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INTRODUCTION

The theory of twistors was proposed by Roger Penrose in 1967. It is based
on the correspondence between the complex space of twistors and light rays in
the usual Minkowski space. The name of the theory comes from the beautiful
Robinson correspondence, which is an implementation of a (non-zero) twistor
and is described in Section 1.4.

The basic space in the theory of twistors is not the Minkowski space,
but the space of twistors, the elements of which (roughly speaking) are light
rays. A non-local theory is obtained automatically. Non-locality is one of the
advantages of the theory of twistors, which makes it possible to remove the
gravity quantization problem known in QFT.

Twistors are needed in order to use them to describe solutions of conformally
invariant equations of field theory on Minkowski space. [1] "Twistor program"
[2] Penrose’s idea was to use the twistor correspondence constructed by him to
compare the solutions of equations of the specified type to objects of complex
analytical geometry on the space of twistors. When moving to the twistor
description, conformally invariant equations "disappear and only complex geometry
remains.

The theory of twistors has had a serious impact on differential and integral
geometry, the theory of nonlinear differential equations and representation theory,
and in physics - on general relativity and quantum field theory.
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1.GEOMETRY OF TWISTORS

1.1. TWISTOR CORRESPONDENCE

The Minkowski space M is a four-dimensional real space R4. Its points
are called events. On the space M there is a quadratic form with the signature
(+−−−): beta(x, x) = x20−x21−x22−x23. A nonzero vector x is called isotropic if
β(x, x) = 0. An affine line in M is called light if it is parallel to a line generated
by some light vector. A light cone centered at the point x∗ is the union of all
light lines passing through the point x∗. An equivalent definition can be given:

Cx∗ = {x ∈ M : β(x− x∗, x− x∗) = 0}. (1.1)

The projective space of zero twistors PN is a set whose elements are the
light rays of the space M . We will call the space PN also the space of light rays.
The geometric structure of this space will be discussed below. For now, we note
that it is five-dimensional. Indeed, the direction of the light line is parametrized
by the points of the two-dimensional sphere S2. When the direction is set, the
position of the line is set by the intersection point of this line with a three-
dimensional hyperplane perpendicular to the selected direction. Thus, there
are 2 + 3 = 5 degrees of freedom of the light beam [3].

So, let M be a four-dimensional Minkowski space, and R = (t, x, y, z) be
an arbitrary point of it. The twistor space T for M is called a four-dimensional
vector space over a field of complex numbers. The points of this space are called
twisters. Thus, a twistor is a four of complex numbers Zα = (Z0, Z1, Z2, Z3).
A twister Zα is called an incident event R if the relation holds(

Z0

Z1

)
=

i√
2

(
t+ z x+ iy

x− iy t− z

)(
Z2

Z3

)
(1.2)

The twistor space corresponds to the dual (or dual) space T∗. The elements
of the dual space Zα are expressed in terms of the elements of the space T by
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the formula
(Z0, Z1, Z2, Z3) = (Z2, Z3, Z0, Z1). (1.3)

Equality (1.3), defines the Hermitian product on the space T. The norm
of the Z twistor is the value

ZZ = Z0Z
0 + Z1Z

1 + Z2Z
2 + Z3Z

3 =

= Z2Z0 + Z3Z1 + Z0Z2 + Z1Z3 =

=
1

2
(|Z0 + Z2|2 + |Z1 + Z3|2 − |Z0 − Z2|2 − |Z1 − Z3|2).

(1.4)

A Z twistor is called null if ZZ = 0.
The theorem. A Z twistor is incident to some event in M if and only if

it is zero.
The implication of → is proved by a simple calculation.
The projective space of twistors is called the projectivization of the space

of twistors PT. A projective space is a set of lines passing through 0, in T.
Homogeneous coordinates are introduced on the space PT (coordinates defined
up to multiplication by a nonzero constant). That is , an arbitrary point in the
projective space has the form:

[Z0 : Z1 : Z2 : Z3]. (1.5)

PN denotes the space of projective zero twistors. This space has 5 real
dimensions. On the other hand, in the space T zero twistors form a 7-dimensional
real subspace. It divides the original space into two parts. Twistors with ZZ > 0

are called positive and form the space T+. Negative twistors ZZ < 0 form the
space T−. Similarly, PN divides PT into two parts: TP+ and TP−.

How are the Minkowski space M and PN related? If two points P and Q

of the Minkowski space are incident to the same twistor Z (zero), then they are
separated by a zero interval, that is, they are separated by a zero interval. In
addition, the twistors Z and λZ with non-zero λ are responsible for one light
beam. Thus, there is a mapping that translates the space PN into the space of
light rays of Minkowski space. Note that for Z2 = Z3 = 0, the matrix (1.2)
must have infinite elements. I.e. such a zero twistor should be answered by a
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light beam at infinity. Such a ray lies on an infinitely distant light cone J of a
compactified Minkowski space M#.

On the contrary, let P be an arbitrary point M . It follows from formula
(1.2) that two conditions are imposed on the components Z0, Z1, Z2, Z3. Each
relation defines a three-dimensional subspace in T. Hence, it defines a two-
dimensional subspace (a projective plane) in the projectivization of PT. These
two planes intersect along the projective line CP1, which is homeomorphic to
the sphere S2. This sphere (or projective line) lies in PN. Let j be the vertex
of the cone J. It corresponds to the projective line (sphere) I in PN. Any other
point of the cone J corresponds to a sphere intersecting with I.

All elements of twistor matching are shown in the following figure.

Рисунок 1.1 — Twistor matching scheme

1.2. COMPACTIFIED MINKOWSKI SPACE

The compactified Minkowski space M# is obtained from the usual Minkowski
space M by adding an infinitely distant light cone J. The resulting space has a
higher symmetry than the Minkowski space itself. However, this definition does
not reveal this symmetry.

Let’s give a more "symmetric definition". Consider the six-dimensional
space E2,4 with the metric

ds2 = dw2 + dt2 − dx2 − dy2 − dz2 − dv2. (1.6)
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In this space, consider a five-dimensional cone K, given by the equation

w2 + t2 − x2 − y2 − z2 − v2 = 0. (1.7)

Рисунок 1.2 — The intersection of the cone w2 + t2 − x2 − y2 − z2 − v2 = 0
and the hyperplane w − v = 1 is a Minkowski space

1.3. MINKOWSKI SPACE
COMPLEXIFICATION

The complex Minkowski space CM is a complexification of the Minkowski
space M coinciding with a 4-dimensional complex vector space consisting of
vectors z =

(
z0, z1, z2, z3

)
∈ C4. Also, as in the real case, the vector z ∈ CM

is called a complex light vector if

|z|2 =
(
z0
)2 − (z1)2 − (z2)2 − (z3)2 = 0. (1.8)

A complex light cone with a vertex at the point z0 ∈ CM is given by the
equation: (z − z0)

2 = 0. The analogues of the cones of the future and the past
in the complex case are the pipe of the future

CM+ =
{
z = x+ iy ∈ CM : |y|2 > 0, y0 > 0

}
(1.9)
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and the pipe of the past

CM− =
{
z = x+ iy ∈ CM : |y|2 > 0, y0 < 0

}
(1.10)

The Euclidean space E is a 4-dimensional real vector subspace in CM ,
given by the equations

z0 = x0, z1 = ix1, z2 = ix2, z3 = ix3, (1.11)

where x0, x1, x2, x3 are arbitrary real numbers.

1.4. NON-ZERO TWISTORS

Note that the first two components Z0, Z1 of the Z twistor are two
components of the ω 2-spinor. ω0 = Z0, ω1 = Z1. The last two components
Z2, Z3 are components of the hatched (dual) spinor π. π0′ = Z2, π1′ = Z3 [4].
Thus,

Z = (ω, π). (1.12)

For the conjugate spinor:

Z = (ω, π). (1.13)

The incidence ratio between a twistor and an event in Minkowski space
is now written as

ω = irπ, (1.14)

where r is the matrix

1√
2

(
t+ z x+ iy

x− iy t− z

)
(1.15)

The outer product ππ is interpreted as the 4-momentum of some particle.
The symmetrized occurrences ωπ and ωπ describe parts of the angular momentum
of a particle.

From the momentum and the moment of momentum, it is possible to
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construct a helicity. It will be equal to half the norm of the twistor:

s =
1

2
ZαZ

α. (1.16)

From the last formula, we can conclude that non-zero twistors correspond
to particles with non-zero helicity. That is, in classical language, non-zero
twistors correspond to rotating massless particles (hence the name).

The Penrose correspondence is the correspondence between the space of
twistors (including nonzero ones) and the space CM#. A set of incident events
from CM# corresponds to the Z twistor. Now the coordinates t, x, y, z are
complex numbers. The set of points incident to the Z twistor forms a plane
called the α-plane. The dual twistor Z defines a β-plane in CM#.

The material picture is as follows. The plane corresponds to the conjugate
twistor Z in the projective twistor space PT (points and planes are projectively
dual). This plane intersects with PN on some 3-dimensional set. This set corresponds
to a 3-dimensional family of light rays in the usual Minkowski space.

Рисунок 1.3 — A nonzero twistor Z corresponds to a 3-dimensional system of
light rays in Minkowski space

A 3-dimensional family of light rays corresponding to a nonzero twistor
Z is called the Robinson congruence [5]. At a fixed point in time, it can be
depicted (Figure 1.4). Each point in this picture corresponds to a light beam.
The arrows show the directions of the light rays. passing through this point.
Over time, this entire configuration moves as a whole at the speed of light in
the direction of one straight line in this picture, and this movement represents
the motion of a rotating massless particle described by the twistor [6].
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Рисунок 1.4 — Robinson congruence at a fixed point in time

Рисунок 1.5 — Construction of the Robinson congruence in the Mathematica
package
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2.QUANTIZATION AND MASSLESS
PARTICLES

2.1. QUANTIZATION

Quantum twistor theory is constructed using non-local variables Zα.
Instead of the usual coordinates of the Minkowski space, twistors are used.

Quantization takes place according to the standard canonical scheme. The
twistors Zα and Zα turn into operators with the following switching relations:

[
Zα, Zβ

]
= ℏδαβ ; (2.1)

[
Zα, Zβ

]
= 0;

[
Zα, Zβ

]
= 0. (2.2)

The twistor function f(Z) is introduced. This is a twistor function in the
Z representation. It should not depend on Z. That is, ∂f(Z)

∂Z
= 0. The twistor

function f(Z) must be holomorphic to [7].
In the Z representation, the conjugate twistor Z is answered by the −ℏ ∂

∂Z .
The helicity operator is written as:

s =
1

4

(
ZZ + ZZ

)
= −1

2
ℏ
(
2 + Z

∂

∂Z

)
. (2.3)

As is known, the eigenfunctions of the operator Z ∂
∂Z are homogeneous,

while the eigenvalues are the degrees of uniformity. Therefore, the twistor
function f(Z) of a massless particle with a certain helicity value S must be
of homogeneous degree −2S − 2. This follows from equation (2.3).

So, in particular, the photon’s twistor function (S = ±1) will be the sum
of two parts, one of which, homogeneous of degree 0, describes a left-polarized
component (S = −1), and the other, of degree -4, describes a right-polarized
component (S = 1). A neutrino, considered as a massless particle, has a wave
function with a degree of uniformity — 1 (since the helicity is equal to −1

2).

10



The wave function of a massless scalar particle has a degree of uniformity -2.
The graviton has S = ±2. Its left-polarized part (S = −2) corresponds to a
twistor wave function, homogeneous of degree 2, and the right-polarized part
(S = 2) corresponds to a twistor wave function, homogeneous of degree -6.

2.2. MATHEMATICAL DIGRESSION:
SHEAVES AND THEIR COHOMOLOGY

Let X be a complex manifold (for example, a Riemann sphere or a twistor
space) and (Ui) be a covering of X by open sets. We will say that a bundle
of holomorphic functions P is given on X if each open set of (Ui) a class of
holomorphic functions on this set is mapped. More generally, open sets can be
mapped to any Abelian group [8].

If a bundle P is given on X, then Cech cohomology can be constructed
on X. To do this, we define p-cocains. 0-a chain is a set of functions fi defined
on each set Ui; 1-a chain is a set of functions fij defined on double intersections
Ui ∩ Uj, so that the relation fij = −fji; a 2-chain is a set of functions fijk

defined at triple intersections Ui ∩ Uj ∩ Uk, and fijk must be skew-symmetric
in indices; and so on. The group of p-chains is this is the set of all p-cocains.

Рисунок 2.1 — A 1-cochain is a set of holomorphic functions on double
intersections

The boundary operator (or codifferentiation operator) δ maps p-cocains
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α = {fi...k} (p + 1) is the chain δα = {gi...kl}. If p = 0, then gij = fj − fi; if
p = 1, then gijk = fjk − fik + fij; if p = 2, then gijkl = fjkl − fikl + fijl − fijk;
etc.

a p-chain α is called a cocycle if δα = 0, and a co-boundary if it has the
form α = δβ. It is easy to check that all the co-boundaries are cocycles, i.e.
δ2 = 0 (this is called the Poincare identity).

Denote by Hp
U(X,P ) the factor group of the group of p-cocycles over the

subgroup of p-co-boundaries. Passing to the limit over ever smaller covers of U
of the manifold X, we obtain in the limit the space Hp(X,P ), called the p-th
cohomology group X with coefficients in the bundle P .

2.3. MASSLESS FIELDS

A particle with negative helicity S = −1
2n is described by a field function

of the form ϕAB...L. A particle with positive helicity S = 1
2n is described by a

field function with hatched indices. ϕA′B′...L′. Each function has n indexes.
Each of them is completely symmetric over all n indices and has a positive

frequency, satisfying the corresponding equations

∇AA′
ϕAB...L = 0, (2.4)

∇AA′
ϕA′B′...L′ = 0. (2.5)

For S = 0 we have the D’Alembert equation

□ϕ = 0. (2.6)

For S = +1
2 we obtain the Weyl equation for neutrinos; for S = ±1 we

have a 2-spinor version of Maxwell’s equations for a free field; for S = ±2; -
gauge invariant spinor form of a free linearized Einstein field.

Solutions of the above equations can be obtained from the twistor function
f(z) by the following formulas [9]:

ϕAB...L =
1

(2πi)2

∮
∂

∂ωA

∂

∂ωB
...

∂

∂ωL
f(Z)dπ0′ ∧ dπ1′, (2.7)
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ϕA′B′...L′ =
1

(2πi)2

∮
πA′πB′...πL′f(Z)dπ0′ ∧ dπ1′ (2.8)

In the case of positive helicity, the function f(Z) is first multiplied n

times by π, which gives n hatched indices; in the case of negative helicity , the
operation ∂

∂ω is applied first n times, which gives n of non-shaded spinor indices.
Then multiplication by the 2-form dπ0′ ∧ dπ1′ is performed and integration by
a suitable 2-dimensional In this case, the incidence ratio ω = irπ is first used
to exclude the value of ω by expressing it in terms of π and r. Integration
eliminates π, and the result is an indexed value of ϕ... at any chosen space-time
point R (so ϕ... depends only on r).

Integration takes place along a two-dimensional contour in the twistor
space. This circuit lies in a set of twistors incident to this event. In a projective
picture, a two-dimensional contour turns into a one-dimensional one. It should
lie in a set of twistors incident to the event. That is, it must lie on the projective
complex line (or on the Riemann sphere) in the space of projective twistors.
Note that this line lies in the space PN.

The condition of positive frequency of the field function (a function is
called positively partial if only exponents with negative exponents exp(−ikx)

are present in its expansion into the Fourier integral) is provided by the requirement
that the contour integrals (2.7) and (2.8) retain meaning when the projective
line (Riemann sphere) falls into the region of positive twistors PT+.

Рисунок 2.2 — Integration is performed along a two-dimensional (in the
projective case, one-dimensional) contour, which lies entirely in the set of
twistors incident to this event.
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2.4. TWISTOR FUNCTION

Now let’s give an exact definition of the twistor function f(Z).
Since it must be holomorphic, its domain of definition cannot coincide

with the entire twistor space T or even with the entire T+. You need to set
f(Z) on a smaller set.

Let’s cover the space PT+ with two open sets U1 and U2. They intersect
along the area of the ring type U1 ∩U2 (Fig.2.2). The function f = f12 = −f21

is defined on this area. This function is holomorphic in U1 ∩ U2, but when
continued, all PT+ has features lying in U1\U2 or in U2\U1.In more general
cases, more open sets and, accordingly, more functions may be needed. But in
any case, the correct description of the twistor function is The massless particle
of helicity S consists in the fact that it is an element of the cohomology group
over a bundle of holomorphic functions with the degree of uniformity −2S− 2:

H1(PT+, O(−2S − 2)). (2.9)

The use of the space PT+ in this definition ensures the fulfillment of the
condition of the positive frequency of the field function (one could consider the
space PT−). The closure continuity PT+ = PT−∪PN ensures the normalizability
of the field function. For PT+, it is quite enough to consider covers with two
sets, but the construction itself can be generalized and in case PT+ is replaced
by some other subset of X in PT. Then a more complex coating may be needed.

So, the twistor function is defined at the intersection of two regions up to
the addition of a function of the form h1 − h2, where h1 and h2 are defined on
the sets U1 and U2. It can be proved that the contour integrals (2.7) and (2.8)
do not depend on the choice of the function f(Z) from the equivalence class.

2.5. SPLITTING

Consider the Riemann sphere S2 with the equator R and the poles i and
−i. The complex function (holomorphic) defined on the real axis R (at the
equator) is split into a positive-frequency part holomorphically extended to the
northern hemisphere, and a negative-frequency part holomorphically extended

14



to the southern hemisphere.
Approximately the same thing happens in the twistor case. A twistor

function defined on PN (an element of the 1st cohomology representing a
massless field) is split into a positive-frequency part holomorphically continued
on PT+, and a negative-frequency part holomorphically continued in PT−.

Рисунок 2.3 — The twistor function defined on PN is split into positive-
frequency and negative-frequency parts.

So, massless fields in the Minkowski space M# are represented by elements
of the first cohomology on PN. Each of them can be represented as the sum of
an element continued in PT+ and an element continued in PT−. The first term
describes a positive-frequency massless field, the second - a negative-frequency
massless field. In the language of space-time terms, the positive-frequency part
of the field, when continued, forms a pipe of the future in the space CM.
The negative frequency part of the field, when continued, forms a pipe of the
past in the space CM.

2.6. NONLINEAR GRAVITON

First, consider the case when the twistor function f(Z) is homogeneous
of degree o (corresponds to a photon with S = −1). The twistor space T+ can
be considered as a bundle over the space PT+. The function f can be used to
deform this bundle in order to obtain a curved twistor structure τ+. Let T+ be
covered by two sets U1 and U2 and the function f is defined at the intersection
of U1 ∩U2. Thus, T+ is the union of the sets PU1 and PU2, whose elevations in
the bundle space coincide with U1 and U2.

To get a curved space of τ+ twistors, we glue the sets U1 and U2 in a
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different way, namely, for Ẑα ∈ U1 and Zα ∈ U2, the transition function in τ+

at the intersection of U1 ∩ U2:

Ẑα = ef(Z)Z. (2.10)

Here it is necessary that f has uniformity of degree zero, since the transformation
Z → λZ must correspond to the transformation Ẑ → λẐ.

Since the geometry of space-time is completely determined by the structure
of the projective twistor space, the space-time geometry corresponding to τ+

remains the same as for T+, i.e. by Minkowski geometry. However, the change
in the phases of the twistors that occurs in this case leads to the appearance of
"connectivity"at M induced by the electromagnetic potential. It turns out that
this connectivity corresponds to the same electromagnetic field that is obtained
by contour integration, but now it describes the photon in the active function,
since the description in the twistor space includes the form of interaction of the
photon.

Using the PT+ subset of the PT space as the bundle base in the above
construction is related to with the fact that we are considering a free photon
of positive frequency. However, this construction can also be carried out when
other subsets of X in PT are selected as the base.

A similar construction can be carried out in the case of gravity, when
the degree of uniformity of f is 2 (i.e., the helicity is -2). Now the undisturbed
space is T+ It is considered as a bundle in another sense: the role of the base
is played by the spinor space πA′, and the projection mapping is the mapping
(ωA, πA′) → πA′.

We will construct a deformed space τ using two open sets U1 and U2

from T and a function f (degree of uniformity 2) defined at the intersection of
U1 ∩ U2. To get τU1 and U2 are glued together in a different way, namely for
Ẑα ∈ U1 and Zα ∈ U2 at the intersection of U1 ∩ U2, the transition function is
defined as follows how:

Ẑα = exp

{
ϵAB∂f(Z)

∂ωA

∂

∂ωB

}
Z. (2.11)

The absence of π derivatives in the above ratio means that the twistor
on one flap must have the same π part as the twistor matched with it on the
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neighboring flap. It follows that the operation of "projecting"the spinor π from
the space τ has a consistent character throughout this space. That is, there
is a global projection of the space τ on the space of spinors π. Thus, τ is a
bundle over the space π. Each layer turns out to be a complex 2-manifold with
a symplectic structure, as is the π space itself.

Рисунок 2.4 — The curved twistor space τ is projected onto the space of π-
spinors

.

From the deformed space τ , it is now possible to construct a curved
complex Minkowski space. It is called a nonlinear graviton. The entire scheme
for constructing a nonlinear graviton is shown in Figure 2.5.

We describe the construction of a nonlinear graviton. a) With the standard
twistor correspondence for a flat space, the points P and Q of the space CM
are separated by a zero interval whenever the lines P and Q intersect in the
space PT. b) We want to somehow deform PT into a curved twistor space
τ , however mathematical theorems state that this cannot be done globally.
Accordingly, as our initial spacetime, we will take only a small neighborhood
U of the point R in CM. c) This neighborhood corresponds to the tubular
neighborhood Q of the line R in PT. d) Now we deform the region Q, which is
divided into two sets U1 and U2. e) The original line R is now broken and cannot
be used to unambiguously define a "space-time point". f) Kodaira’s theorem
comes to the rescue, from which it follows that there is a 4-parametric family of
"lines"R∗ that can serve for this purpose. g) The points of the desired space of
the "nonlinear graviton"M (complex 4-space) are determined by the curves of
Kodaira R∗. The complex conformal metric of the space M is determined (as
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Рисунок 2.5 — A scheme for constructing a nonlinear graviton
.

in the case of a) by the condition that the points P ∗ and Q∗ are separated by
a zero interval at the intersection of the corresponding lines P ∗ and Q∗ in τ .

Thus, a deformed Minkowski space M is obtained, which is the space of
sections of the bundle τ . Two points in this space are isotropically located if the
corresponding sections intersect. The complex conformal given by this definition
the structure on M can be extended to the complete complex Riemannian
metric gab on M . It turns out that this metric satisfies Einstein’s equations in
the void Rab = 0.
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3.CONCLUSION

Twistor theory is a set of non-local constructions with roots in nineteenth-
century projective geometry. To date, the ideas of twistors have been expanded
and generalized in many different directions and applied to many completely
different problems of mathematics and physics. A feature of this theory is the
correspondence between points in spacetime and holomorphic curves in twistor
space. Einstein’s equations and Yang-Mills equations in spacetime are replaced
by algebra-geometric problems in twistor space.

Recently, the problem of describing a graviton with helicity 2, which is
described by a twistor function of the degree of homogeneity -6. The degree
of homogeneity -6.) was solved. This made it possible to include both the left-
polarized and right-polarized part of the graviton in the theory.

At the moment, the theory of twistors is not complete. There are a number
of problems with the description of massive particles.
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