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Components of the Tessellation approach

Mathematical and logical background

I Self-modelling requirement for Universe model

I Non-linear binary codes offering uncertainty and internal
degrees of freedom

Binary code particle models

I Particle and vacuum models based on binary codes (3, 4, 6, 8,
8.1)

I Tessellations of ±1/6 e -charged domains, equivalent to
binary codes

I Higgs field and electrical field unification on scale 10-21m
I 3-dimensional static Weaire-Phelan tessellation model

I CPT symmetry
I Polyhedral, Analytical and Double-layer approximations
I Boson mass calculation based on wall area
I Mass-based guessing for fermion configurations with odd

results



Components of the Tessellation approach (2)

I Dynamics modeling requirements:
I additional dimension
I Bresenham’s algorithm
I continuous cellular automaton

I Kelvin’s problem and its generalization. Satori structure.

I Clifford (flat) torus as preferred topology for the
tessellation based on inter-domain wall minimization.

I Uncertainty that emerges from limited information storing
ability. Self time as “forward” step count.

I Origin of domains
I Liquid-liquid second-order phase transition
I Oriented manifold
I Bits of fundamental information

I Model with conserved domain count but free dimension
count. Inflation as dimension-changing decay.



We study the Universe by modeling its structure on a scale of sizes
on the order of 10-21 m, trying to ensure that this model conforms
to the known theories, observations and experiments.
The basis of our approach is the postulate of the existence of
certain regions or domains with a characteristic size of the order of
10-21 m of two types that differ only in sign of electric charge -
plus or minus 1/6 of the electron charge. Such a postulate is
sufficient to explain the charge-related properties of fundamental
particles, considered as clusters of several, of the order of eight,
neighboring domains of this kind.



The second postulate is the notion that empty space that does not
contain particles is also a bound state from the same domains,
representing a periodic repetition of the same pattern in all
directions. It can also be thought of as condensate obtained by
repeating clusters corresponding to certain background particles.



Particles in this case can be considered as anti-structural defects,
that are violations of the periodicity of such filling.
In addition to particle defects, other types of excitation can exist in
this model, for example, in the form of compression, displacement,
and torsion waves, which could be identified as gravitational waves
or dark matter.



Clifford (flat) torus as preferred topology for the
tessellation based on inter-domain wall minimization.

The distribution or alternation of domains is presumably
determined by minimizing the energy of their neighboring contact
with each other.
Therefore, we mainly consider tessellations that are solutions or
candidates for solutions to the Kelvin’s problem of optimal packing.
To work with a four-dimensional space, or with spaces of higher
dimensions, as well as to get rid of a pre-selected dimension count,
we proposed an approach to measuring the economy of filling,
which is independent of the dimension count and is based on
comparison with the corresponding simple hypercubic lattice.



Thus, we have made possible the generalized formulation of the
Kelvin’s problem, in which the search for the optimal filling is not
limited to three-dimensional space.
Instead, the dimension of space appears along with the solution of
the problem, as a characteristic of space, in which this solution can
be nested.
The four-dimensional structure that we found and named ‘Satori’,
is a candidate solution for the generalized Kelvin’s problem. Like
the three-dimensional candidate solution of Weair and Phelan
(which offers a bit less economy), the Satori structure is chiral, and
it offers CPT symmetry.







Applying the principle of energy minimization to the Satori
structure with anti-structural defects, we found out that the
favorable topology for the model is the four-dimensional Clifford
torus with a period of one translation unit.
The result is ‘almost’ three-dimensional space, having one
additional twisted dimension, the radius of which is emergently
fixed. Only in this case it is possible to have defects whose energy
is zero, which corresponds to massless particles like photons and
neutrinos.



In the absence of twisting or when twisting not in one but in two
or more periods, such defects would be massive and the space as a
whole would decay by strengthening twisting up to a minimum of
one period.
Since the three-dimensional torus is not flat but curved, the same
twisting in more than one dimension is likely energetically
prohibited due to the curvature energy.
We consider the gluon chain termination with quarks as another
way to reduce energy instead of looping the chain.



Considering the structure of Satori in the topology of such a torus,
we find that it turns out to be oriented along a twisted dimension:
all four three-dimensional layers that form the centers of cells or
domains are different.
Thus, if we consider these layers as phases of the oscillation of a
three-dimensional structure, this oscillation will have the
appearance of directional rotation, in which four different phases
are ordered in turn, and the two possible directions of sequencing
are different.



In this case, the movement of individual domains occurs in such a
way that each domain can either rotate in place or move along the
remaining three dimensions. However, there is no difference
between the two cases due to the fact that the domains are
indistinguishable from each other and it is impossible to say which
domain is spinning in place and which one is moving. The
foregoing relates to the Satori structure with a twisted dimensioin
in the absence of defects. In the case of defects existing in it, a
difference in the electric charge appears, and such a defect can
either move or spin or alternate one both way of moving. A
domain cannot remain in place, since at different phases the same
place is occupied by domains of different signs.



Thus, when passing from layer to layer, the defect undergoes
bifurcation. An exception is when the defect moves along the
model with the highest possible speed. In this case, there are no
rotational transitions. This behavior of defects allows us to identify
it with the motion of particles, for which, with approaching the
speed of light, increased half-life is observed, which is usually
associated with a slowdown in own time. In our model, the own
time of a particle turns out to be a phenomenon associated with
branching during the movement of the corresponding defect in a
vacuum undergoing directedoscillations: the amount of own time is
determined by the fraction of branching at which the choice is not
determined.



Model with conserved domain count but free dimension
count

Another phenomenon can be considered under the assumption that
the number of domains in the model of the universe is fixed or the
process of their formation and destruction is not significant
compared to other processes.
The dimension count, on the contrary, can be assumed to be free,
not fixed, determined only by the average number of nearest
neighbors characteristic of this tessellation.
So the space and its dimension count would be one of results of
modeling.



In this case, the linear size of the model, counted by the number of
jumps from domain to domain, turn out to be related to the
number of dimensions by an inverse exponential dependence.
The maximum number of dimensions, equal to the number of
domains, is achieved in the model in the form of a multidimensional
simplex: each domain is a neighbor of all the others.
But already in the case of a hypercube built from the same number
of domains as the number of domains (10−21 m in size) in the
Universe of about 1010 light years, the maximum number of
dimensions is only about 468, while such a 468-dimensional
universe has a size of about 10−20 m.



Rearrangement of domains with a decrease in dimension count
leads to an increase in linear sizes, but only at 6 dimensions the
universe becomes macroscopic, of the order of 0.1 mm.
A further decrease in dimensions is accompanied by an exponential
increase in linear size to about 100 km at d = 5 and to about 1000
astronomical units at d = 4.
In this step, there happens a loss of correlation between different
parts of the universe, which, apparently, has been kept until this
time: we have no reason to believe that the speed of oscillations
that determines light speed in multidimensional structures should
be significantly lower.



The last decay of 4-dimensional space into 3-dimensional, or
twisting of one dimension with the formation of a flat torus, leads
to the formation of a universe of modern size. Further decay into
the usual 3-dimensional, or 2- or 1-dimensional space, most likely,
is energetically disadvantageous, since it is the four-dimensional
space that offers the best saving of cross-domain walls with 26
neighbors.


