, tensor, 1’) quadratic spin-orbit., momentum- 
dependent forces gave t,he same result as does the method of Gaussian basis functions in Appendix A.1. 

A.4 Four-body matrix elements using infinitesimally-shifted Gaussian ba- 
sis functions 

Calculation of the matrix elements between the four-body basis functions is quite analogous to the 
three-body case. Using the four-body Gaussian basis functions in Eq. (69), the matrix elements of it 
central potential V(T~) are represented apparently as 

( [ [ &&-a) $$a,,, FL)] [a &, (Pa)] JM / v(Tc) / [ [&&-bj +.&Lb(Rd] Ib X:b&‘d] ,,nr ; 

= Na NN,,L, Nvaxo Nn,~b NN~L~ N,,x, 

( vcT,) )rc,R,,Pc _ ( e-un.(‘a -‘J%,n,a,k,)2 +v,(R~ -EADL~M~,K~)’ e-+,(P,- ~aD~,yo.w,J’ 1 (1811 
x v/(~~) 1 ,-+,h -dh,m,,~$ e-hb(Rb -4h,nt,,~,)’ e~+,(P~ -G’A~~& )rc, R,,P~, 

The coordinate transformation (r,, R,, p,), (rbr Rb: &) + (P,, R,, p,) of the form 

ra = aacrc + Pa& + ‘yaCpC , R = &rc + && -t $,P, 
rb = abcrc + PbcRc + -/bcpc : Rb = &rc + /$,R, + ?i& , 

is then done in the arguments of the Gaussians 

For clarity in expression below, the following definition is introduced: 

(1%) 

‘1 = &a, E2 = E/,? Ey = Ear E4 = Eh? 55 = EB, E6 = Efl, 

D1 = Dtam,,k,~ D2 = ‘Xa,,Knr D3 = D;,,,,,,s D4 = Dlbmb,kbr D5 = D&&,,K6> De = D;,,, hg. 
L’S”m’ = (1, + L, + A, + lb + Lb + &)/a. (186i 
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where (1, + L, f A, + lb f Lb + &)/2 is an integer because of the parities (-)l=+La+x~ = (-)ib+Lb+Ab, 

Gaussian Dotential 

X~m,,+m*3+m34+m35+m36 ? Aa 6 m14+m24+m4+m45+%6 1 lb b mls+mz~+m.35+n45+m56, Lb 6 m16+m*6+m36+m46+m55 ,X6 

We then sum up those coefficients that are associated with the same powers of the gzj’s, namely 
rI;=,<, ,y. 
The result can be summarized in the following form which is much more useful for a rapid computation: 

i=l 
(188) 

with 

xc c..... c 1 
(D1 D2)m1z (Di D3)m13 . . . (Ds . D6)m56 

ml2 m13 m56 rnrz! mra! . . . m5s! 

This expression is quite analogous to Eq. (175) in the three-body case. Algorithm for the calculation 
of four body systems is only a slight extension of that for the three-body case. This is an advantage of 
the ISGL basis functions. 

It is to be emphasized that the coefficients S depend neither on specific four-body systems nor on 
the Gaussian range parameters, and therefore can be stored in a data file and be used universally for 
any four-body calculation. This is an advantage of the ISGL basis functions. We can make the same 
comment as in Appendix A.3 on the advantageous use of vector processors. 

Central potential V(T,) of arbitrary shape 

As in the calculation of the three-body matrix elements, it is easy to calculate the four-body matrix 
elements of the central force V(T.,) of any functional form. Performing the integration over pc and R, 



302 E. Hiyama et al. /Prog. Part. Nucl. Phys. 51 (2003) 223-307 

first and then over Fc, we obtain the following type of expression for ( V(r,j jr,.~,, p,: 

( V(7.c) LR, = Gb,e’ : I!)0 , 

with 

Here, though not, explicitly given, Ghb> pZj and yb and ci are numbers which depend on the Gaussian sizcli 

( 41,~ ha > 4+ > 4~ ! &, 1 d”, ) and the coordinate transformation coefficients (o,, , R,,_ ?(,?, nb, , $, qijc, 

OIbc, flbc, “tbc! &> /& ‘&: ) V, should be calculated by the intcrpolatiou with rcspcct t,o o in t,lre iam,. 
manrier as the integration Eq. (144). 

In the same manner as before, we expand ePQm in powers of the E’S and lrick up the terms whic.lr 
have appropriate powers of the E’S, namely E? ~2 E;” la Lb xb E? s5 Ed The resulting expression is similar to 
Eqs.(188) and (189). The computer algorithm is quite similar to t,hat in the t,hrec-body case. 

As for other interactions such as momentum-dependent forces and non-central forces, the same corn 
merits as Eqs.(l80) - (182) are applicable. 
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