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1 Introduction

Primordial black holes have been receiving increasing interest for research

in recent years, especially after the discovery of the long-sought gravitational

waves from the merger of binary black holes.[1]. Their influence on the cosmology

is really big. Some researchers suggest them as possible sources of gravitational

waves. Attempts to detect the predicted Hawking radiation are also a point of

interest. In addition, primordial black holes are considered in a number of ways

as objects that can explain the inflationary model of the development of the

Universe.

There are various models explaining how exactly PBHs could have formed

in the early epoch of the Universe [2, 3, 4]. It follows from these models that,

unlike "ordinary"black holes, PBHs can potentially have a very wide spread of

masses, literally from the mass of the order of an elementary particle to the

order of a hundred solar masses.

However, despite this situation nowadays, PBHs should have been more

massive in the past. Thus, according to calculations, PBHs with mass 𝑀 < 1015

g by now should have already evaporated due to Hawking radiation.

To estimate the number of PBHs, a numerical parameter 𝑓 was introduced,

which is defined as their fraction of the total mass of dark matter at the present

time. If 𝑓 < 10−3, we can confidently assert that PBHs should not be considered

as candidates for the role of dark matter [4].

In this report, there will be some calculations presented that make it

possible to estimate the emission spectrum of PBHs, as well as the 𝑓 parameter,

based on single-field inflation models, with one or two perturbations in the

inflaton potential. It should be understood that the 𝑓 parameter, generally

speaking, depends on many factors, such as the radiation range under consideration,

the threshold of density contrast, as well as the method used to calculate the

PBH mass fraction. In this essay, the main attention will be paid to the last
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factor - the calculation of the PSH mass fraction in peak theory [5, 6, 7, 8, 9].

The peak theory of Gaussian random fields was initiated in [6]. Following

this, a group of researchers calculated the parameter 𝑓 using a simplified model

[7]; their result is in good agreement with the Press — Schechter theory [9], at

least for the emission spectrum.

The main idea proposed by peak theory is to try to calculate the density of

peaks in regions where compact objects are expected to form, such as galaxies or

PBHs in the form of their active nuclei. Then compare the result with the known

radiation background. These local “densities” are local maxima of the radiation

field, so that an analytical joint probability distribution function (PDF) can be

constructed, and then its first and second derivatives can be calculated, from

which it will be possible to determine the desired peaks.
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2 Preliminary calculations

2.1 Basic equations

Consideration should start with the single-field inflation model, where

inflation is explained by a scalar inflaton field not related to gravity, its effect

is

𝑆 =

∫︁ √
−𝑔(

𝑚2
𝑃

2
𝑅− 0.5𝜕𝜇𝜑𝜕

𝜇𝜑− 𝑉 (𝜑)), (1)

Where 𝜑 is the inflation field, 𝑉 (𝜑) is its potential, 𝑅 is the Ricci scalar, and

𝑚𝑃 is the Planck mass.

During the inflationary era, it is more convenient to measure cosmological

expansion in terms of the number of e-folds 𝑁 instead of time. It can be defined

as the time integral of the Hubble constant.

We will also introduce two parameters that will further show the state of

the inflaton field:

𝜖 = − �̇�

𝐻2
, 𝜂 = − 𝜑

𝐻�̇�
. (2)

In the slow-roll inflation model, these parameters are always much less

than 1. However, if we consider the ultra slow-roll inflation model, the values

of 𝜖 and 𝜂 can vary over a very wide range in different situations. Let us write

the Klein-Gordon equation for a homogeneous and isotropic Universe in terms

of 𝜖, 𝜂, and 𝑁

𝜑,𝑁𝑁 + (3− 𝜖)𝜑,𝑁 +
1

𝐻2
𝑉,𝜑 = 0, (3)

and also the Friedmann equation

𝐻2 =
𝑉

3− 𝜖
𝑚2

𝑃 . (4)

5



In the model under consideration, we will talk about space-time, so it

also makes sense to write the equation for the interval 𝑑𝑠2 = −(1 + 2Φ)𝑑𝑡2 +

𝑎2(𝑡)(1− 2Φ)𝛿𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗. Also, to calculate the value of the 𝑓 parameter, the 𝑅

parameter is useful — primordial curvature perturbation,

𝑅 = Φ+
𝐻

�̇�
𝛿𝜑. (5)

The equation of motion for 𝑅 can be written using the Mukhanov – Sasaki

equation [10]:

𝑅𝑘,𝑁𝑁 + (3 + 𝜖− 2𝜂)𝑅𝑘,𝑁 +
𝑘2

𝐻2𝑒2𝑁
𝑅𝑘 = 0. (6)

Finally, the parameters 𝜖 and 𝜂 can be expressed in terms of 𝑁 :

𝜖 =
𝜑2
,𝑁

2𝑚2
𝑃

, 𝜂 ==
𝜑2
,𝑁

2𝑚2
𝑃

− 𝜑,𝑁𝑁

𝜑,𝑁
. (7)

After solving the equations presented here, it will be possible to obtain

an expression for the spectrum of the radiation intensity and accordingly the

mass fraction of PBHs.

2.2 Calculation of the emission spectrum

As mentioned in the introduction, the radiation spectrum can be obtained

using the radiation density distribution function, we denote it as 𝑃𝛿(𝑘). In

the radiation-dominated era, 𝑃𝛿(𝑘) can be further related to the dimensionless

power spectrum of primordial curvature perturbation 𝑃𝑅(𝑘) [7]:

𝑃𝛿(𝑘) =
16

81
(
𝑘

𝑎𝐻
)4𝑃𝑅(𝑘), (8)

𝑃𝑅(𝑘) =
𝑘3

2𝜋2
|𝑅𝑘|2, 𝑘 << 𝑎𝐻. (9)

Within the slow-roll inflation model we can also write 𝑃𝑅(𝑘) in a different

form: 𝑃𝑅(𝑘) = 𝐴𝑠(𝑘/𝑘*)
𝑛𝑠−1, where 𝑛𝑠 is the scalar spectral index, 𝐴𝑠 is the
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amplitude, with the central values being 𝑛𝑠 = 0.965, and 𝐴𝑠 = 2.10 · 10−9 on

the CMB pivot scale, 𝑘* = 0.05Mpc−1 [11]. Limitations on 𝑃𝑅(𝑘) in the range

where signals from the PBHs are expected are given in [2, 3, 4].

To find the local maxima of the function it is necessary to ensure its

differentiability over the entire space, as well as to avoid divergence at large

distances. This can be achieved by using convolution

𝛿(x, 𝑅) =

∫︁
𝑑3𝑥′𝑊 (x− x′, 𝑅)𝛿(x′). (10)

Here 𝑊 (x, 𝑅) is a window function. We will use the normal distribution as

the window function, after the Fourier transform it will look like 𝑊𝐹𝑜𝑢𝑟𝑖𝑒𝑟(𝑘,𝑅) =

𝑒−𝑘2𝑅2/2, so

𝑊 (x, 𝑅) =
𝑒−𝑥2/2𝑅2

𝑉 (𝑅)
, (11)

𝑉 (𝑅) = (
√
2𝜋𝑅)3 is a normalization factor[12].

After the smoothing procedure, you can write an expression for the density

contrast variance in the 𝑅 range:

𝜎2
𝛿(𝑅) =

∞∫︁
0

𝑘−1𝑊 2
𝐹𝑜𝑢𝑟𝑖𝑒𝑟(𝑘,𝑅)𝑃𝛿(𝑘)𝑑𝑘. (12)

From the homogeneity and isotropy of space (and, therefore, background

radiation), it unambiguously follows that 𝜎2
𝛿(𝑅) does not depend on the radius

vector. Similarly, the i-th spectral moment of the smoothed density contrast is

defined as

𝜎2
𝑖 (𝑅) =

∞∫︁
0

𝑘2𝑖−1𝑊 2
𝐹𝑜𝑢𝑟𝑖𝑒𝑟(𝑘,𝑅)𝑃𝛿(𝑘)𝑑𝑘 = 16/81

∞∫︁
0

𝑘2𝑖−1𝑊𝐹𝑜𝑢𝑟𝑖𝑒𝑟(𝑘,𝑅)(𝑘𝑅)4𝑃𝑅(𝑘),

(13)

Where 𝑖 is natural number and 𝜎0 = 𝜎𝛿.
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2.3 PBH mass and abundance

There is a Carr-Hawking model of collapse [13], in which the relation

between the PBH mass and the horizon mass at the moment of its formation

is derived

𝑀 = 𝜅𝑀𝐻 =
𝜅

2𝐺𝐻
. (14)

𝑀𝐻 is the horizon mass, 𝜅 is the efficiency of collapse. Considering that we are

talking about a radiation-dominated era, the Hubble constant is equal 𝐻 =

1/(2𝑡), which means that the PBH mass is 𝑀 = 𝜅𝑡/𝐺.

Cosmological expansion is an adiabatic process, so in accordance with [2]

we get the estimate 𝑀

𝑀

𝑀𝑆𝑈𝑁
= 1.13 · 1015 𝜅

0.2
(

𝑔*
106.75

)−1/6(
𝑘*

𝑘𝑃𝐵𝐻
)2. (15)

where 𝑔* is the effective number of relativistic degrees of freedom of energy

density, and 𝑘𝑃𝐵𝐻 = 1/𝑅 is the wave number of the PBH that exits the horizon.

The values for 𝜅 and 𝑔* are taken from [14]. Having equation (15), we can rewrite

expression (13) by expressing the variance in terms of the PBH mass.

Let us denote by 𝛽(𝑀) the mass fraction of PBHs at the moment of their

appearance:

𝛽(𝑀) =
𝜌𝑃𝐵𝐻(𝑀)

𝜌𝑅
, 𝑡 = 𝑡𝑃𝐵𝐻𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛. (16)

In this case, the 𝑓 parameter is currently equal to

𝑓(𝑀) =
𝜌𝑃𝐵𝐻(𝑀)

𝜌𝐷𝑀
, 𝑡 = 𝑡𝑜𝑑𝑎𝑦. (17)

Here we do not take into account such factors as radiation, accretion, and

merging of PBHs.

Finally, in accordance with [2] 𝑓(𝑀) and 𝛽(𝑀) are proportional, so [2]
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𝑓(𝑀) = 1.68 · 108(𝑀/𝑀𝑆𝑈𝑁)
−0.5𝛽(𝑀). (18)
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3 Final model

The sequence of actions for calculating quantities that are interesting to

us can be represented as follows:

𝛿𝑉 (𝜑) → 𝑃𝑅(𝑘) → 𝜎2
𝑖 (𝑀) → 𝛽(𝑀) → 𝑓(𝑀). (19)

In the previous chapter, the expressions for each of the indicated transitions

were deduced. It remains to express the final parameter in terms of the initial

numbers so that we can compose the final model.

We will express the magnitude of the probable disturbance as follows:

𝛿𝑉 (𝜑) = −𝐴(𝜑− 𝜑0)𝐹 (
𝜑− 𝜑0√

2𝜎
), (20)

where F is an even function satisfying the relation lim𝑥→∞ 𝑥𝐹 (𝑥) = 0. Thus,

the final model will have three variable parameters characterizing the shape and

location of the disturbance: 𝐴, 𝜑0 and 𝜎. It should be taken into account that

if 𝐴 is small enough, there will be a flat surface near 𝜑0 - an extremely small

perturbation indistinguishable from the background. This should be taken into

account in the model. Also, for the sake of simplicity and universality, 𝐹 (𝑥)

will be taken as the Lorentz function.

Let’s deal with the background level. It can be taken as Kachru – Kallosh

– Linde – Trivedi potential [15],

𝑉𝑏(𝜑) = 𝑉0
𝜑2

𝜑2 + (𝑚𝑃/2)2
. (21)

Again according to [15] 𝑉0/𝑚
4
𝑃 = 10−10, so for large 𝑘 the form of the

radiation spectrum 𝑃𝑅(𝑘) can retain scale invariance and a relatively small

tensor-to-scalar ratio is favored by the CMB observations [11]. Since, as mentioned

above, 𝐹 (𝑥) is taken as the Lorentz function,
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𝛿𝑉 (𝜑) = −𝐴
𝜑− 𝜑0

1 + (𝜑− 𝜑0)2/(2𝜎2)
. (22)

The graph of the function 𝑉 (𝜑) = 𝑉𝑏(𝜑) + 𝛿𝑉 (𝜑) is presented on the

Fig. 1.[16]

Fig 1 – The background inflaton potential 𝑉𝑏(𝜑) and the plateau (i.e., the USR

region) caused by the perturbation 𝛿𝑉 (𝜑), with 𝜑0/𝑚𝑃 = 1.81 and 𝜎/𝑚𝑃 =

0.057. For comparison, A is chosen to be 0.5𝑉𝑏,𝜑(𝜑0) (green dashed line), 𝑉𝑏,𝜑(𝜑0)

(red line), and 1.5𝑉𝑏,𝜑(𝜑0) (blue dashed line), respectively. The CMB pivot scale

𝑘* corresponds to 𝜑0/𝑚𝑃 = 2.90.

Fig. 2 shows the dependence of the 𝛿𝑉 (𝜑) on the 𝑃𝑅(𝑘). Shown are two

graphs representing the numerical solutions of equations (6) and (8) - (9),

respectively. The red line shows the scale invariant plot, just for clarity and

comparison.[16]

Now, having the dependence 𝑃𝑅(𝑘), we set the requirement for the number

of PBHs 𝑓(𝑀) ∼ 0.1 in the mass ranges of interest to us: 10−17𝑀𝑆𝑈𝑁 , 10−13𝑀𝑆𝑈𝑁 ,
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Fig 2 – The power spectra 𝑃𝑅(𝑘) influenced by the perturbation 𝛿𝑉 (𝜑): the

power spectrum by numerically solving Eq. (6) (black line), the power spectrum

from the SR approximations in Eq. (8-9) (blue line), and the nearly scale-

invariant power spectrum for comparison (red line).

30𝑀𝑆𝑈𝑁 . We have three variable parameters in the model — 𝐴, 𝜑0 and 𝜎, but

there are only two boundary conditions — for 𝑀 and for 𝑓 . To avoid divergence

during model operation, we add one more condition for 𝐴 = 𝑉𝑏,𝜑(𝜑0). By

equating it to the background level, we will ensure that our indignation reaches

a plateau around 𝜑0.

Thus, we get rid of one variable. Now the task is simplified and comes

down to just determining the values of the two remaining parameters, that are

𝜑0 and 𝜎.

𝑀/𝑀𝑆𝑈𝑁 𝜑0/𝑚𝑃 𝜎/𝑚𝑃

10−17 1.31 0.0831881

10−17 1.81 0.0405471

30 2.56 0.0159387

Table 1. The parameters 𝜑0 and 𝜎 for the PBH abundances 𝑓 ∼ 0.1 in the

three typical mass windows at 10−17𝑀𝑆𝑈𝑁 , 10−13𝑀𝑆𝑈𝑁 , and 30𝑀𝑆𝑈𝑁 ,
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respectively. With 𝑀 increasing, 𝜑0 increases (the USR stage occurs earlier)

and 𝜎 decreases (the duration of the USR stage shortens). Moreover, 𝑓 is

highly sensitive to 𝜎.

The spectra 𝑃𝑅(𝑘) and corresponding 𝑓(𝑀) are shown on Fig. 3. Corresponding

values for 𝜑0 and 𝜎 can be seen in Tab. 1.

Looking at these picture and table we now can sum up the results. The

first conclusion is that the more PBH mass 𝑀 grows the larger value 𝑃𝑅 peak

gets. Actually, this satisfies (15) and comes along with the theory, because large

𝑀 means a small 𝑘𝑃𝐵𝐻 . Also a smaller 𝑘𝑃𝐵𝐻 corresponds to an earlier time,

so 𝑀 and 𝜑0 grow simultaneously. Second conclusion is that a larger 𝜑0 would

enhance 𝑃𝑅, so if the height of 𝑃𝑅 maintains around 10−2 , the parameter 𝜎

must decrease accordingly. This is because the earlier the USR inflation occurs

(with larger 𝜑0), the more slowly the inflaton rolls down.
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Fig 3 – The power spectra PR(k) and the relevant PBH abundances f(M)

with the PBH masses 𝑀 in the three typical mass windows at 10−17𝑀𝑆𝑈𝑁 ,

10−13𝑀𝑆𝑈𝑁 , and 30𝑀𝑆𝑈𝑁 , respectively. If 𝑓 ∼ 0.1, 𝑃𝑅 needs to be enhanced

up to at least 10−2 on small scales, seven orders of magnitude higher than its

value on large scales. From (15), with 𝑀 increasing, 𝑘𝑃𝐵𝐻 decreases, so the

peak of 𝑃𝑅(𝑘) moves to larger scales.
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4 Conclusion

The study of PBHs is an interesting combination of black hole physics

and cosmology. This was largely aided by the discovery of merging gravitational

waves from binary black holes in the recent years. One of the main motivations

for studying PBH is to find an effective dark matter candidate. Currently,

compared to WIMP-like or axion-like DM candidates, experimental limitations

on PBHs are still rather weak. Therefore, the purpose of works that were

considered here is to study the content of PBHs by considering disturbances in

inflaton potential.

Summing up the results of this report, a number of conclusions should be

made.

First. The perturbation shape can be described by a fairly simple model of

three parameters, which makes it possible to construct a background radiation

scheme as a single analytical function.

Second. It is shown that for masses of primordial black holes in 10−17,

10−13 and 30 solar masses, a state of dark matter can be reached, at which the

mass fraction of primordial black holes is about 10

It should also be remembered that the calculated parameter 𝑓 depends

not only on the values considered. As noted above, the described model is

rather primitive and does not take into account a number of factors. Generally

speaking, restrictions on the mass fraction of PBHs in dark matter are discussed

very widely in the scientific community [17, 18, 19].
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