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1 Introduction

[1]

2 Effective field theory

2.1 Introduction and aQGC

Effective extension of the SM consists in the parameterization of the Lagrangian with the
operators of higher dimensions with some coefficients:

L = LSM +
∑
i

∑
n

Fi,n

Λn
On+4

i = LSM +
∑
i

∑
n

fi,nOn+4
i . (1)

In this equation LSM is the SM Lagrangian, Λ is the new physics energy scale, On+4
i is the

i-th operator of n + 4 dimension, Fi,n is the corresponding unobservable dimensionless coeffi-
cient, fi,n = Fi,n/Λ

n is the corresponding (Wilson’s) observable coefficient which has dimension
TeV−n.

In this report anomalous quartic gauge couplings (aQGC) was considered. It is convenient to
study this couplings with operators of eight dimensions which lead to genuine aQGC without the
contribution of anomalous triple gauge couplings (aTGC) [2]. These operators are constructed
from covariant derivative of the Higgs field

DµΦ =

(
∂µ + ig

σi

2
W i

µ + ig′
1

2
Bµ

)
Φ, (2)

SU(2)L field strength tensor

Ŵµν =
σi

2
W i

µν , (3)

where
W i

µν = ∂µW
i
ν − ∂νW

i
µ + gεijkW k

µW
k
ν , (4)

and U(1)Y field strength tensor
Bµν = ∂µBν − ∂νBµ (5)

and can be divided into three families. S-family operators contain just covariant derivatives of
the Higgs field:

OS0 =
[
(DµΦ)

†DνΦ
] [

(DµΦ)†DνΦ
]
,

OS1 =
[
(DµΦ)

†DµΦ
] [

(DνΦ)
†DνΦ

]
.

(6)
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T-family operators contain just gauge field strength tensors:

OT0 = Tr
[
ŴµνŴ

µν
]
Tr

[
ŴαβŴ

αβ
]
,

OT1 = Tr
[
ŴανŴ

µβ
]
Tr

[
ŴµβŴ

αν
]
,

OT2 = Tr
[
ŴαµŴ

µβ
]
Tr

[
ŴβνŴ

να
]
,

OT5 = Tr
[
ŴµνŴ

µν
] [

BαβB
αβ
]
,

OT6 = Tr
[
ŴανŴ

µβ
]
[BµβB

αν ] ,

OT7 = Tr
[
ŴαµŴ

µβ
]
[BβνB

να] ,

OT8 = [BµνB
µν ]

[
BαβB

αβ
]
,

OT9 =
[
BαµB

µβ
]
[BβνB

να] .

(7)

Finally, M-family operators mix covariant derivatives of the Higgs field and gauge field strength
tensors:

OM0 = Tr
[
ŴµνŴ

µν
] [

(DβΦ)
†DβΦ

]
,

OM1 = Tr
[
ŴµνŴ

νβ
] [

(DβΦ)
† DµΦ

]
,

OM2 = [BµνB
µν ]

[
(DβΦ)

†DβΦ
]
,

OM3 =
[
BµνB

νβ
] [

(DβΦ)
†DµΦ

]
,

OM4 =
[
(DµΦ)

† ŴβνD
µΦ

]
Bβν ,

OM5 =
[
(DµΦ)

† ŴβνD
νΦ

]
Bβµ + h.c.,

OM7 =
[
(DµΦ)

† ŴβνŴ
βµDνΦ

]
.

(8)

From all possible quartic gauge couplings SM predicts just WWWW , WWZZ, WWZγ,
WWγγ. Table 1 shows which quartic gauge couplings are affected by each operator.

Table 1: Influence of the 8-dimensional operators on quartic gauge couplings. Affected cou-
plings are marked with a symbol ◦.

Operator WWWW WWZZ WWZγ WWγγ ZZZZ ZZZγ ZZγγ Zγγγ γγγγ
OS0, OS1 ◦ ◦ ◦

OT0, OT1, OT2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
OT5, OT6, OT7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

OT8, OT9 ◦ ◦ ◦ ◦ ◦
OM0, OM1, OM7 ◦ ◦ ◦ ◦ ◦ ◦ ◦

OM2, OM3, OM4, OM5 ◦ ◦ ◦ ◦ ◦ ◦

2.2 Amplitude decomposition

For studying processes using EFT one need to know how cross section depends on coefficient
value. This dependence is considered in this section for the case when process contains not more
that one new physics vertex.
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In the general case, when Lagrangian is parameterized with a set of operators as

L = LSM +
∑
i

fiOi, (9)

amplitude of some process contains SM and beyond-the-SM (BSM) terms and can be written
as

A = ASM +
∑
i

fiABSM,i. (10)

Square of this amplitude is

|A|2 = |ASM|2 +
∑
i

fi2Re(A†
SMABSM,i) +

∑
i

f 2
i |ABSM,i|2 +

∑
i,j,i>j

fifj2Re(A†
BSM,iABSM,j). (11)

So, squared amplitude as well as cross section contains SM term, interference (linear) terms
∝ fi, quadratic terms ∝ f 2

i and cross terms ∝ fifj.
For setting 1D limits the Lagrangian is parameterized by a single operator as

L = LSM + fO. (12)

In this case amplitude and its square are

A = ASM + fABSM (13)

and
|A|2 = |ASM|2 + f2Re(A†

SMABSM) + f 2|ABSM|2. (14)

Therefore, cross section contains one SM term, one interference term and one quadratic term
and can be written as

σ = σSM + fσint + f 2σquad. (15)

If considered process is not predicted by the SM, then ASM = 0 and cross section is

σ = f 2σquad. (16)

3 Constraints from the CMB in the early Universe

3.1 Setting limits methodology

Such processes as γγ → νν̄νν̄ can affect modern relic neutrino number density n0
ν = 339.5

cm−3 which can be predicted from the standard cosmological Big Bang model using observable
CMB number density n0

γ = 410.7 cm−3 [3]. Of course, predicted neutrino number density from
the anomalous couplings npred,0

ν should be less than n0
ν . Taking into account that predicted
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neutrino number density depends on EFT coupling constant f , condition

npred,0
ν < n0

ν (17)

can lead to constraint on f .
Neutrino number density from the anomalous couplings can be predicted as

npred,0
ν = ανn0 =

ανN0

V0

, (18)

where N0 is the number of anomalous interactions that have occurred to present-day time
moment, n0 is N0 per unit volume, αν is the number of neutrinos that are produced from a
single anomalous interaction and V0 is the present-day size of the Universe.

In the following calculations the first photon is incoming and the second photon is the mobile
target. Assuming that CMB photons have Planck’s energy distribution and isotropic spatial
distribution, one can define the flux of the incoming photons

d4N1

dE1 dΩ1 dS dt
= fPl(E1|T )

1

4π
nγc (19)

and the distribution of the target photons

d2N2

dE2 dΩ2

= fPl(E2|T )
1

4π
nγV, (20)

where T is the CMB temperature (Planck’s distribution parameter), nγ is CMB photons number
density, c is the speed of light, V is the size of the Universe and

fPl(E|T ) = qE2

eE/T − 1
(21)

is the Planck’s energy distribution normalized to unity with coefficient q = (2ζ(3)T 3)−1.
Since interacting photons have different energies and relative angle, it is necessary to know

cross section dependence on this parameters. This can be done in the following way. Choosing
spatial frame so that momentum of the first photon directed along the z axis, s invariant can
be represented as

s = (p1 + p2)
2 = 2(p1p2) = 2(E1E2 − p⃗1p⃗2) = 2E1E2(1− cos θ2). (22)

Then, obtaining cross section dependence on s invariant, one can obtain its dependence on E1,
E2 and cos θ2. Assuming that σ(s) is a polynomial function

σ(s) = f 2
∑
i

pis
i (23)
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with i > 0 (anomalous cross section increases with energy), then

σ(E1, E2, cos θ2) = f 2
∑
i

2ipiE
i
1E

i
2(1− cos θ2)

i. (24)

Frequency of the considered process is

Ṅ =

∫
σ(E1, E2, cos θ2)

d4N1

dE1 dΩ1 dS dt
d2N2

dE2 dΩ2

dE1 dE2 dΩ1 dΩ2. (25)

Taking into account Eq. 19, 20 and 24 and integrating over all angles θ1, ϕ1 and ϕ2, it can be
rewritten as

Ṅ =
1

2
cn2

γV f 2
∑
i

2ipi

∫
Ei

1E
i
2(1− cos θ2)

ifPl(E1|T )fPl(E2|T ) dE1 dE2 d cos θ2. (26)

Integration by energy can be performed using formula

∞∫
0

EifPl(E|T ) dE = q

∞∫
0

Ei+2

eE/T − 1
dE = qT i+3Γ(i+ 3)ζ(i+ 3), (27)

where Γ(x) is the gamma function and ζ(x) is Riemann zeta function. So the integral from Eq.
26 is∫

Ei
1E

i
2(1− cos θ2)

ifPl(E1|T )fPl(E2|T ) dE1 dE2 d cos θ2 =

=

∞∫
0

Ei
1fPl(E1|T ) dE1

∞∫
0

Ei
2fPl(E2|T ) dE2

1∫
−1

(1− cos θ2)
i d cos θ2 =

=

 ∞∫
0

EifPl(E|T ) dE

2 2∫
0

yi dy = q2T 2i+6 (Γ(i+ 3)ζ(i+ 3))2
2i+1

i+ 1
=

= T 2i 2
i−1

i+ 1

Γ2(i+ 3)ζ2(i+ 3)

ζ2(3)
, (28)

where y = 1− cos θ2. Finally, frequency of the considered process can be rewritten as

Ṅ =
cn2

γV f 2

4ζ2(3)

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)T 2i. (29)

In this formula CMB number density nγ, CMB temperature T and size of the Universe V

depend on time t. In addition, anomalous interactions lead to a decrease in the CMB number
density. So, nγ depend on N . Therefore, Eq. 29 becomes a differential equation. Solving of
this equation can be used for obtaining npred,0

ν with Eq. 18 and setting limits with Eq. 17.
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3.2 Choice of the time interval and dependencies estimation

Since in EFT cross sections increases with the energy, the most interesting stage of the
Universe evolution for this study is radiation dominance stage (RD). Besides, non-zero mass of
the neutrino leads to impossibility of reactions of neutrino production from CMB when energies
of the photons are too small. Therefore, contribution from stages after RD is negligible. So
upper time point can be chosen as tmax = 105 yr. In the other side, neutrino had been in the
equilibrium with another particles up to moment t ≈ 1 s (T ≈ 1 MeV). So lower time point
can be chosen as tmin = 1 s.

Number density from the CMB photons decreases due to the Universe expansion and from
the anomalous interactions:

nγ(t) =
(
n0
γV0 − αγN(t)

) 1

V (t)
, (30)

where αγ is the reducing of the number of CMB photons per single anomalous interaction.
Thus Eq. 29 can be rewritten as

dN
dt

=
(
n0
γV0 − αγN

)2 1

V (t)

cf 2

4ζ2(3)

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)T 2i(t). (31)

This is a differential equation, where variables N and t can be separated. After integrating by
N from 0 to N0 it can be seen that

1

αγ

(
1

n0
γV0 − αγN0

− 1

n0
γV0

)
=

tmax∫
tmin

1

V (t)

cf 2

4ζ2(3)

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)T 2i(t) dt. (32)

Multiplying this equation by αγV0 and taking into account that V (t) ∝ a3(t) and a(t) ∝ T−1(t),
one can find that

1

n0
γ − αγn0

− 1

n0
γ

=
αγcf

2

4ζ2(3)T 3
0

∑
i

4i

i+ 1
piΓ

2(i+ 3)ζ2(i+ 3)

tmax∫
tmin

T 2i+3(t) dt (33)

where T0 = 2.73 K = 2.35 · 10−4 eV is observable present-day CMB temperature.
Dependence of the CMB temperature on time can be estimated from the facts that T ∝ a−1,

a ∝
√
t at the RD and conditions that T (tmin) = Tmin and T (tmax) = Tmax, where Tmin = 1

MeV and Tmax = 1 eV. So, one can obtain

T (t) = g +
h√
t
, (34)

where values of the parameters are h = (Tmin − Tmax)/(t
−1/2
min − t

−1/2
max ) and g = Tmin − ht

−1/2
min .
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Figure 1: Temperature.

Integral from Eq. 33 denoted as Ii can be calculated using binomial theorem:

Ii =

tmax∫
tmin

T 2i+3(t) dt =
tmax∫

tmin

(
g +

h√
t

)2i+3

dt = h2i+3

2i+3∑
k=0

Ck
2i+3

(g
h

)2i+3−k
tmax∫

tmin

t−k/2 dt =

=
2i+3∑

k=0,k ̸=2

Ck
2i+3g

2i+3−khk t
1−k/2
max − t

1−k/2
min

1− k/2
+ C2

2i+3g
2i+1h2 ln

tmax

tmin
, (35)

where Ck
n = n!

k!(n−k)!
is the binomial coefficient. Using Eq. 33, formula for n0 can be written as

n0 =
n0
γ

αγ

1− 1

1 + f 2 αγn0
γc

4ζ2(3)T 3
0

∑
i

4i

i+1
piΓ2(i+ 3)ζ2(i+ 3)Ii

 . (36)

Then, using Eq. 17 and 18, constraint on f can be found as

|f | <
√√√√ 1

ανn0
γ − αγn0

ν

n0
ν

n0
γ

4ζ2(3)T 3
0

c
∑
i

4i

i+1
piΓ2(i+ 3)ζ2(i+ 3)Ii

. (37)

3.3 Cross section parameterization and results

αγ = 2, αν = 4.
For cross section parameterization Monte Carlo event generator MadGraph5 [4] was used.
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Figure 2: Diagram γγ → νν̄νν̄.

Table 2: fT0

s, GeV−4 σ(fT0 = 1 GeV−4), pb σ(fM0 = 1 GeV−4), pb
4 · 10−8 (6.13± 0.08) · 10−71 (7.87± 0.02) · 10−48

10−6 (3.74± 0.03) · 10−61 (7.70± 0.02) · 10−41

4 · 10−6 (6.27± 0.08) · 10−57 (7.87± 0.04) · 10−38

10−4 (3.73± 0.01) · 10−47 (7.68± 0.03) · 10−31

4 · 10−4 (6.18± 0.02) · 10−43 (7.89± 0.04) · 10−28

7−10 6−10 5−10 4−10
2s, GeV

69−10

66−10

63−10

60−10

57−10

54−10

51−10

48−10

45−10

, p
b

σ

MC modelling

Fit

-4=1 GeV
T0

(s), fσ

7−10 6−10 5−10 4−10
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47−10

45−10

43−10

41−10

39−10

37−10

35−10

33−10

31−10

29−10

, p
b

σ

MC modelling

Fit

-4=1 GeV
M0

(s), fσ

Figure 3: Fit.

Table 3: Fit parameters

Coefficient Parameters
fT0 p7 = 3.74 · 10−19 pb/GeV6

fM0 p5 = 7.69 · 10−11 pb/GeV2

Table 4: Results

Coefficient Limit, TeV−4

fT0 1.4 · 1035
fM0 2.4 · 1027

4 Constraints from the ultra-high-energy cosmic rays

Coming soon.
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5 Conclusion
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