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Introduction
• Primordial Black Holes (PBHs) are astrophysical objects which are created in the 

early universe out of the collapse of enhanced curvature perturbations.


• They are different from astrophysical black holes since they are not created out of 
the collapse of a star.


• PBHs can be used to probe different physical phenomena depending on their mass.

• Low Mass PBHs (M<1015g) => Probe the Physics of the Early Universe: Phase Transitions, BBN, 

CMB Distortions

• Intermediate Mass PBHs (M≈1015g) => Probe High Energy Astrophysics: Cosmic Rays, γ-ray 

Background

• Large Mass PBHs (M> 1015g) => Probe Gravity and Dark Sector: Large Scale Stucture, Dark Matter, 

Dark Energy


• In our work, we focus on low mass PBHs which could dominate the universe 
energy content at the early stages of the cosmic history. 


      [1903.05053, 1907.04236, 2003.10455, 2005.05693]


• In order to constrain them, we probe the scalar induced GWs produced due to 2nd 
order gravitational interactions during a phase of PBH domination.



• As regards the PBH matter field we assume an initially randomly distributed gas of 
PBHs (Poisson Statistics) [1806.10414, 1805.05912] with the same mass 
[1906.08978] .


• By assuming a universe filled with PBHs and a fluid with equation-of-state 
parameter w, we coarse-grain the PBH matter field and we obtain that 


• The PBH matter power spectrum is .


• The total matter power spectrum is: , where 
 is the almost scale invariant primordial power spectrum at the “long” 

CMB scales.


• In the “small” PBH scales, .
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    The UV cut-off

• The scales considered here should be larger than the mean separation of PBHs. Otherwise, we 

probe the granularity of the matter density field which at very small scales is described by 
different physics. This the same as demanding being in the linear regime, .


    The PBH formation energy scales


• a) PBHs dominate before they evaporate. Thus,


• b) PBHs form after the end of inflation. From Planck data, in the case of single-field slow-roll 
inflation, . Thus,


• c) PBHs should evaporate before BBN. Thus,


• The relevant mass range therefore is:  
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3. The Gauge Issue
• We stress out here the notion of the PBH formation frame. It is the 

coordinate system which is related to the spatial threading of spacetime at 
PBH formation time.


• The PBH formation frame is related to the PBH production mechanism 
which as we assume produces randomly distributed PBHs. 


• Since we do not have in mind a production mechanism which gives rise to 
randomnly distributed PBHs, we model this freedom of choice by choosing 
two classes of gauges when we write the matter power spectrum at small 
scales.


• a) The class of Newtonian gauges


• b) The class of comoving gauges


δk ∝ [( k
aH )

2

+ c] ζk, where c = constant,

δk ∝ ( k
aH )

2

ζk



3. The Incompatibility of the Class of the Comoving Gauges 
• As an example of the class of the comoving gauges we choose the comoving-

orthogonal gauge where,


• The curvature power spectrum is then written as


• Two issues with the class of the comoving gauges.


• a) Due to the  scaling , at small  values  “exploses”. Thus, one 
should imposes an IR cutoff such as . 
However, there is a non a-priori a physical IR scale.


• b) In addition, due to the “explosion” of   at the “large” CMB scales one 
can not recover the  value of the primordial  .


• Consequently, the class of the comoving gauges is not compatible with 
Poissonian-like distributed PBHs at formation!
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• Choosing as the gauge for the GW frame the Newtonian gauge, the metric is 
written as


• The second order tensor modes,  , can be decomposed in Fourier modes as 
follows


• The equation of motion for the Fourier modes, , read as


• The source term, , reads as 
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• The solution of the equation of motion of tensor modes can be written analytically 
by the use of the Green function, which satisfies the homogeneous equation,


• The Bardeen potential, , present in the source term, , in the absence of the 
entropic modes, satisfies the following equation,


• The solution of the above equation can be written analytically as. 


• If there is a dominant mode, which is the case when  then 
.


• The definition of the tensor power spectrum,   reads as
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• Then, following a long but straightforward calculation,  reads as


      where .


• The function  reads as 


• Here, we have a convolution between the curvature power spectra at two 
different points. Therefore, from the energy-momentum conservation 

.
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The Energy Density of GWs

• In the case of sub-horizon scales where one can consider the flat spacetime 

approximation since on small scales one does not feel the curvature of spacetime the 
energy density of GWs reads as [M. Maggiore, GWs - Theory and Experiments: Volume 1]


      It's the sum of a kinetic and a gradient term- equipartition of energies.


• In our case, we are not in the regime of a free wave equation. We have an equation of 
motion for the tensor modes  with a constant source term, . Thus, in the sub-

horizon scales one has that  in time. Therefore the contribution 

from the kinetic term is negligible.


• Consequently, the spectral abundance, , of GWs can be written as:

hr
⃗k

Sr
⃗k

hr
⃗k
≃

4Sr ⃗k

k2
= constant

ΩGW(η, k)

4. Scalar Induced Gravitational Waves

ρGW(η, ⃗x ) =
M2

Pl

8
⟨∂thαβ∂thαβ + ∂ihαβ∂ihαβ⟩ .

ΩGW(η, k) ≃ Ωgrad
GW(η, k) =

1
ρtot

dρgrad
GW

d ln k
= . . . =

1
48 ( k

a(η)H(η) )
2

𝒫h(η, k) .



• Having discarded the class of the comoving gauges, we work with the Newtonian gauges. For the purpose 
of our work we make use of the Newtonian gauge for the PBH formation frame. In this gauge,


• The curvature power spectrum reads as


• The abundance then of GWs ,   after a straightforward calculation reads as:


• The source function  is calculated on the sub-horizon regime, where  and it is written as 

.
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5. The Gravitational Wave Spectrum

• One identifies a broken power law for the GW spectrum. Two scales enter in the 
problem,  and .


• As  decreases the amplitude of GWs increases. This is expected since as  
decreases the PBH mass increases=> . The period of GW 
production is increased.
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5. The Gravitational Wave Spectrum
• The abundance of GWs, , can be approximated analytically asΩNt
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• One also can constrain from above the initial abundance of PBHs by demanding that 
GWs are not overproduced during the transient PBH domination era, i.e. 

. ΩGW,tot(ΩPBH,f, ρf) = ∫ d ln kΩGW(η, k) < 1 ⇔ ΩPBH,f < Ωmax
PBH,f ≃ 3 × 10−3

5. The Gravitational Wave Spectrum



• In the case where , i.e. PBHs dominate upon formation, we enter the non-linear 
regime when . In particular,


• Then one, can parametrise the upper bound on  by a parameter  such as that 

.  Thus, .


• For , one is always in the linear regime since in the Newtonian gauge, .


 

ΩPBH,f = 1
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k α
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𝒫ζ(kmax = 2kUV) =
25

54π ( 2kUV

afHf )
3

=
25

54π ( 2afHf

afHf )
3

≃ 1.18

•    In the case when PBHs dominate 

upon formation, GWs are overproduced!



• We studied the scalar induced GWs during a transient period of PBH 
domination in the early universe.


• Assuming Poissonian-like distributed PBHs at formation, we found that the class of 

comoving gauges where   is not compatible to describe the spatial 

threading of spacetime at PBH formation time.


• The abundance of the GWs produced crucially depends on the PBH formation energy 
scale,  as well as on the abundance of PBHs at formation time, .  


• By demanding that PBHs dominate the universe energy content before their 
evaporation one derives a lower bound on the initial abundance of PBHs, 

.


• In addition, by requiring that GWs do not lead to a backreaction problem,  i.e.  
, we derive an upper bound on the initial abundance of PBHs, 

.

• In particular, we show that PBHs cannot have dominated the universe content from 

their formation time on.
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Thank you for your attention!
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Primordial Black Holes from the Preheating Instability 
[Published in JCAP, ArXiV:1907.04236, J. Martin, TP, V. Vennin]

• After the end of inflation, the inflaton oscillates 
around a local minimum of its potential. These 
oscillations  trigger  a  resonant  instability  for 
some  of  its  fluctuation  modes  which  exit  the 
Hubble radius close to the end of inflation.

• At  these  enhanced  scales  we  study  the 
production of PBHs. The production mechanism 
can  be  so  efficient  that  PBHs  subsequently 
dominate  the  content  of  the  universe  and 
reheating proceeds from their evaporation. 

• In  order  for  our  model  to  be  theoretically 
consistent and not to give rise to overproduction 
of  PBHs,  we  consider  two  complementary 
renormalisation  schemes  of  the  PBH  mass 
fraction, β(Μ)

• Observational constraints on the PBH abundance 
also  restrict  the  duration  of  the  resonant 
instability phase, leading to tight constraints on 
the  reheating  temperature  that  we  derive  as 
well  as  on  the  energy  scale  at  the  end  of 
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[J. Martin, M. Lemoine, K. Jedamzik – 2010]

https://arxiv.org/abs/1907.04236


• The inflation is coupled to a radiation fluid to ensure the transition to the radiation-
dominated era.


• The inflation decay does not alter the resonant instability structure until the radiation 
fluid dominates the energy content of the universe.

Metric Preheating and Radiative Decay in 
Single-Field Inflation

[Published to JCAP, ArXiV: 2002.01820]

With L.Pinol, J. Martin, TP and V. Vennin



Anisotropic Collapse of PBHs

• We consider a general spherical symmetric metric which is of the form


• We account for the anisotropy of the collapse by introducing an anisotropic pressure in a 
covariant way:


• Choosing  the parameter  becomes a dimensionless anisotropy parameter. 


• By doing a gradient expansion approximation, energy and velocity perturbations are expressed in 
terms of the curvature profile , the dimensionless parameter  and the pressure/density 

gradients .


• Then using as initial conditions the density and velocity perturbations profiles we solve 
numerically the Misner-Sharp-Hernadez hydrodynamical equations and we extract the PBH 
formation threshold .


• Intuitively, for configurations where  the collapse to PBHs is favoured.

f(r, t) = R(r, t) λ

K(r) λ

{
∂pr

∂r
or

∂ρ
∂r

}

δc
pr > pt

I. Musco, Theodoros Papanikolaou

ds2 = − dt2 + a2(t)[ dr2

1 − K2(r)
+ r2dΩ2]

pt = pr + λf(r, t)kμ ∇μ pr , pressure gradients

pt = pr + λf(r, t)kμ ∇μ ρ , density gradients


