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Introduction

Why do we modify gravity ?

- GR is very powerful but cannot explain where dark energy
comes from

- Cosmological constant: discrepancy of ~ 10%° between
measured and predicted

- Important to have a parametrization of deviations from GR



1. Modifying gravity : the DHOST theories
- Freedom available for modification

- The scalar-tensor theories

2. Black hole perturbations
- Black holes in DHOST
- Perturbations of the Schwarzschild solution

- New results for stealth Schwarzschild



Modifying gravity : the DHOST
theories




Freedom available for modification T

Unicity of GR

Lovelock’s unicity theorem
Consider a Lagrangian £ for a metric g,,, and require

- Second-order field equations,

- 4-dimensional spacetime.
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Modified gravity — break at least one of these hypotheses:

- Higher-dimensional spacetimes,
- New fields,

- Higher-order derivatives.> Leads to DHOST theories



Freedom available for modification The scalar-tensc

Unicity of GR solutions

No-hair theorem
Consider GR, look for black hole solutions with

- stationarity

- asymptotical flatness

=

Still valid in some modified gravity theories. To get new
solutions:

- Add higher derivatives Leads to specific
- Break stationarity ansatz in DHOST solutions



dom available for modification The scalar-tensor theories

DHOST theories

Higher order derivatives in the Lagrangian lead in general to
instabilities.

Most general theory:

Degenerate Higher-Order Scalar Tensor

One new
Evade the  Obtain new dynamical
Ostrogradski physical field Usual metric

instability behaviour  (“fifth force”)  part of GR



10dification  The scalar-tensor theories

DHOST action
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Degeneracy conditions
Relations between A; functions: 3 classes. Only stable class:

- 5 free functions Ay, As, F, P, Q,
- F# XA,

= (GR + scalar field) theory 6



dom available for modification The scalar-tensor theories

Constraints on modified theories

Observation of electromagnetic counterpart
Observation of gravitational waves and counterparts:

- Speed of gravitational waves is ¢ up to 10=": 4; = 0.

- No gravitational wave decay: A3 = 0.

= many constraints, but still interesting to study DHOST as an
effective theory for higher energies.



Black hole perturbations




Black holes in DHOST

Motivation: quasinormal modes and GW ringdown

Ringdown of binary black hole
merger:
- Specific frequencies called
quasinormal modes,

- Information about the
background solution =
provides test of GR

- Obtained via first-order
perturbation theory
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Figure 1: Signal from a binary
black hole merger, and fit used to
obtain the ringdown frequency
(The LIGO Scientific Collaboration
et al, 2016)



Black holes in DHOST Perturbations ¢ e Schwarzschild solutic [ ults fo a schwarzschilc

Finding DHOST solutions: “stealth” black holes

- Many free functions for DHOST — many different
solutions

- Look for solutions that match the GR solution in the
metric sector: “stealth” black holes

Simplified subtheory
- X =cst,
- Fand 4; depend only on X,
- Horndeski theory: A3 =0and 4; = 2F (X).



Black holes in DHOST

Full solution equations

- Need a time-dependant scalar field to evade no-hair
theorems (Babichev & Charmousis, 2014).
- Full solution proposed by Babichev and Esposito-Farese,

2017

ds? = — (1 — 2M/r)d2 + (1 — 2M/r) " di? + 2 dQ2

Vr/2M

¢ =qt+(r) with ¢'(r) = qTM/r

X=Xo=-¢
F(Xo) =1, F(Xo) = o, F'(Xo) = B
P(Xp) =0, P (Xo) =0, Q"(Xo) =~
Q(Xo) =0, P (Xo) =0, Q"(Xo) = ¢ 10



Perturbations of the Schwarzschild solution

The perturbation framework

g W N

Metric perturbations g, = g,,, + b,

Decompose on parities wrt : even and odd perturbations
Decompose each parity onto spherical harmonics Yy ,,

Fix the gauge

Even perturbations Odd perturbations
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lack hole T Perturbations of the Schwarzschild solution  N¢

Schrodinger-like equation

Manipulation of equations
- Change spatial coordinate dr= (1 — 2M/r) dr
- Change variables: Yeven = f(Ho, H1, Ha, K), 1oqq = f(ho, h1)
- Fourier transform
Obtain two propagation

equations: v
Vodd
82 0.10
0*1odd
ar% Vo) =0 T
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lack hole T Perturbations ¢ e Schwarzschild solution  New results for stealth Schwarzschild

Propagation equations for stealth Schwarzschild

Same metric perturbation + scalar perturbation

New even degree of freedom propagates (scalar waves)
: must change time variable

te = t+v(r)

Odd perturbations: only a = ¢/¢ plays a role

Veft(r)

——— ¢=-5.10"
7=-0.1
7=-1

77777 =0 (GR)
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Conclusion

- Modified gravity is important to better understand the
uniqueness of GR

- A good test is the computation of the resonance modes of
black holes: the quasinormal modes

- To compute them, perturb Einstein’s equations and find
Schrodinger-like equations

- Next steps: compute new frequencies in stealth
Schwarzschild, extend to Kerr
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Thanks for your attention!
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