
Cosmological constraints on parameters of effective theory
of Standard Model

Artur Semushina

aNational Research Nuclear University MEPhI,
E-mail: artur.semushin@cern.ch

1



Contents

1 Introduction 3

2 Effective field theory 3
2.1 Introduction and aQGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Amplitude decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Constraints from the CMB in the early Universe 5
3.1 Setting limits methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Choice of the time interval and dependencies estimation . . . . . . . . . . . . . . 8
3.3 Cross section parameterization and results . . . . . . . . . . . . . . . . . . . . . 9

4 Cosmological interpretation of the aQGC 11
4.1 Interpretation in terms of multicharged fermions . . . . . . . . . . . . . . . . . . 11
4.2 Cosmological model with fermions with −2n charge . . . . . . . . . . . . . . . . 14

5 Relic neutrino number density 14
5.1 Big Bang theory prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Experimental limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Conclusion 16

2



1 Introduction

[1]

2 Effective field theory

2.1 Introduction and aQGC

Effective extension of the SM consists in the parameterization of the Lagrangian with the
operators of higher dimensions with some coefficients:

L = LSM +
∑
i

∑
n

Fi,n

Λn
On+4

i = LSM +
∑
i

∑
n

fi,nOn+4
i . (1)

In this equation LSM is the SM Lagrangian, Λ is the new physics energy scale, On+4
i is the

i-th operator of n + 4 dimension, Fi,n is the corresponding unobservable dimensionless coeffi-
cient, fi,n = Fi,n/Λ

n is the corresponding (Wilson’s) observable coefficient which has dimension
TeV−n.

In this report anomalous quartic gauge couplings (aQGC) was considered. It is convenient to
study this couplings with operators of eight dimensions which lead to genuine aQGC without the
contribution of anomalous triple gauge couplings (aTGC) [2]. These operators are constructed
from covariant derivative of the Higgs field

DµΦ =

(
∂µ + ig

σi

2
W i

µ + ig′
1

2
Bµ

)
Φ, (2)

SU(2)L field strength tensor

Ŵµν =
σi

2
W i

µν , (3)

where
W i

µν = ∂µW
i
ν − ∂νW

i
µ + gεijkW k

µW
k
ν , (4)

and U(1)Y field strength tensor
Bµν = ∂µBν − ∂νBµ (5)

and can be divided into three families. S-family operators contain just covariant derivatives of
the Higgs field:

OS0 =
[
(DµΦ)

†DνΦ
] [

(DµΦ)†DνΦ
]
,

OS1 =
[
(DµΦ)

†DµΦ
] [

(DνΦ)
†DνΦ

]
.

(6)
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T-family operators contain just gauge field strength tensors:

OT0 = Tr
[
ŴµνŴ

µν
]
Tr
[
ŴαβŴ

αβ
]
,

OT1 = Tr
[
ŴανŴ

µβ
]
Tr
[
ŴµβŴ

αν
]
,

OT2 = Tr
[
ŴαµŴ

µβ
]
Tr
[
ŴβνŴ

να
]
,

OT5 = Tr
[
ŴµνŴ

µν
] [

BαβB
αβ
]
,

OT6 = Tr
[
ŴανŴ

µβ
]
[BµβB

αν ] ,

OT7 = Tr
[
ŴαµŴ

µβ
]
[BβνB

να] ,

OT8 = [BµνB
µν ]
[
BαβB

αβ
]
,

OT9 =
[
BαµB

µβ
]
[BβνB

να] .

(7)

Finally, M-family operators mix covariant derivatives of the Higgs field and gauge field strength
tensors:

OM0 = Tr
[
ŴµνŴ

µν
] [

(DβΦ)
†DβΦ

]
,

OM1 = Tr
[
ŴµνŴ

νβ
] [

(DβΦ)
† DµΦ

]
,

OM2 = [BµνB
µν ]
[
(DβΦ)

†DβΦ
]
,

OM3 =
[
BµνB

νβ
] [

(DβΦ)
†DµΦ

]
,

OM4 =
[
(DµΦ)

† ŴβνD
µΦ
]
Bβν ,

OM5 =
[
(DµΦ)

† ŴβνD
νΦ
]
Bβµ + h.c.,

OM7 =
[
(DµΦ)

† ŴβνŴ
βµDνΦ

]
.

(8)

From all possible quartic gauge couplings SM predicts just WWWW , WWZZ, WWZγ,
WWγγ. Table 1 shows which quartic gauge couplings are affected by each operator.

Table 1: Influence of the 8-dimensional operators on quartic gauge couplings. Affected cou-
plings are marked with a symbol ◦.

Operator WWWW WWZZ WWZγ WWγγ ZZZZ ZZZγ ZZγγ Zγγγ γγγγ
OS0, OS1 ◦ ◦ ◦

OT0, OT1, OT2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
OT5, OT6, OT7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

OT8, OT9 ◦ ◦ ◦ ◦ ◦
OM0, OM1, OM7 ◦ ◦ ◦ ◦ ◦ ◦ ◦

OM2, OM3, OM4, OM5 ◦ ◦ ◦ ◦ ◦ ◦

2.2 Amplitude decomposition

For studying processes using EFT one need to know how cross section depends on coefficient
value. This dependence is considered in this section for the case when process contains not more
that one new physics vertex.
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In the general case, when Lagrangian is parameterized with a set of operators as

L = LSM +
∑
i

fiOi, (9)

amplitude of some process contains SM and beyond-the-SM (BSM) terms and can be written
as

A = ASM +
∑
i

fiABSM,i. (10)

Square of this amplitude is

|A|2 = |ASM|2 +
∑
i

fi2Re(A†
SMABSM,i) +

∑
i

f 2
i |ABSM,i|2 +

∑
i,j,i>j

fifj2Re(A†
BSM,iABSM,j). (11)

So, squared amplitude as well as cross section contains SM term, interference (linear) terms
∝ fi, quadratic terms ∝ f 2

i and cross terms ∝ fifj.
For setting 1D limits the Lagrangian is parameterized by a single operator as

L = LSM + fO. (12)

In this case amplitude and its square are

A = ASM + fABSM (13)

and
|A|2 = |ASM|2 + f2Re(A†

SMABSM) + f 2|ABSM|2. (14)

Therefore, cross section contains one SM term, one interference term and one quadratic term
and can be written as

σ = σSM + fσint + f 2σquad. (15)

If considered process is not predicted by the SM, then ASM = 0 and cross section is

σ = f 2σquad. (16)

3 Constraints from the CMB in the early Universe

3.1 Setting limits methodology

Such processes as γγ → νν̄νν̄ can affect modern relic neutrino number density n0
ν = 339.5

cm−3 which can be predicted from the standard cosmological Big Bang model using observable
CMB number density n0

γ = 410.7 cm−3 [3]. Of course, predicted neutrino number density from
the anomalous couplings npred,0

ν should be less than n0
ν . Taking into account that predicted
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neutrino number density depends on EFT coupling constant f , condition

npred,0
ν < n0

ν (17)

can lead to constraint on f .
Neutrino number density from the anomalous couplings can be predicted as

npred,0
ν = ανn0 =

ανN0

V0

, (18)

where N0 is the number of anomalous interactions that have occurred to present-day time
moment, n0 is N0 per unit volume, αν is the number of neutrinos that are produced from a
single anomalous interaction and V0 is the present-day size of the Universe.

In the following calculations the first photon is incoming and the second photon is the mobile
target. Assuming that CMB photons have Planck’s energy distribution and isotropic spatial
distribution, one can define the flux of the incoming photons

d4N1

dE1 dΩ1 dS dt
= fPl(E1|T )

1

4π
nγc (19)

and the distribution of the target photons

d2N2

dE2 dΩ2

= fPl(E2|T )
1

4π
nγV, (20)

where T is the CMB temperature (Planck’s distribution parameter), nγ is CMB photons number
density, c is the speed of light, V is the size of the Universe and

fPl(E|T ) = qE2

eE/T − 1
(21)

is the Planck’s energy distribution normalized to unity with coefficient q = (2ζ(3)T 3)−1.
Since interacting photons have different energies and relative angle, it is necessary to know

cross section dependence on this parameters. This can be done in the following way. Choosing
spatial frame so that momentum of the first photon directed along the z axis, s invariant can
be represented as

s = (p1 + p2)
2 = 2(p1p2) = 2(E1E2 − p⃗1p⃗2) = 2E1E2(1− cos θ2). (22)

Then, obtaining cross section dependence on s invariant, one can obtain its dependence on E1,
E2 and cos θ2. Assuming that σ(s) is a polynomial function

σ(s) = f 2
∑
i

pis
i (23)

6



with i > 0 (anomalous cross section increases with energy), then

σ(E1, E2, cos θ2) = f 2
∑
i

2ipiE
i
1E

i
2(1− cos θ2)

i. (24)

Frequency of the considered process is

Ṅ =

∫
σ(E1, E2, cos θ2)

d4N1

dE1 dΩ1 dS dt
d2N2

dE2 dΩ2

dE1 dE2 dΩ1 dΩ2. (25)

Taking into account Eq. 19, 20 and 24 and integrating over all angles θ1, ϕ1 and ϕ2, it can be
rewritten as

Ṅ =
1

2
cn2

γV f 2
∑
i

2ipi

∫
Ei

1E
i
2(1− cos θ2)

ifPl(E1|T )fPl(E2|T ) dE1 dE2 d cos θ2. (26)

Integration by energy can be performed using formula

∞∫
0

EifPl(E|T ) dE = q

∞∫
0

Ei+2

eE/T − 1
dE = qT i+3Γ(i+ 3)ζ(i+ 3), (27)

where Γ(x) is the gamma function and ζ(x) is Riemann zeta function. So the integral from Eq.
26 is∫

Ei
1E

i
2(1− cos θ2)

ifPl(E1|T )fPl(E2|T ) dE1 dE2 d cos θ2 =

=

∞∫
0

Ei
1fPl(E1|T ) dE1

∞∫
0

Ei
2fPl(E2|T ) dE2

1∫
−1

(1− cos θ2)
i d cos θ2 =

=

 ∞∫
0

EifPl(E|T ) dE

2 2∫
0

yi dy = q2T 2i+6 (Γ(i+ 3)ζ(i+ 3))2
2i+1

i+ 1
=

= T 2i 2
i−1

i+ 1

Γ2(i+ 3)ζ2(i+ 3)

ζ2(3)
, (28)

where y = 1− cos θ2. Finally, frequency of the considered process can be rewritten as

Ṅ =
cn2

γV f 2

4ζ2(3)

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)T 2i. (29)

In this formula CMB number density nγ, CMB temperature T and size of the Universe V

depend on time t. In addition, anomalous interactions lead to a decrease in the CMB number
density. So, nγ depend on N . Therefore, Eq. 29 becomes a differential equation. Solving of
this equation can be used for obtaining npred,0

ν with Eq. 18 and setting limits with Eq. 17.
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3.2 Choice of the time interval and dependencies estimation

Since in EFT cross sections increases with the energy, the most interesting stage of the
Universe evolution for this study is radiation dominance stage (RD). Besides, non-zero mass of
the neutrino leads to impossibility of reactions of neutrino production from CMB when energies
of the photons are too small. Therefore, contribution from stages after RD is negligible. So
upper time point can be chosen as tmax = 104 yr. In the other side, neutrino had been in the
equilibrium with another particles up to moment t ≈ 1 s (T ≈ 1 MeV). So lower time point
can be chosen as tmin = 1 s.

Number density from the CMB photons decreases due to the Universe expansion and from
the anomalous interactions:

nγ(t) =
(
n0
γV0 − αγN(t)

) 1

V (t)
, (30)

where αγ is the reducing of the number of CMB photons per single anomalous interaction.
Thus Eq. 29 can be rewritten as

dN
dt

=
(
n0
γV0 − αγN

)2 1

V (t)

cf 2

4ζ2(3)

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)T 2i(t). (31)

This is a differential equation, where variables N and t can be separated. After integrating by
N from 0 to N0 it can be seen that

1

αγ

(
1

n0
γV0 − αγN0

− 1

n0
γV0

)
=

tmax∫
tmin

1

V (t)

cf 2

4ζ2(3)

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)T 2i(t) dt. (32)

Multiplying this equation by αγV0 and taking into account that V (t) ∝ a3(t) and a(t) ∝ T−1(t),
one can find that

1

n0
γ − αγn0

− 1

n0
γ

=
αγcf

2

4ζ2(3)T 3
0

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)

tmax∫
tmin

T 2i+3(t) dt (33)

where T0 = 2.73 K = 2.35 · 10−4 eV is observable present-day CMB temperature [4].
Dependence of the CMB temperature on time can be estimated from the facts that T ∝ a−1,

a ∝
√
t at the RD and condition that T (tmin) = Tmin, where Tmin = 1 MeV. So, one can obtain

T (t) = Tmin

√
tmin

t
. (34)

This dependence is shown in Fig. 1.
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Figure 1: Dependence of the CMB temperature on time at the RD stage.

Integral from Eq. 33 denoted as Ii can be easily calculated as following:

Ii =

tmax∫
tmin

T 2i+3(t) dt = T 2i+3
min t

i+3/2
min

tmax∫
tmin

dt
ti+3/2

=
T 2i+3

min tmin

i+ 1/2

(
1−

(
tmin

tmax

)i+1/2
)
. (35)

Using Eq. 33, formula for n0 can be written as

n0 =
n0
γ

αγ

1− 1

1 + f 2 αγn0
γc

4ζ2(3)T 3
0

∑
i

4i

i+1
piΓ2(i+ 3)ζ2(i+ 3)Ii

 . (36)

Then, using Eq. 17 and 18, constraint on f can be found as

|f | <
√√√√ 1

ανn0
γ − αγn0

ν

n0
ν

n0
γ

4ζ2(3)T 3
0

c
∑
i

4i

i+1
piΓ2(i+ 3)ζ2(i+ 3)Ii

. (37)

3.3 Cross section parameterization and results

αγ = 2, αν = 4.

�γ

γ

ν̄

ν̄

Z

Z

ν

ν

Figure 2: Diagram γγ → νν̄νν̄.
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For cross section parameterization Monte Carlo event generator MadGraph5 [5] was used.

Table 2: fT0

s, GeV2 σ(fT0 = 1 GeV−4), pb σ(fM0 = 1 GeV−4), pb
4 · 10−8 (6.13± 0.08) · 10−71 (7.87± 0.02) · 10−48

10−6 (3.74± 0.03) · 10−61 (7.70± 0.02) · 10−41

4 · 10−6 (6.27± 0.08) · 10−57 (7.87± 0.04) · 10−38

10−4 (3.73± 0.01) · 10−47 (7.68± 0.03) · 10−31

4 · 10−4 (6.18± 0.02) · 10−43 (7.89± 0.04) · 10−28

7−10 6−10 5−10 4−10
2s, GeV

69−10

66−10

63−10

60−10

57−10

54−10

51−10

48−10

45−10

, p
b

σ

MC modelling

Fit

-4=1 GeV
T0

(s), fσ

7−10 6−10 5−10 4−10
2s, GeV

47−10

45−10

43−10

41−10

39−10

37−10

35−10

33−10

31−10

29−10

, p
b

σ

MC modelling

Fit

-4=1 GeV
M0

(s), fσ

Figure 3: Fit.

Table 3: Fit parameters

Coefficient Parameters
fT0 p7 = 3.74 · 10−19 pb/GeV6

fM0 p5 = 7.69 · 10−11 pb/GeV2

Table 4: Results

Coefficient Limit, TeV−4

fT0 4.0 · 1032
fM0 5.9 · 1024

Table 5: Observed by the CMS collaboration [6] limits on some EFT coefficients.

Coefficient fT0 fT5 fT8 fM0 fM1

Limit on |f |, TeV−4 12.8 28.1 0.52 0.52 0.36
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4 Cosmological interpretation of the aQGC

4.1 Interpretation in terms of multicharged fermions

In this section possible interpretation of aQGC from 8-dimensional operators is considered
by the example of the scattering of the photons. Diagram of this process predicted by the
T-family EFT operators is presented in Fig. 4. EFT operators of M- and S- families don’t
predict this process on the tree level (Table 1).

�γ

γ

γ

γ

Figure 4: Diagram of the scattering γγ → γγ which predicted by T-family EFT operators.

In general case of some BSM scattering, cross section dependence on the energy ω of the
initial particles in the center-of-mass system can be found from simple dimension analysis.
Amplitude of the process in proportional to f , fv2 and fv4 for operators of T-, M- and S-family
respectively. Therefore, to ensure the correct dimension of the cross-section, its dependence in
the energy ω should be the following:

σ ∝ ω6, T-family,

σ ∝ ω2, M-family,

σ ∝ ω−2, S-family.

(38)

For γγ-scattering this dependence was verified using Monte-Carlo simulations. Plots which
illustrate this dependence for cases of fT0 and fT8 non-zero EFT coefficients can be found in
Fig. 5. Fitting function for this plots was function σ = f 2p3σ

3. Results of the fits can be found
in Table 6. Taking into account that s = 4ω2, final dependence on ω for γγ-scattering is

σ = f 2 · 64p3ω6. (39)

Table 6: Results of the fit of the dependence of the cross section on the s-invariant for γγ-
scattering for cases of fT0 and fT8 non-zero EFT coefficients.

Coefficient p3, pb·TeV2

fT0 9.69 · 10−2

fT8 1.79 · 102

It can be seen that this dependence on the photon energy is the same as in case of low-energy
γγ-scattering through a fermionic loop. Example of the diagram of this process can be found

11



1−10 1 10
2s, TeV

5−10

4−10

3−10

2−10

1−10

1

10

210

, p
b

σ

MC modelling

Fit

-4=1 TeV
T0

(s), fσ

1−10 1 10
2s, TeV

1−10

1

10

210

310

410

510

, p
b

σ

MC modelling

Fit

-4=1 TeV
T8

(s), fσ

Figure 5: Dependence of the cross section on the s-invariant for γγ-scattering for cases of fT0

(left) and fT8 (right) non-zero EFT coefficients.

in Fig. 6. If fermion in the loop is the electron, then low-energy (ω ≪ me) cross-section is [7]

σ = 0.031α2r2e

(
ω

me

)6

. (40)

This result can be generalized to the case of heavy fermion with mass m and electric charge Z

(in the units of e):

σ = 0.031Z8α4 ω
6

m8
. (41)

It should be emphasized that EFT is valid when ω ≪ Λ, when Λ is the new physics energy
scale (Eq. 1). In this case Λ = m, then only case ω ≪ m can be considered.

�γ
γ

γ

γ

Figure 6: Example of the diagram for γγ-scattering through a fermionic loop.

Following the interpretation of effective γγ-scattering as scattering through a heavy fermion
with a mass m and electric charge Z in the units of e, one can equate cross sections from Eq.
39 and 41:

0.031Z8α4ω
6

Λ8
= f 2 · 64p3ω6. (42)

It leads to a couple of physical results. First, interpreting Λ as m and taking into account that
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f =
F

Λ4
, one can find dimensionless EFT coupling constant:

F =
0.031Z8α4

64p3
. (43)

Using results from Table 6 it can be found that

FT0 ≈ 7.0 · 10−9 · Z8,

FT8 ≈ 3.8 · 10−12 · Z8.
(44)

The second result is indirect limitation on the mass of the multicharged particles. Eq. 42 (with
the replacement of Λ for m) can be rewritten as

m = |Z|
(
0.031α4

64p3f 2

)1/8

= |Z|
(

F

Q8

1

f 2

)1/8

. (45)

Using Table 5 one can find indirect mass limitation:

m > |Z| · 0.11GeV (from fT0),

m > |Z| · 0.05GeV (from fT8).
(46)

The observed by the ATLAS collaboration [8] mass limits on the multicharged particles in case
of lepton-like particles can be found in Fig. 7. Direct experimental limits are more strict than
indirect ones. However for large Z indirect limits can be tighter than direct ones.

Figure 7: Limits on the multicharged particles (MCPs) masses observed by the ATLAS
collaboration [8].
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4.2 Cosmological model with fermions with −2n charge

Since the dark matter (DM) [9] is not described by the SM, EFT should predict the man-
ifestations of the DM. So the multicharged particles with large mass can be applied in this
problem. An important for cosmology case is Z = −2n, where n is an natural number. These
hypothetical lepton-like particles (X−2n) in the early Universe can form atoms with He nuclei
by ordinary Coulomb force. In the simplest case of n = 1 this particle is O−2 and corresponding
atom is OHe. These atoms called dark atoms [10] are good candidates to the DM components
[11].

Electric charge of −2n of these particles is determined by the following considerations [12].
BSM particle with −1 charge after Big Bang nucleosynthesis should bind with primordial He
forming ion with +1 charge which then capture an electron forming anomalous hydrogen atom.
BSM particle with +1 charge also should form anomalous hydrogen nucleus with an electron.
Concentration of the anomalous hydrogen in the terrestrial matter strictly constrained. There-
fore, only BSM particles with −2n electric charge can avoid this problem.

5 Relic neutrino number density

5.1 Big Bang theory prediction

Number density of the relic neutrino is important for modern physics because it can help to
test standard cosmological Big Bang model and models of BSM physics. However its observation
is very difficult. Using Big Bang theory of early Universe, number density of the relic neutrino
can be predicted [13].

Effective number of relativistic degrees of freedom is

g∗ =
∑

bosons

gb +
7

8

∑
fermions

gf . (47)

The factor of 7/8 in the fermion term appears because bosons and fermions are followed to
different statistic (Bose-Einstein and Fermi-Dirac ones respectively). After the uncoupling
of the neutrino g1∗ = 11/2 (photons, electrons and positrons contribute). After the e+e−-
annihilation only photons are relativistic and contribute, so g2∗ = 2. Therefore, taking into
account entropy conservation, one can find ratio of the CMB and neutrino temperatures which
is constant after the e+e−-annihilation:

Tν

Tγ

=

(
g2∗
g1∗

)1/3

=

(
4

11

)1/3

. (48)

Finally, taking into account that n ∝ T 3, 3 flavours of neutrino and that number densities
of relativistic fermions and bosons are related via a factor of 3/4 which has the same nature as
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a factor of 7/8 in Eq. 47, neutrino number density can be found as

n0
ν = 3 · 3

4
· T

0
ν

T0

n0
γ =

9

11
n0
γ ≈ 336 cm−3. (49)

5.2 Experimental limitations

There was not observations of relic neutrino to the moment. However direct experimental
constraint on the number density of relic neutrino exists [14]:

η =
n0,observed
ν

n0
ν

≤ 7 · 1011 (99% CL). (50)

Plot that illustrate this limit can be found in Fig. 8.

Figure 8: Limit on the number density of the relic neutrino.

This limit is too large for using in physical estimations. There is an indirect way to constrain
relic neutrino number density. Assuming that all what is not cold dark matter, baryons or dark
energy is relic neutrino, one can write

Ων = 1−Ωc−Ωb−ΩΛ = 1−Ωm−ΩΛ = 1− (0.315± 0.007)− (0.685± 0.007) = 0± 0.01. (51)

Taking into account that Ων is positive variable, approximately

Ων < 0.02 (95% CL). (52)

Thus, observed relic neutrino number density can be written as

n0,observed
ν =

ρν∑
mν

=
Ωνρcrit∑

mν

. (53)
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Using limit
∑

mν ≥ 0.06 eV obtained from mixing, one can find that

n0,observed
ν < 795 cm−3. (54)

This limit is a few larger than Big Bang theory prediction and can be used for physical estima-
tions.

6 Conclusion
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