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Introduction

«One would be surprised if Nature had made no use of it» — with these
words Paul Dirac concluded his pioneering paper on existence of magnetic
monopoles back in 1931 [1]. Indeed, Maxwell’s equations without a source rep-
resent an amazing beauty of nature, because these equations are perfectly sym-
metrical with respect to the electric and magnetic fields. Opposite, Maxwell’s
equations with source are not symmetrical anymore — there is no isolated source
of magnetic field. It is with this motivation that Paul Dirac was conducted his
research on monoples, and came up with surprising result — the existence of a
magnetic monopole inevitably leads to the quantization of electric charge!

But with the development of particle physics, the quantization of the
charge is no longer surprising — now physicists are certain about the existence
of particles with a non-integer charge. Forty years after Dirac, physicists came
up to unified theories of strong and electroweak interactions, one of major mo-
tivation (beside symmetry of course) for them is non-integer charge, which nat-
urally arise in Georgi-Glashow theory [2]. But beside that, this model contains
one more amazing feature — magnetic monopoles. ’t Hooft [3] and Polykov
[4] shown that theories with unified gauge field inevitably contain magnetic
monopole and furthermore, such monopole is not an elementary particle is a
topological defect and the quantization condition depend on its topology con-
figuration!

Exactly from the researches of ’t Hooft and Polykov the modern the-
ory of magnetic monopoles are started. These magnetic monopoles would be
generated after spontaneous symmetry breaking in any Grand Unified Theory
(GUT) which contains a compact group.

In the history of theoretical physics, the hypothesis about the possible
existence of a magnetic monopole has no analogy. There is no other purely
theoretical construction that has managed not only to survive, without any ex-
perimental evidence, in the course of more than a century, but has also remained
the focus of intensive research by generations of physicists.
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1. Dirac Magnetic Monopole

A magnetic monopole is a hypothetical particle with only one isolated
magnetic pole. Pole Dirac in 1931 [1] proposed such particle with magnetic
charge g (by analogy with electric charge), and developed a theory of quanti-
zation of both electric and magnetic charges.

According to Dirac, if the magnetic monopole exist, then it’s field strength
H is written as:

H =
g

4π

r

r3
, (1.1)

where r is distance from the source of magnetic field, i.e. monopole and r — is
accordingly distance vector.

Those magnetic field contradicts to classical electrodynamics, because the
Maxwell equation now is changed as:

∇ ·H =
g

4π

(
∇ · r
r3

+ r · ∇ 1

r3

)
= 0, (1.2)

this is true only in a region r ̸= 0, but if r = 0 one need to consider a flux of
magnetic field through a sphere with infinity radii:∫

ds ·H =

∫
ds · g

4π

r

r3
=

∫
ds

g

4πr2
= g, (1.3)

and now the magnetic field divergence is written as:

∇ ·H = gδ3(r). (1.4)

According to this equation, deviation from electrodynamics is observed
only in local point (monopole itself), but in quantum theory it corresponds
to large energy, where classic electrodynamics doesn’t work (it will be shown
further).

Let us now imagine magnetic field 1.4 in the form of vector-potential A:
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H = ∇×A. (1.5)

To solve this system in terms of A, let us transform those equations in
spherical coordinate system:

g

4πr2
er =

1

r2 sin θ

∣∣∣∣∣∣∣∣∣
er reθ r sin θeφ

∂

∂r

∂

∂θ

∂

∂φ
Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣∣ , (1.6)

where er, eθ and eφ — basis in spherical system. Let us transform it into system
of equations: 

g

4πr2
=

∂

∂θ
(r sin θAφ)−

∂

∂φ
(rAθ),

0 =
∂

∂r
(r sin θAφ)−

∂Ar

∂φ
,

0 =
∂

∂r
(rAθ)−

∂Ar

∂θ
.

(1.7)

According to equation 1.4, rotor of vector-potential equal to 0 not every-
where — exception is only one point (r = 0), i.e. that or solves for A don’t
exist at all, or there are infinitely many solutions with correction on gradient
of some function. Because of infinitely many solutions, let us consider some
extraction conditions Ar = 0 and Aθ = 0, after that the third equation from
system 1.7 is true automatic. Solving the first equation, we become to:

Aφ =
g

4πr sin θ
(C − cos θ), (1.8)

as it is clearly seen, r sin θAφ doesn’t depend on r, which mean, that second
equation is also true automatic. Then vector-potential is written as:

A =
g

4πr sin θ
(C − cos θ)eφ. (1.9)

From formula 1.11 seen that A is singular at θ = 0 and θ = π or along
Z-axis in rectangular coordinate system. But we can reduce singularity of A
with variation on C.
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If C = 1:  AN =
g

4πr sin θ
(1− cos θ)eφ,

AS → ∞,

(1.10)

if C = -1:  AS = −
g

4πr sin θ
(1 + cos θ)eφ,

AN → ∞,

(1.11)

where AS and AN — vector-potentials of «north» and «sought» directions.
Half-axis on which A → ∞ called Dirac string (see fig. 1.1).

Fig. 1.1 — Dirac String (singularity along Z axis)

Since that AS and AN describe the same equation 1.5, they have to differ
by gradient of some function α:

AN −AS = ∇α, (1.12)

a linear function on φ correctly fit that equation:

α =
g

2π
φ. (1.13)

The 2π in determination correspond to rotation of Dirac string from AN

to AS, of course one can determine the α that it would rotate Dirac string at
any direction. In addition to the expected Coulomb field we obtain a singular
flux of the magnetic field. The very important point is that this extra piece
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resolves the above-mentioned paradox with the Maxwell equations, because the
flux of the string field exactly cancels the contribution from the Coulomb-like
part and a total flux of the fields through the closed surface with a monopole
inside is 0.

Let’s now take a look at theory with scalar field ϕ. A gauge transforma-
tion is looked like: {

Aµ → Aµ − ∂µα,

ϕ → ϕe−ieα,
(1.14)

let those gauge transformation transform AN into AS, then scalar field should
not change: 

ϕ′ = ϕe−ieα,

ϕ(φ = 0) = ϕ(φ = 2π),

ϕ′(φ = 0) = ϕ′(φ = 2π).

(1.15)

Then:
e−ieα(φ=0) = e−ieα(φ=2π), (1.16)

and from there:

α(φ = 0)− α(φ = 2π) =
2πn

e
. (1.17)

Finally, we get Dirac’s quantization:

g · e = 2πn. (1.18)

According to the obtained results, the symmetrization of Maxwell’s equa-
tion as expected leads to existence of magnetic monopoles. But with presence
of magnetic monopole two non-trivial effects arise:

1) if magnetic monopoles exist in the universe, then all electric charge in
the universe must be quantized according to Dirac quantization condition
1.18;

2) and such symmetrization leads to singularity in magnetic field of the
monopole — Dirac string, but the direction of Dirac string is changing
correspond to gauge transformations, this shows that Dirac strings are
not gauge invariant, which is consistent with the fact that they are not
observable.
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2. Non-Abelial Gauge theories: ’t Hooft–Polyakov
monopole

For the long time from the pioneering paper by Dirac, the most serious
argument to support the monopole concept However, as time went on and the
idea of grand unification emerged, it seemed that the latter argument had lost
some power.

Indeed, the modern point of view is that the operator of electric charge
is the generator of a U(1) group. The charge quantization condition arises in
models of unification if the electromagnetic subgroup is embedded into a semi-
simple non-Abelian gauge group of higher rank. In this case, the electric charge
generator forms nontrivial commutation relations with all other gen- erators of
the gauge group. Therefore, the electric charge quantization today is considered
as an argument in support of the unification approach.

Another essence of unified gauge theories break-through is that while a
Dirac monopole could be incorporated in an Abelian theory, some non-Abelian
models, like that of Georgi and Glashow [2], inevitably contain monopole-like
solutions as it was shown independently by ’t Hooft [3] and Polyakov [4].

2.1. SU(2) unified gauge theory

According to ’t Hooft [3] and Polyakov [4] let us take a look at non-Abelian
SU(2) theory with scalar field in the adjoint representation. The Lagrangian
density of such theory is:

L = −
1

4
F a
µνF

µν,a +
1

2
Dµϕ

aDµϕa −
λ

4
(ϕaϕa − v). (2.1)

The covariant derivative is defined as:

Dµϕa = ∂µϕ
a + ie[Aµ, ϕ

a].
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The field strength tensor is

F µν = ∂µAν − ∂νAµ + [Aµ, Aν],

where, a, b = 1, 2, 3, Aµ = ieAa
µt

a, e and λ are gauge and scalar coupling
constants, respectively. The generators of Lie algebra su(2) in fundamental
and adjoint representations are ta = σa/2 and (T a)bc = −iεabc, respectively.

After applying expressions for SU(2) notification covariant derivative and
strength tensor becomes:

Dµϕa = ∂µϕ
a − eAb

µεabcϕ
c and F a

µν = ∂µA
a
ν − ∂νA

a
µ + eεabcA

b
µA

c
ν. (2.2)

Potential of scalar field ϕ in 2.1 lead to spontaneously broken symmetry
SU(2) → U(1), let us chose the vacuum state of scalar field as ϕ0 = (0, 0, v).
Furthermore, let us consider a fluctuation φ of the scalar field ϕ around the
trivial vacuum ϕ0, where only the third isotopic component of the Higgs field
is non-vanishing:

ϕ = (0, 0, v + φ). (2.3)

Substitution of the expansion 2.3 into the Lagrangian 2.1 yields, up to
terms of the second-order:

L(2) ≈−
1

4
(∂µA

3
ν − ∂νA

3
µ)−

1

4
(∂µA

1
ν − ∂νA

1
µ)−

1

4
(∂µA

2
ν − ∂νA

2
µ)

+
1

2
e2v2((A1

µ)
2 + A1

ν)
2) +

1

2
e2v2((A2

µ)
2 + A2

ν)
2)

+
1

2
(∂µφ)

2 − 2λv2φ2.

(2.4)

According to 2.4, the perturbative spectrum of theory consists of:
1) massless vector field A3

µ corresponding to the unbroken electromagnetic
subgroup U(1);

2) massive vector fields W±
µ =

1
√
2
(A1

µ± iA2
µ), mW = ev, the electric charge

of the massive vector bosons is given by the unbroken U(1) subgroup;
3) massive scalar field φ, mφ =

√
2λv.
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After breaking symmetry, the Lagrangian 2.1 becomes:

L → −
1

4
(∂µA

3
ν − ∂νA

3
µ),

which means, that the Lagrangian satisfy the unbroken electrodynamics U(1).
For the low-energy limit U(1) it is convenient to chose field tensor as [3]

Fµν = naF a
µν +

1

e
εabcn

aDµn
bDνn

c, (2.5)

here na = ϕa/ϕ, which for chosen vacuum state becomes n = (0, 0, 1). After
substitution, the field tensor is

Fµν = −
1

4
(∂µA

3
ν − ∂νA

3
µ),

which is exactly describe U(1) electromagnetic theory.

2.2. Topological Classification of the Solutions

Beside the perturbative spectrum of Georgi-Glashow theory according to
2.4 there are also stable static solutions of field equations system with finite
energy. Let us consider the Langrangian 2.1 in static unitary gauge, which
means that ∂0 = 0 and A0 = 0. According to such gauge, the Hamiltonian or
the total energy of the system is

E =

∫
d3x

[
1

4
F a
ijF

ij,a +
1

2
Diϕ

aDiϕa +
λ

4
(ϕaϕa − v)

]
, (2.6)

where i, j = 1, 2, 3. For the finite total energy of the system E < ∞, the
non-trivial minimum of the energy 2.6 correspond to boundary conditions at
r → ∞ : 

ϕaϕa = v2,

Diϕa = 0,

F a
ij = 0.

(2.7)
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The first condition from 2.7 means that the scalar field forms a sphere S2
ϕ with

radius v in isotopic space. One can map the sphere S2
ϕ onto the boundary space

sphere S2
∞ (with r → ∞):

f : S2
∞ → S2

ϕ,

these maps are characterized by topological numbers n = degf ∈ Z. The
topological number correspond to the number of times the S2

ϕ turn around the
S2
∞. For the map f : S2

∞ → S2
ϕ, the topological number describes as:

n =
1

8πv3

∫
dSkε

ijkεabcϕ
a∂iϕ

b∂jϕ
c. (2.8)

The trivial case n = 0 correspond to asymptotic scalar field ϕa = (0, 0, v),
which means that the orientation of scalar field in isotopic space does not
depend on spatial coordinates.

The simplest non-trivial map can be constructed as:

lim
r→∞

ϕa = v
xa

r
, (2.9)

which means that isovector of scalar field ϕa is directed in the isotopic space
as the radius-vector xa directed in the spatial space at asymptotic r → ∞.
Alexander Polyakov in his paper [4] called such solution as «hedgehog» (see fig.
2.1).

The second asymptotic condition in 2.7 with ϕaϕa = v2 describe the
asymptotic vector field Aa

i . As it was shown in [3; 5], the solution for Diϕa = 0

can be written as:

Aa
i =

1

ev2
εabcϕ

b∂iϕ
c +

1

v
Aiϕ

a, (2.10)

where Ai is an arbitrary vector. Substituting 2.10 into expression for strength
tensor 2.2 yields to gauge-invariant tensor [6]:

Fij = ∂iAj − ∂jAi +
1

ev3
εabcϕ

a∂iϕ
b∂jϕ

c. (2.11)

As the strength tensor 2.5 defined by ’t Hooft, the strength tensor 2.11
also describe U(1) electromagnetic theory at low-energy limit, but the differ-
ences is that the tensor 2.5 is singular at zero of scalar field (due to normaliza-

10



tion), while tensor 2.11 is regular everywhere.

Fig. 2.1 — Configuration of isovector ϕa in the isotopic space

With obtained field strength tensor 2.11 one can justify the definition of
magnetic charge g as a flux of magnetic field through the infinitely distanced
sphere [7]:

g =

∫
dS ·H = −

1

2

∫
dSiε

ijkFjk =

= −
1

2

∫
dSiε

ijk

(
∂jAk − ∂kAj +

1

ev3
εabcϕ

a∂jϕ
b∂kϕ

c

)
=

=
1

2ev3

∫
dSiε

ijkεabcϕ
a∂jϕ

b∂kϕ
c =

4πn

e
,

here were also used
∫
dSiε

ijk(∂jAk − ∂kAj) = 0 and expression for topological
number n 2.8. Finally, we get charge quantization condition:

g =
4πn

e
. (2.12)

It is very non-trivial result — the non-Abelian theory with spontaneously
broken symmetry SU(2) → U(1) inevitably contain magnetic monopole and
furthermore, such monopole is not an elementary particle, according to obtained
results, monopole — is a topological defect and the quantization condition de-
pend on topology configuration of monopole!
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2.3. Asymptotic properties of ’t Hooft–Polyakov

monopole

In previous section, incredible results were obtained. The quantization
condition 2.12 is similar to Dirac quantization condition 1.18 if we assume
nD = 2n, where nD is Dirac quanting number and n is topological number.
And if both monopoles lead to one quantization condition, it is natural to
consider the connection between ’t Hooft–Polyakov and Dirac monopoles.

As it was shown above, the asymptotic scalar field at r → ∞ can be
written as 2.9. According to asymptotic conditions 2.7, vector field becomes
2.10 with the arbitrary vector Ai. Let us assume that Ai = 0, and substituting
asymptotic scalar field 2.9 into 2.10 yields to asymptotic fields configuration
also known as Wu–Yang monopole [8]:

ϕa = v
xa

r
,

Aa
i =

1

er2
εaijxj.

(2.13)

But in the law-energy limit and on the infinitely distanced from monopole
region the scalar field get value ϕa = (0, 0, v). Thus, one can define gauge
transformation: 

ϕ = ieϕa
σa

2
→ ωϕω−1,

Ai = ieAa
i

σa

2
→ ωAiω

−1 + ω∂iω
−1,

(2.14)

where σa is Pauli matrices (generators SU(2)); ω is object of SU(2), which
transform asymptotic scalar field inside monopole core 2.13 into vacuum state
ϕa = (0, 0, v) correspond to trivial map n = 0. The ω could be chosen as:

ω =

(
cos θ

2 − sin θ
2e

−iϕ

sin θ
2e

iϕ cos θ
2

)
, (2.15)

where θ and ϕ are spherical coordinates. Such gauge transformation is singular
in θ = π, in such case there is a «sought»-pole singularity due to uncertainty
in azimuth angle ϕ.
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Applying such singular transformation 2.15 to vector field yields to:

A =
1

er

1− cos θ

sin θ
eϕ, (2.16)

which is exactly the vector-potential for Dirac string 1.11 if we considered quan-
tization condition 2.12.

Of course, the gauge transformation between two configurations with dif-
ferent topological numbers cannot be continuously, such transformation always
will be singular [7] like 2.15. In case of ’t Hooft-Polyakov monopole such gauge
transformation leads to the fact that from an infinitely distant perspective such
monopole is similar to Dirac monopole with the characteristic Dirac string 2.16.
Polyakov called such effect as «comb the hedgehog» — when one try to rotate
the isovector ϕa in isotopic space to one direction, the Dirac string occur (dashed
line on fig. 2.2).

And actually the stability of monopole is secured by the topology —
there is no continuous transformations which can deform field configuration of
unbroken symmetry inside the monopole to the trivial vacuum state, there will
always be an infinity barrier!

Fig. 2.2 — Noncontinuous gauge transformation of isovector ϕa, dashed line
correspond to Dirac string (vector-potential)
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2.4. Bogomolny-Prosada-Sommerfeld limit

In the previous section it was shown that the field configuration inside
monopole asymptotically looks like 2.13. But it is interesting to define the inner
structure of the monpole. Thus, one can make use of the ’t Hooft–Polyakov
ansatz: 

ϕa =
xa

er2
H(ξ),

Aa
i =

1

er2
εaijxj(1−K(ξ))

(2.17)

where H(ξ) and K(ξ) are structure functions of dimensionless variable ξ = ver.
Those structural functions of scalar and gauge fields can be found from field
equations, but it is more convenient to use the condition that the monopole
itself correspond to the minimum of total energy 2.6. Substituting the ansatz
2.17 into the energy integral leads to:

E =
4πv

e

∫
dξ

ξ2

[
ξ2

(
dK

dξ

)2

+
1

2

(
ξ
dH

dξ
−H

)2

+

+
1

2
(K2 − 1)2 +K2H2 +

λ

4e2
(H2 − ξ2)2

]
.

(2.18)

Variations of this functional with respect to the functions H and K yields
ξ2
d2K

dξ2
= KH2 +K(K2 − 1),

ξ2
d2H

dξ2
= 2K2H +

λ

e2
H(H2 − ξ2).

(2.19)

The functions H and K must satisfy asymptotic boundary conditions 2.13:{
K(ξ) → 1, H(ξ) → 0 as ξ → 0,

K(ξ) → 0, H(ξ) → ξ as ξ → ∞.
(2.20)

Unfortunately, the system of non-linear equations 2.19 with boundary condi-
tions 2.20 cannot be solved analytical in general, but there is one very special
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exception with λ = 0 called Bogomolny-Prosada-Sommerfeld (BPS) limit [9–
11].

The simplest way to get BPS limit is to consider a total energy in general
form:

E =

∫
d3x

[
1

2

(
(Ea

i )
2 + (Ba

i )
2 + (Diϕ

a)2
)
+

λ

4
(ϕaϕa − v)

]
,

with condition λ = 0 energy can be rewritten as

E ≥
1

2

∫
d3x
(
Ea

i −Diϕ
a sinα

)2
+

1

2

∫
d3x
(
Ba

i −Diϕ
a cosα

)2
,

here α is arbitrary angle. It is clearly seen, that minimum of the energy corre-
sponds to {

Ea
i = Diϕ

a sinα,

Ba
i = Diϕ

a cosα,
(2.21)

these are the PBS equations. The situation is simple to analyze if the electric
charge and electric field vanish, then PBS equations simplifies to

Ba
i = Diϕ

a. (2.22)

And returning to the total energy

E ≥
∫

d3x
(
Ba

i ±Diϕ
a
)2 ∓Ba

i Diϕ
a ≥ ±

∫
Ba

i Diϕ
a,

the subintegral expression can be written as

Ba
i Diϕ

a = ∂i(Biϕ
a)− ϕaDiB

a
i ,

according to Bianchi identity, the last part can be vanished DiB
a
i = 0, then:

E ≥ ±
∫

d3x∂i(Biϕ
a) = ±

∫
dSiH

a
i ϕ

a = ±v

∫
dSiHi = v|g|.

After such calculations we finally get Bogomolny bound on monopole mass [9]:

M = E ≲ v|g|. (2.23)
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Substituting the ’t Hooft–Polyakov ansatz 2.17 into simplified BPS equations
yields to system: 

ξ
dK

dξ
= −KH,

ξ
dH

dξ
= H + (1−K2),

(2.24)

which have analytical solution:
H(ξ) = ξ coth ξ − 1

K(ξ) =
ξ

sinh ξ
.

(2.25)

Note, that the solution to the first-order BPS equation 2.24 automatically sat-
isfies the system of field equations of the second-order 2.19.

Numerical solutions of the system (5.43) were discussed in the papers [12;
13]. It turns out that the shape functions H(ξ) and K(ξ) approach rather fast
to the asymptotic values (see fig. 2.3)

Fig. 2.3 — The functions K(ξ) and H(ξ)/ξ for the ’t Hooft– Polyakov monopole
at λ = 0, (BPS limit) λ = 0.1 and λ = 1

Also numerical calculations [14] show that the mass of the monopole
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depends on the scalar coupling constant as

M ≈
4nv

e
f

(
λ

e2

)
, (2.26)

The smooth function f(λ/e2) is a monotonically increasing function, interpo-
lating between the limits

f(0) = 1, f(∞) = 1.787.

The reason why the mass becomes independent of the values of the cou-
pling constant λ for λ ≫ 1 is that in this limit the scalar field approaches the
asymptotic form faster than the vector field.

According to numerical results and BPS-solutions, the characteristic mass
of monopole is ∼ 1 − 10 TeV, with the vacuum expectetion value for Georgi-
Glashow theory v ∼ 100 GeV.
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3. Magnetic Monopoles and Cosmology

The Particle Physics and the Cosmology are closely related — laws of
particle physics are reflected at cosmological processes, especially at early uni-
verse stage, when energy density was high and physics beyond Standard Model
(SM) may occur.

One of the arguments for SM extension comes from unification of strong
and electroweak interactions in symmetries of Grand Unified Theories (GUT).
The discovery of nonzero neutrino mass in a form of neutrino oscillations has
already moved physics beyond the SM, because in the SM neutrinos stays mass-
less.

If the symmetry is spontaneously broken, it is restored when the temper-
ature exceeds the corresponding scale (∼ kT ). Such high temperatures should
have naturally arisen at the early stages of cosmological evolution. With the
cosmological expansion, the temperature decreased, and the phase transition
with broken symmetry may reflect at observable cosmological consequences.

It makes Universe a natural laboratory of particle physics, not only due to
possibility of the creation of hypothetical stable particles in the early universe,
but also owing to the reflection of the broken symmetry in cosmological phase
transitions and in their observable effects.

Since ’t Hooft-Polyakov monopoles are inevitably produced with the sym-
metry breaking in Georgi-Glashow model and in any GUT (with characteristic
mass ∼ 1016 GeV), it is interesting to study the effect, which may occur in
presence of monopoles at early Universe.

In the following chapter the problem of magnetic monopoles overproduc-
tion in Big Bang Theory and its solving in the framework of Inflation theory
are considered.
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3.1. Magnetic monopoles in Big Bang Theory

In the GUT with compacted U(1)em symmetry magnetic monopoles (and
antimonopoles) are predicted with masses exceeding the scale of GTU vGUT

(according to ’t Hooft and Polyakov):

m ∼
vGUT

e
∼ 1016 GeV, (3.1)

which makes it impossible to search for such monopoles on colliders.
Moreover, no artificial or natural source of particles in the modern Uni-

verse can provide the conditions for the production of particles with such gi-
gantic masses. But such energy scale may be reached at early universe, which
may lead to natural production of magnetic monopoles.

According to old Big Bang Theory, particles with mass m is in thermo-
dynamic equilibrium if:

T > m, (3.2)

at this condition, the reaction rate is

n(T )⟨σv⟩ > H, (3.3)

where n(T ) — concentration of particles (antiparticles) at temperature T , σ —
reaction cross-section, v — velocity of particles, H ∼ T 2/MPl — cosmological
expansion rate (Hubble parameter).

When the temperature decrease at level T < m, but condition 3.3 is
satisfied, the concentration reach its equilibrium value:

n(T ) =

(
2

π3

)
(mT )1/3 exp

[
−
m

T

]
. (3.4)

At temperature Tf , when reaction rate reach cosmological expansion rate
H, the particles are out of equilibrium, their relative concentrations are not
constant anymore – it is called freez-out.

Based on such process, one can estimate primordial concentration of mag-
netic monopoles, consider that at high temperature monopole-antimonopoles
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pairs were in equilibrium.
Following Zeldovich and Khlopov [15], consider annihilation reaction of

monopole-antimonopole in the early Universe. Annihilation reaction is defined
by Coulomb attraction of magnetic charges g. At the temperature T monopole-
antimonopole Coulomb attraction of magnetic charges is essential at distances:

r ≤ r0 =
g2

T
. (3.5)

In the case when the free pass in a plasma λ ≫ r0, free annihilation
reaction can be considered, in the opposite case, λ ≪ r0 annihilation first should
be treated in the diffusion approximation, and only then as a free annihilation
[15].

Since the concentration of monopoles in several order of magnitude lesser
than concentration of relativistic particles nγ, the free pass is determined as:

λ =
1

⟨nchσ⟩
, (3.6)

According to [16], The cross-section of monopole multiple scattering at
90◦ is given as:

σ ∼
(ge)2

Tm
, (3.7)

after which, the diffusion approximation is applicable up to time

t1 ≲
mPl

α2m2
(3.8)

which is corresponded to the temperature T ≲ eTcr.
To find annihilation rate, let us consider the diffusion equation of monopoles

and antimonopoles in an absorbing sphere with radius a ≤ r0:

∂n(r, t)

∂t
=

D

r2
·
∂

∂r
r2

(
∂n(r, t)

∂r
+

g2

Tr2
n(r, t)

)
, (3.9)

where D = 1/3 · λv is a diffusion coefficient. In static case ∂n/∂t = 0, with
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boundary conditions:
n(∞) = nm, n(a) = 0,

the solution of the equation 3.9 is:

n(r) =


0, r ≤ a,

n0

1− exp(r0/r − r0/r)

1− exp(−r0/a)
, r > a.

(3.10)

Then the diffusion flux is given by:

Φ = 4πr2D
∂n(r)

∂r
≈ 4πDr0nm, (3.11)

and the annihilation rate is:

dnm

dt
= −n2

m4πDr0. (3.12)

Now the equation for the relative monopole concentration ν = nm/nγ

with account of equation 3.12 in case of monopoles going out of thermodynamic
equilibrium (up to time t1 3.8) is given by [17; 18]:

dν

dt
= −4πDr0nγν

2 = −Aθ1/2ν2, (3.13)

where θ = T/m is a dimensionless temperature and

A =
4π

3

g

e
m.

Solution for equation 3.13 is

ν(t) =
ν(t0)

1 +
4

3
Aθ

1/2
0 t0(τ 3/4 − 1)ν(t0)

, (3.14)

where τ = t/t1.
According to [15], further annihilation of free monopoles does not change

results of diffusion approximation and concentration of relic monopoles can be

21



taken as:
ν(∞) ≈ ν(t1).

Thus, if primordial monopole’s concentration is

ν0 ≪
3

4Aθ11/2
t1, (3.15)

then concentration of relic monopoles does not depend on ν0 and density of
relic monopoles with mass m ∼ 1016 GeV can be written as:

Ωm = m
m

g5(eg)mPl

nγ

ϵcr
∼ 1015

(
vGUT

1016 GeV

)
, (3.16)

which is at least on 15 orders of magnitude grater than barionic density!
In fact, diffusion slow down annihilation rate with respect to the free

annihilation, which means that more monopoles should survive.

3.2. Inflation as a solution of monopole overproduction

problem

text text text
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4. Searches for ultraheavy magnetic monopoles

In this chapter, briefly discussion on experiments for searching of ultra-
heavy magnetic monopoles is presented.

Particles carrying magnetic charge, similarly to electric charge, will de-
posit some amount of energy through the ionization process and excitation of
atoms when they traverse matter. To calculate the energy loss of monopoles
passing through matter, the energy transfer of the monopole to the surrounding
medium is considered.

There are three primary ways via which the energy can be dissipated and
their importance depends on the monopole velocity and the medium: ionization,
atomic excitation and elastic collisions with atoms.

Modern experiments such as IceCube, NOvA, Macro search for monopoles
in width range of its velocity from β ∼ 10−4 up to β ∼ 1.

Magnetic monopoles can gain kinetic energy through acceleration in mag-
netic fields. This acceleration follows from a generalized Lorentz force law [19].
The kinetic energy gained by a monopole of charge g traversing a magnetic
field B with coherence length L is about E ∼ gBL [20]. At such high kinetic
energies magnetic monopoles can pass through the Earth while still having
relativistic velocities.

The magnetic charge g moving with a velocity β = v/c produces an elec-
trical field whose strength is proportional to the particle’s velocity and charge.
At velocities above vc = c/np, where np is the refraction index of matter,
Cherenkov light is produced analogous to the production by electrical charges
in an angle θ of

cos θ =
1

npβ
. (4.1)

The number of Cherenkov photons per unit path length x and wavelength
λ emitted by a monopole with one magnetic charge g can be described by the
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usual Frank-Tamm formula for a particle with effective charge Ze → gnp [21]:

d2Nγ

dxdλ
=

2πα

λ2

(
gnp

e

)2(
1−

1

β2n2
p

)
. (4.2)

For example, for IceCube detector, a minimal charged monopole generates 8200
times more Cherenkov radiation in ice (with np ≈ 1.32) than an electrically
charged particle with the same velocity (see fig. 4.1) [22].

Fig. 4.1 — Number of photons per cm produced by different sources

In addition to this effect, a (mildly) relativistic monopole knocks electrons
off their binding with an atom. These high energy -electrons can reach velocities
above the Cherenkov threshold vc. For the production of -electrons the Kasama-
Yang-Goldhaber (KYG) cross-section is used to calculate the energy transfer
from the monopole to the -electron, and as a result inderect Cherenkov radiation
is produced.

With account the KYG cross-section, the energy loss of monopole can be
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calculated as:

dE

dx
=

4πNeg
2e2

mec2

(
ln

2mec
2β2γ2

I
+

K(g)

2
−

δ + 1

2
−B(g)

)
, (4.3)

where Ne is electron density, γ is Lorentz factor of monopole, I is the ionization
potential, K(g) is QED correction for the KYG cross-section, δ is the density
effect correction [23] and B(g) is a Bloch correction.

Thus, the brightness of the Cherenkov detector is

dNγ

dx
=

dNγ

dE

dE

dx
, (4.4)

with energy loss 4.3 and detector luminescence light dNγ/dE.
The background of a monopole search consists of all other known particles

which are detectable. The most abundant background are muons or muon bun-
dles produced in air showers caused by cosmic rays. The majority of neutrino
induced events are caused by neutrinos created in the atmosphere. Conventional
atmospheric neutrinos, produced by the decay of charged pions and kaons, are
dominating the neutrino rate from the GeV to the TeV range. Prompt neutri-
nos, which originate from the decay of heavier mesons, i.e. containing a charm
quark, are strongly suppressed at these energies.

On the fig. 4.2 shown limits for relativistic ultraheavy monopoles from ex-
periments BAIKAL [24], ANTARES [25], IceCube [22; 26] and up-going results
from MACRO [27].

Dashed line on the fig. 4.2 correspond to Parker limit [28]

Φ ≲ 10−15 cm−2 s−1sr−1,

which is caused by primordial magnetic field.
Energy loss for slow monopoles differ from 4.3 and, according to Ahlen

and Kinoshita [29], it can be taken as:

dE

dx
= aN 2/3

e

[
ln

(
bN 1/3

e

)
− cfrac12

]
β, (4.5)
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where the constants a and b do not depend on material and are defined as:

a =
2πg2e2

(3π2)1/3
, b = 2(3π2)1/3a0, (4.6)

a0 is the Bohr radius. Note that 4.5 is for non-catalyzing slow monopoles, and
it is applicable at β < 10−2. On the fig. 4.3 shown experimental limits on
non-relativistic monopoles obtained with NOvA [30], going-up MACRO [27]
experiments.

Fig. 4.2 — Experimental limits on relativistic ultraheavy monopoles flux

Fig. 4.3 — Experimental limits on non-relativistic ultraheavy monopoles flux
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