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Abstract

The hypothesis of Lorentz violation in the neutrino sector has intrigued scientists

for the last two to three decades. A number of theoretical arguments support the

emergence of such violations first and foremost for neutrinos, which constitute the

“most elusive” and “least interacting” particles known to mankind. It is of

obvious interest to place strigent bounds on the Lorentz-violating parameters in

the neutrino sector. In the past, the most stringent bounds have been placed by

calculating the probability of neutrino decay into a lepton pair, a process made

kinematically feasible by Lorentz violation in the neutrino sector, above a certain

threshold. However, even more stringent bounds can be placed on the

Lorentz-violating parameters if one takes into account, additionally, the possibility

of neutrino splitting, i.e., of neutrino decay into a neutrino of lower energy,

accompanied by “neutrino-pair Cerenkov radiation”. This process has negligible

threshold and can be used to improve the bounds on Lorentz-violating parameters

in the neutrino sector. Finally, we take the opportunity to discuss the relation of

Lorentz and gauge symmetry breaking, with a special emphasis on the theoretical

models employed in our calculations.
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Motivation

I Neutrinos are very elusive particles.

I Speculation about tachyonic nature
[Chodos, Hauser, Kostelecky, PLB 1985]

I Speculation about Lorentz violation
E =

√
~p2 v2 +m2 with v > 1.

Since 1998 [Colladay and Kostelecky].

I Lorentz–Violating Extension of Standard Model (SME)
developed with strong inspiration from neutrinos.

I Anyway, decay among neutrino mass eigenstates
kinematically allowed due to their mass differences.

I However, decay rates for “ordinary” neutrinos
(both Dirac as well as Majorana)
exceed lifetime of Universe by orders of magnitude.

I Lorentz-violating neutrinos undergo stronger
decay and energy loss mechanims than “ordinary” neutrinos
because of their dispersion relation E ≈ |~p| v
(at high energy), which makes a number of decays
kinematically possible.
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Looking at Neutrinos

I Early arrival of the 1987A neutrinos from the supernova.

I Consistent (statistically insignificant) experimental results δν & 0 by
various groups. (vν =

√
1 + δν .)

I Neutrinos cannot be used to transmit information (at least not easily)
because of their small interaction cross sections. Superluminality of
neutrinos would not necessarily lead to violation of causality.

I Cutoff in the cosmic spectrum seen by IceCUBE at about 2 PeV.
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LPCR and NPCR

(a) LPCR=Lepton–Pair Cerenkov Radiation
(b) NPCR=Neutrino–Pair Cerenkov Radiation

5



Double–Bind Situation and Subtle Points

I On one hand, it seems natural to assume that δν > 0, while δe = 0, i.e.,
that Lorentz violation only occurs in the neutrino, but not in the
charged-lepton (electron-positron) sector.

I On the other hand, once we make this assuption, then, strictly
speaking, we break SU(2)L gauge invariance, because neutrinos and
charged leptons are in the same SU(2)L doublet, and thus, both
convariantly coupled to the electroweak gauge sector (same multiplet).

I The SME is constructed so that strict gauge invariance is maintained.

I Pragmatic approach used by Cohen and Glashow, by Bezrukov and
Lee, and by us: Stick with the “natural assumption” δe ≈ 0, while
δν > 0, and allow for a small violation of gauge invariance. (Finally, we
also break Lorentz invariance.)

I Double-bind situation: Either break gauge invariance or accept that
δν = δe is bound by any limit set for electrons, defeating the purpose of
looking at the neutrino sector.

I (The relation of gauge invariance and Lorentz invariance breaking will
be discussed later.)

I The way in which electroweak gauge invariance is broken, influences
the functional form of the interaction Lagrangian. The model
dependence should be studied (Bezrukov and Lee).
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Three Papers

I A. G. Cohen and S. L. Glashow, Pair Creation Con- strains
Superluminal Neutrino Propagation, Phys. Rev. Lett. 107, 181803
(2011).
Refuted the OPERA experiment based on LPCR.

I F. Bezrukov and H. M. Lee, Model dependence of the bremsstrahlung
effects from the superluminal neutrino at OPERA, Phys. Rev. D 85,
031901(R) (2012).
Model dependence of LPCR.

I G. Somogyi, I. Nandori and U. D. Jentschura, Neutrino Splitting for
Lorentz–Violating Neutrinos: Detailed Analysis, Phys. Rev. D 100,
035036 (2019).
Model dependence, gauge invariance and addition of NPCR.

Additional remarks on the gauge invariance:
U. D. Jentschura, I. Nándori, and G. Somogyi, Lorentz Breaking and
SU(2)L × U(1)Y Gauge Invariance for Neutrinos, Int. J. Mod. Phys. E 28,
1950072 (2019).
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Threshold (I)

I Parameterize the deviation from the speed of light as:

v =
√

1 + δ ≈ 1 + 1
2
δ .

I Initial state/particle: δi, four-momentum p1:

vi =
√

1 + δi .

I Emitted particles: δf , four-momenta p2 and p4:

vf =
√

1 + δf , .
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Threshold (II)

I Threshold for LPCR (δf = 0):
[minimum energy of particle 1 to undergo LPCR]

Eth =
2me√
δi
,

I Threshold for NPCR (δf = 0):

Eth =
2mν√
δi
, mν � me .
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Mass eigenstate Basis

I Mass and flavor basis:

ν
(f)
k =

∑
Uk` ν

(m)
` .

I Interaction with Z0 boson in flavor basis:

L = − gw
4 cos θW

∑
k,`,`′

U+
`k Uk`′ ν

(m)
` γµ(1− γ5) ν

(m)

`′ Zµ .

I Unitary transformation:

L = − gw
4 cos θW

∑
k,`,`′

U+
`k Uk`′ ν

(m)
` γµ(1− γ5) ν

(m)

`′ Zµ .

I Interaction with Z0 boson in mass eigenstate basis:

L = − gw
4 cos θW

∑
`

ν
(m)
` γµ(1− γ5) ν

(m)
` Zµ .
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Lagrangian of Superluminal Particle

I Introduce metric with tilde:

L =
∑
`

i ν
(m)
` γµ (1− γ5) g̃µν(v`) ∂

νν
(m)
` .

I Define:
g̃µν(v`) = diag(1,−v`,−v`,−v`) .

I Dispersion relation:
E` = |~p| v` .

I Ignore mass in

E` =
√

(|~p| v`)2 +m2
` .

I For neutrinos: We know that the m` are different. So, there is reason
to assume that the δ` are also different among mass (flavor)
eigenstates, if they are different from zero.
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Interaction Lagrangian and Model Dependence

I Define parameter vint for unified description of LPCR and NPCR:

Lint = fe
GF

2
√

2
ν

(m)
i γλ (1− γ5) ν

(m)
i

× g̃λσ(vint) ψ̄f γ
σ (cV − cA γ5)ψf .

I Cohen and Glashow: vint = 1. Bezrukov and Lee: vint = 1 (“model I”)
and vint = vi (“model II”). Somogyi, Nandori and Jentschura: vint is
kept as a variable. “Gauge invariance” (to be clarified later):
vint = vi vf . Both Cohen and Glashow, as well as Bezrukov and Lee,
assume that δf = 0 for LPCR.

I Parameter fe:

fe =

{
1, ψf = ν

(m)
f

2, ψf = e
.

I Approximately, one has

(cV , cA) =

{
(1, 1) ψf = ν

(m)
f

(0,− 1
2
), ψf = e

.
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Calculation of the Decay Rate

Consider:
νi(p1)→ νi(p3) + ψ̄f (p2) + ψf (p4) .

Recall Feynman diagrams:
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Calculation of the Decay Rate

Matrix element:

M = fe
GF

2
√

2

[
ūi(p3)γλ(1− γ5)ui(p1)

]
g̃λσ(vint)

×
[
ūf (p4)(cV γ

σ − cAγσγ5)vf (p2)
]
.

It gets complicated:

1

ns

∑
spins

|M|2 =
1

ns
f2
e
G2
F

8
Tr[(vi/p3

+ (1− vi)(p3 · t)/t)

× γλ(1− γ5)(vi/p1
+ (1− vi)(p1 · t)/t)γσ(1− γ5)]

× [vintgλρ + (1− vint)tλtρ][vintgστ + (1− vint)tσtτ ]

× Tr[(vf/p4
+ (1− vf )(p4 · t)/t)(cV γρ − cAγργ5)

× (vf/p2
+ (1− vf )(p2 · t)/t)(cV γτ − cAγτγ5)] .
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Unified Treatment and Splitting of Phase Space

We have:

Γ =
1

2E1

∫
dφ3(p2, p3, p4; p1)

1

ns

∑
spins

|M|2 .

We want to write:

Γ =
1

2E1

∫ M2
max

M2
min

dM2

2π
dφ2(p3, p24; p1) dφ2(p2, p4; p24)

1

ns

∑
spins

|M|2 .
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Key to the Calculation

Formalism described in
E. Byckling and K. Kajantie, Particle Kinematics (1973):

dφ3(p2, p3, p4; p1) =

∫
dM2

2π

d4p3

(2π)3
δ+(p2

3 − δik2
3)

× d4p24

(2π)3
δ+(p2

24 −M2)(2π)4δ(4)(p1 − p3 − p24)

× d4p2

(2π)3
δ+(p2

2 − δfk2
2)

d4p4

(2π)3
δ+(p2

4 − δfk2
4)

× (2π)4δ(4)(p24 − p2 − p4)

=

∫
dM2

2π
dφ2(p3, p24; p1)dφ2(p2, p4; p24) .
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General Result for the Decay Rate

Γνi→νiψf ψ̄f
=
G2
F k

5
1

192π3
f2
e
c2V + c2A
420ns

(δi − δf )

[
(60− 43σi)(δi − δf )2

+ 2(50− 32σi − 25σf + 7σiσf )(δi − δf )δf

+ 7(4− 3σi − 3σf + 2σiσf )δ2
f + 7δ2

int

]
.

(Result vanishes for δi = δf .) Cohen and Glashow have ns = 2 active spin
states for the (initial) neutrino, Bezrukov and Lee calculate with ns = 1.
Parameter σi:

σi =

{
0, CG spin sum for νi
1, BL spin sum for νi

, σf =

{
0, CG spin sum for ψf
1, BL spin sum for ψf

.

CG spin sum (“polarization sum”):∑
s

ν`,s ⊗ ν̄`,s = pµgµνγ
ν .

BL spin sum (quite frankly, to be preferred):∑
s

ν`,s ⊗ ν̄`,s = pµg̃µν(v`)γ
ν .
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General Result for the Energy Loss Rate

dEνi→νiψf ψ̄f

dx
= −G

2
F k

6
1

192π3
f2
e
c2V + c2A
672ns

(δi − δf )

×
[
(75− 53σi)(δi − δf )2 + (122− 77σi − 61σf + 16σiσf )(δi − δf )δf

+ 8(4− 3σi − 3σf + 2σiσf )δ2
f + 8δ2

int

]
.

(Result vanishes for δi = δf .) Cohen and Glashow have ns = 2 active spin
states for the (initial) neutrino, Bezrukov and Lee calculate with ns = 1.
Parameter σi:

σi =

{
0, CG spin sum for νi
1, BL spin sum for νi

, σf =

{
0, CG spin sum for ψf
1, BL spin sum for ψf

.

(We have verified and checked compatibility with all formulas contained in
CG and BL.)
(This is important because it confirms that the model dependence of the
results is only contained in the numerical prefactors, but not in the overall
scaling of the results.)
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Parameterization of the Results
Write b coefficients:

Γνi→νiνf ν̄f = b
G2
F

192π3
k5

1 ,

dEνi→νiνf ν̄f
dx

= −b′ G
2
F

192π3
k6

1 .

For the CG spin sum:

bCG =
1

7
(δi − δf )

[
(δi − δf )2 +

5

3
δf (δi − δf ) +

7

15
δ2
f

]
,

b′CG =
25

224
(δi − δf )

[
(δi − δf )2 +

112

75
δf (δi − δf ) +

32

75
δ2
f

]
.

For the BL spin sum:

bBL =
17

210
(δi − δf )

[
(δi − δf )2 +

7

17
δ2
int

]
,

b′BL =
11

168
(δi − δf )

[
(δi − δf )2 +

4

11
δ2
int

]
.

(Numerical prefactors are larger than those for LPCR by a factor of four or
five. Also, NPCR has negligible threshold.)
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Comparison to Astrophysical Data I
In papers of Stecker and Scully (Astropart. Phys., 2014 and Phys. Rev. D,
2014), the following bound is derived for the Lorentz-violating parameter of
the electron-positron field alone (watch out for a difference in the
conventions used for defining the δe parameter):

δe ≤ 1.04× 10−20 .

The observation of very-high-energy neutrinos by IceCube, taking into
consideration the LPCR process (but not NPCR!), implies that the
Lorentz-violating parameter for neutrinos cannot be larger than

δν ≤ 2.0× 10−20

(Stecker, Scully, Liberati and Mattingly, Phys. Rev. D, 2015). This bound
is based on the assumption that δe and δν are different. Colloquially
speaking, we can say that, if δν were larger, then “Big Bird” (the 2 PeV
specimen) would have already decayed before it arrived at the IceCube
detector. However, the full analysis requires Monte Carlo simulations and is
much more involved. (We have not performed it separately.)
The proponents of the SME might object that within the gauge-invariant
theory, one has δν = δe, and so, the bound δν ≤ 2.0× 10−20 is not
applicable, because the LPCR process does not exist. But then, they have
to acknowledge that the bound δe ≤ 1.04× 10−20, which is derived for
electrons, based on other physical processes, applies to the neutrino sector. 20



Comparison to Astrophysical Data II

I In view of the existence of the NPCR process, the proponents of
Lorentz violation in the neutrino sector are in even more trouble.

I There is a negligible threshold for NPCR, and so, if the
Lorentz-violating parameters for the different neutrino mass
eigenstates are different, then the decay and energy loss processes
connected with NPCR affect low-energy neutrinos. There is no
discussion about a threshold.

I Numerical coefficients for NPCR and typically a factor of four or five
larger than for LPCR, depending on the model used for the spin sums.
This enhances the importance of the effect.

I We conjecture(!) that a full analysis of astrophysical data, using the
NPCR process as a limiting factor for the observation of high-energy
neutrinos, should yield a bound on the order of

|δi − δf | ≤
1

51/5
× 2.0× 10−20 .

It would be great if interested astrophysicists could confirm this
conjecture.
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Comparison to Astrophysical Data III

On the other hand. . .

I If there is a tiny Lorentz violation in the neutrino sector and if the
Lorentz-violating parameters of neutrino mass eigenstates are different,
then, a signature of the NPCR process would be that only one mass
eigenstate (with a defined flavor composition) would be able to
propagate at very high energy.

I Thus, above a certain energy, detectors should observe a defined ratio
of neutrino flavors, commensurate with the arrival of one, and only one,
mass eigenstate (which of course has a defined flavor decomposition).

I (Some more detailed speculation on this point is contained in
Phys. Rev. D 100, 035036 (2019).)
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Gauge Invariance (Detour I)

There are subtle connections of Lorentz violation and gauge invariance.
A wide field with an open discussion. . .

I Chkareuli, Froggatt and Nielsen (PRL, 2001): “We argue that,
generally, Lorentz invariance can be imposed only in the sense that all
Lorentz noninvariant effects caused by the spontaneous breakdown of
Lorentz symmetry are physically unobservable. The application of this
principle to the most general relativistically invariant Lagrangian, with
arbitrary couplings for all the fields involved, leads to the appearance
of a symmetry and, what is more, to the massless vector fields gauging
this symmetry in both Abelian and non-Abelian cases.”

I The photon could potentially be formulated as the Nambu–Goldstone
boson linked to spontaneous Lorentz invariance violation. This was
formulated in papers of Nambu, and Jona Lasinio.
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Gauge Invariance (Detour II)

I Chkareuli and Jejeleva [Phys. Lett. B 659, 754 (2008)] consider a
model where

〈Aµ〉 = nµM , Aµ = aµ +
nµ
n2

(n ·A) .

They finally arrive at the Lagrangian

L(a, ψ) = − 1

4
fµν f

µν − 1

2
δ(n · a)2

+ ψ̄(iγµ∂µ −m)ψ − eaµ ψ̄ γµ ψ

− 1

4
fµν h

µν n
2aρ a

ρ

M
+
en2aρ a

ρ

2M
ψ̄(γ · n)ψ .

Some terms are gauge invariant, others break gauge invariance.
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Gauge Invariance (Detour III)

I Gauge invariance and Lorentz symmetry are interconnected. A model,
still gauge invariant with respect to a restricted subclass of electroweak
gauge transformations, which justifies the ansatz vint = vi vf in the
context of the NPCR calculation, has been discussed in [U. D.
Jentschura, I. Nándori, and G. Somogyi, Lorentz Breaking and
SU(2)L × U(1)Y Gauge Invariance for Neutrinos, Int. J. Mod. Phys. E
28, 1950072 (2019)].

I A gauge-invariant model, with different Lorentz-violating parameters
for different neutrino flavor eigenstates, has also been discussed in [U.
D. Jentschura, I. Nándori, and G. Somogyi, Lorentz Breaking and
SU(2)L × U(1)Y Gauge Invariance for Neutrinos, Int. J. Mod. Phys. E
28, 1950072 (2019)]. In this model, the mass and flavor eigenstates
become identical in the high-energy limit (Ei = |~pi|vi), with different
vi. One then defines generalized Dirac matrices in the Lagrangians,
and couples to the electroweak gauge sector. Finally, one realizes that
inter-generation decay processes (NPCR and LPCR) are allowed
provided the Lorentz-violating parameters are different for the
generations. This consideration highlights the importance of NPCR in
such processes.
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Conclusions

I LPCR results (Cohen and Glashow, and Bezrukov and Lee) have been
verified and generalized.

I NPCR results have been obtained.

I Results pressure the parameter space of Lorentz-violating theories in
the neutrino sector (most attractive candidate for such theories).

I Full electroweak gauge invariance would imply that all bounds on
Lorentz-violating parameters, originally obtained for electrons, should
also apply to the neutrino sector, defeating the purpose of considering
the neutrinos as attractive candidates.

I Conversely, assuming that δν > δe ≈ 0, or, that δi 6= δf for neutrinos,
one arrives at stringent bounds for the Lorentz-violating parameters.

I Current astrophysical data, combined with LPCR and NPCR, limit
neutrino Lorentz violation, and differential neutrino Lorentz violation
in the neutrino sector, to parameters δ . 10−20, which v =

√
1 + δ.
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