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Introduction

e Modified gravity: a way to test GR, may explain other problems linked to

dark energy, interesting in its own right...
e Many ways to modify GR (break assumptions of Lovelock’s theorem), a
simple way is to add an extra scalar field mediating the gravitational force
e The "fifth force” changes the gravitational interaction, but gravity in the

solar system is very well constrained !
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e How to screen the fifth force ?
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1. Vainshtein screening in spherical
symmetry



How to screen the fifth force ?

e Examples:

o k-Mouflage gravity ( ) similar to the Vainshtein
mechanism in massive gravity, non-linearities quench the fifth force

e Chameleon gravity, the mass of the scalar increases in regions of high
density ( )

e Symmetron fields, vev of the scalar (coupling to matter) depends on
mass density ( )

e |dea of Vainshtein mechanism: introduce derivative self-interactions of the
scalar field.

M

=3

/ d*xv/=g [(1 + ad) R + KnL[8]] + Smlguw, tm] (1)

e Deviations from GR are predicted far from the source, but it is recovered
inside some radius ry (Vainshtein radius) because of non-linearities



1. Vainshtein screening in spherical

symmetry

1. Example: cubic galileon



Simple example in spherical symmetry: cubic Galileon

( )

s=u} [ d'xy/=g | (5 +a0) R 2(00) = 5(067 06| + Solgis ]

T = (p+ P) u*u” + Pgh”

o ds? = —e’(dt? + eXdr? + 12 [d6? + sin® Ody?]
Weak gravity {\, r\', v, rv'} < 1, and also assume {¢, r¢’, r’¢"} < 1
The metric equations with P < p read:

A+ rX = pr’ + 2ar (2¢/ + r¢”)
rv' — X\ = —4ard’

e Combining these with the scalar equation yields, with M = 47rfpr2dr:

20GM + (60” + 1) ¢/ — 2Br¢” =0



Simple example in spherical symmetry: cubic Galileon

e We keep the branch that decays at oo

2arrs 2GMrd
¢ = kor? 1—4/1+

rsr3

where we defined k» = 1+ 602 and ry = 8afrs/k3
e Linear regime (r > rv):

/_ 2ars _2GM
¢ = lor? =A=——[1+0(1)

e Non-linear regime outside the star (R < r < ry):

1+O<

¢/ -~ rs < {A,,I/} = )= 2GM

372
3/2
ry

)



1. Vainshtein screening in spherical

symmetry

2. DHOST la theories



Degenerate Higher Order Scalar-Tensor (DHOST) theories

S= Mlg’/d‘lx\/jg <f(¢,X)R+ K(d):X) - G3(¢7X)D¢+ ZA/(¢7X)£’>

i=1

+Sm [gul’a d)m]

L1=¢ud", Lo=(0¢), L3=duwe"¢’0s,
Lo = ¢ud” " bvar Ls = (¢pud"d")

e Different classes of DHOST theories can be obtained (
), but only one (subclass la) is viable for phenomenology.
In this class 3 functions are constrained:

Ay = —Aq
BXA3 + AZ(3F + 16Xfy) — X2fA3 + AgA1(8X2fy — OXF) + 2fy A1 (3f + 4XFx) + 2fAg(Xfx — f) + 32
2(f + 2XA1)2

4 =

(fx + A1 + XA3)(A3 — 3XA; A3 + fix A — 2fA3)

Ag = >
2(f + 2XAp)




Screening in DHOST la theories

e The Vainshtein screening works well for Horndeski theories (
)
e |t was shown to be broken inside the matter source for a time-dependent

scalar in Beyond-Horndeski theories (
), where the Newtonian forces were shown to be of the form:

v GM R
E_7+041GM
A GM M’
527“”67

e More recently, it was shown the the the mechanism can be broken outside
the source also ( )

e What happens for more realistic axi-symmetric spacetimes ?



2. Slow rotation



2. Slow rotation

1. Hartle formalism



Hartle formalism

e Introduce a new function accounting for slow rotation ( ), and
add a scalar field:

ds? = —e”®0de? + 0dr? 4 r2d6? + r¥sin® 0 [de — ew(t, r)dt]?
¢ = qt + ¢(r)

e Assume matter is a perfect fluid with uniform angular velocity Q:

T =(p+ P)u"u” + Pg"”

o = (efy/z,0,0,sQeﬂ'/z)
e We now have a (ty) metric equation

1

Eo==T
® 2M,% ®



Frame-dragging equation

e The differential equation for w is
W'+ Kiw' + K (P4 p)(w—Q) =0
e The coefficients are different from GR

4 N+ d
Kl—;— > +E|n(f+2XA1),

e/\

T f+2XA

Ky =

e How does modifying gravity change the solution for w ? We use the
solutions for {\, v, ¢} (in spherical symmetry) to find the expressions of K
and K>



2. Slow rotation

2. Relativistic stars in shift-symmetric
theories



Vacuum equation in shift-symmetric theories

e In GR, frame-dragging function in vacuum is related to J, the angular
momentum of the star ( )

w”Jrﬂw/:O:Nu:g
r r

e This was also shown to be the case in some shift-symmetric

(¢ — ¢ + const.) quadratic GLPV theories

£ = K(X)+ FOOR + fx [(O0) = s | + @a““”e“’“mmw%%

e K=aX,f=r+nX, A3 =0( ), coupling ~ G, " "

° f:%vK:040+CM1X+Osz2,A3:const_( )

10



Example: quadratic Horndeski theory

e This can be generalized to all quadratic GLPV theories. As an example,
take A3 = 0 (Horndeski theory) and assume fxx # 0

£ = K(X)+ FX)R + i (@0 — b |

57 = e [2& (1 +rv — e>‘) +r (2q2fxxu/e_” = rKXe_A)]
- 2fxx (1 + rv')

A 2 (1 + I’V’) (f)? + ffxx)

€ T 2R 1 r2fxKx + fxx (2f + 2K + 2P/ M2)

o We can get )\ in terms of ¢’> and e, and write K; in the form
4 /

11



3. Weak-field approximation



3. Weak-field approximation

1. Solution for w



Weak-field approximation

e We now work in the weak-field approximation

LA\ Ld Ld"
7 drn " ar” dr"}<<1

e The corresponding condition for w is

w <K

e The (ty) equation becomes

#0008
P

12



Weak-field approximation

e We set w'(0) =0 and lim w =0, and =1(r) = e~/ K
r—oo

w(r) = M£E, O; Elv(4v) (/OV Kg:zﬁgu) u4du) dv

(]

e Assume the coefficients are
=1 =1+¢ed6= s
Ky = ko (1 + 85K2)

e The leading term is

w(r) = % /O; % (/Ov p(u)u4du) dv + O(e)

e A priori k, # —2 like in GR, but this constant can be absorbed in the
definition of J as seen from an exterior observer (unless one knows p
precisely)

13



Power-law corrections

e The leading term is unchanged, but what about leading corrections ?
Assume power-law corrections to coefficients, (r/ri)% < 1

oKy [ r a r\® r\®
e () et (7)) s+ (5) Mo
S0
o

e The leading corrections outside the source are

2QGJ %2 =
|:1 —+ O ( ) HR<r<<rv + O (L) Hr>>r\/:|
I r 3

e Inside the source, assuming a constant density star

w(r) = w(0) = 3”2;??’2 [1+ = +;ﬁ;+2) (g)so N % (H)l]

14



3. Weak-field approximation

2. Examples with g # 0



Time-dependent scalar

e We consider ¢ = qt + ¢(r) with g # 0, and the assumption
¢/2 < q2
e Weak-field expression for coefficients

v
4 N4y 2Afe+PAY — @ (o2 + PAw) (v + 2240
FTT 2 7 2(f + A1)
1 ¢/2
Ko=———— + 0, <
2 ey ( e )

Ki

)

e The corrections to 4/r are generally small, at least if r¢” /¢’ ~ O(1),
which means the leading term for w is the same as GR. What about
leading corrections to w 7

15



Metric potentials in spherical symmetry

e We define the Vainshtein radius as A(ry) ~ 1

,
<w
i

2| &

e Assuming z ~ gz, y ~ qy and dimensionless coeffs of O(1), we obtain for

gr <1
y = a1 A+ Bix + nx* + o1’ + m,
z = A+ Box + yax® 4 Garxx’ +mo

e We use these expressions in the scalar and (ty) equations

16



Scalar equation and K;

e We get a cubic equation for x ( )

(r3A)/

r2

C3x3+C2x2+<C1+r1A+r2 >X+roA+773:0

e The coefficient Kj is

Ky =

S~

’
[1 + oeor2.A + ¢o (r3,A) + ﬁ0r2x + n0r3></ + 'y0r2><2 + 60r3><></ + aor4 (xx” + XIZ) + norz]

e We find the solution for x, and deduce the correction to Ki. This will give
us the leading corrections to w in the weak-field approximation

17



Outside the Vainshtein radius (A < 1) and gr < 1

e For ry < r < 1/q, linear terms in x dominate. Assuming C; # 0, the
scalar equation is
Cix+ToA+n3=0
e Two cases depending on 73
e If n3 = 0 (sufficient condition K = Gz, = 0)
_ oA

X——7:>K1
(@]

ﬁ\-h

1+o ()]

e Otherwise Mg A < 13

x = const. = Ky =

2a+o(@?)

e The corrections to w are

K2 GJ

10 (2.7

e The corrections are not suppressed by ry (less effective screening)

18



Inside the Vainshtein radius (A > 1), assuming G} <0

3
G+ Gx® + <F1A + r2%> x+ToA=0

7

e We first consider the case C3 # 0, and obtain (assume ', < 0)

A,
G

e Inside the star, we have

Ki = 4 {1 o i(Lor3.A—0—Llr4./4/ +wr A+ 0 (q2r2 A)}
r dr

meaning leading corrections to wgr won't generically be suppressed by rv

e Outside the star
1+0 rs;f :w:ziJ 140 rs;f
fh r r

%
so corrections are suppressed by ry (analogous to spherical symmetry)

=2
r

19



Example: Shift-symmetric quadratic GLPV theories

As(X)

A
e e Gurdunpadn

£ = K(X)+FOOR + fx [(06) = o™ | +

e We already that the GR expression for Ki is recovered in vacuum for these

theories. The metric potentials are ( )
(- 4% X,
Y= 5\ 7 2[f(qPAsx + 4As + 2fxx) + PAstx +2F2] 1 )

,_ ¢ (M G*As(q* Asx + 2fx + 5G%As + 2G% fxx) . M/)
2[f(q2A3X + 4As + 2fx)() + q2A3fX + 26?] r2

e We redefined Newton's constant as

G
2f — 4q2fx — 2q4fxx — 5q4A3 — q6A3X

G:

20



Example: Shift-symmetric quadratic GLPV theories

e Inside the star, w verifies

. M’ ) 4GM’
_ o —
4(2f —2¢%fx — q*A3) r2(2f — 2¢%fx — q*As)

w”—&—i (w—Q2)=0
r

e One can redefine Newton's constant to get the same equation as GR

G

G* =
2f — 2g2%fx — g*As 7

The 2 redefinitions do not coincide, even when A3 = 0. In this case the

screening works in spherical symmetry but is less effective for w
(corrections not suppressed by ry)

e Even if the Vainshtein mechanism works in spherical symmetry, corrections
to wer are not necessarily suppressed by powers of ry

21



Inside the Vainshtein radius (A > 1), GG=T;=0and G #0

Cx* + (c1+rz<’ Y >X+F0A+n3=0

fAix + Aifx — fA3 =0

e The scalar field verifies

PG+ Ta(rPA) £ /[r2C + Ta(r3A)]2 — 4r*AGT,
X =—
2r2C2

e In the region R < r < rv, this simplifies to (assuming oG < 0)

—Alp
G

Xout = £

and we get

Ki =

ﬁ\-h

1+£ > 40 (f;g)}

v

22



Example: Survivor theory

e In the context of the EFT of dark energy, ct = 1 and no decay of graviton
into dark energy kill most of DHOST la (

)

3

bud” " bra
e For these theories, we have (assume fx # 0)

_ Kx[2f(F + 567 fx) — 3fq” Gax — 2fq” o)

'5 8(q2fx — 2f)2(fG3x - 3fxf¢)

e The condition for the Vainshtein mechanism to work in spherical symmetry
( ) implies that the screening is also effective for w

23



Example: Survivor theory

e Inside the star, assume > # 0 and choose the branch ( )

ro r2A
~ 2oy ~ oW

e In this case we have

st P GM_(F-gR)GM] ,  26M
r (2f — g?fx)? r 2(2f — g?fx)? fr2

(w—9Q2)=0

e Deviations from GR will appear at first order in the weak-field expansion
(unless f = 1/2, example cubic galileon)

24



Example of "large” corrections for w outside the source

1+§rf+0<rf$>]

v

=2
r

In the previous example, Vainshtein in spherical symmetry = ry
suppressed corrections for w outside the star (£ = 0). Can we have £ #0 7?

¢=[f+qal [f (PAx+25) + 4 (2f + )| &0

e A necessary condition for non-rotating Vainshtein is y ~ z. In our case

2
r? (y — z) = —4&ofx (f—|— q2A1) . I’Ts + O <r53\/§>
r,

v

If fx #0,then {=0=¢=0
Look for theories with fx = 0, but & # 0, for simplicity we set f = 1/2

25



Example of "large” corrections for w outside the source

fAix + Aifx — fA3 =0
o f:1/2:>A1X:A3

o (1+29%41) (26241 + a*A1x) [2A14 (4 + 66241 — a*Arx) + (1 + 26241 (363x +2a2A1gx)] o
2 (2 + 6424 + q4A1X)2 [3416 (2+ 26241 — g*A1x) +2 (1 +242A;) (Gax + PAgx) ]

e On the other hand

2 _ Is rs\/'r
ry_L3r+O<r3/2>7

Vv

rs rs+/r
rPz=13=>+4+0 Vr
s 3/2

ry

e This means that the corrections to w are larger than the corrections to the
metric potentials (which are suppressed by ry as usual)

26



3. Weak-field approximation

3. Examples with ¢ =0



Almost shift-symmetric theories with q=0

e We consider theories of the form

L =[f(X)+ad] R+ K(X) = Gs(X)Op + > _ Ai(X)Li

i=1

e In this way, we evade the no-hair theorem of ( ). We
introduce the scalar current which is conserved when o = 0

V.t =—aR

e In the weak-field regime, the scalar equation reads

72% [er' +a (2r>\ = rzz/)} =0

o We will set the integration constant to 0 for regularity of J? at the origin

27



Example 1: K-essence

e Consider the following theory with an integer p > 2

o

E —|—a¢>] R+ uX?

e We neglect non-linear corrections to the (tt) and (rr) eqs

A:ﬂ',(,’)+2ar¢l,
l//: 2G,V21(r) —20é¢/

r

e The scalar verifies
aGM(r 1N e
r()+3 ¢—p( 5) pe =t =0

28



Example 1: K-essence

e For large radii, the linear term dominates

o =-gs s frro (2]

60r?

e Define ry by equating linear and non-linear terms

i
2 s (_ulp \*
V™6 \ 3. 20020

e For r < ry, the non-linear term dominates

2"\a|GM(r)> %1

¢' = sgn [(—=1)Pau] ( plulr

29



Example 1: K-essence

e Compare the fifth force to the GR potentials

2p—2
1 rsr? 2=t
~ 6a \ 2GM(r) 7

e Screening in spherical symmetry breaks down close to the center of the

’{)‘GR7 Ver}

source, for r < R3/r} = r.
e The corrections to K1 and K> (assuming p = const.) are

2p—3
2p—1
K{)ut:i 1+O(rs<r)P >:|’
r rv rv
1
n_ 4 rrs 3—4p r\»1t 3r
= — 1 _— _ — _ —
Ha A 8r (3(12p) (r*) r*>:| ’

2p—2
o rsr 1) 20-1
Ko = 2{1+—R3 (1+O(r) )}

e Leading corrections also change for w when r < r., but r. ~ 10 m so not
physically relevant 30



Example 2: Cubic galileon

L

B -l-ozqzb} R+ nX — gXOo¢

e The linear regime is the same as for K-essence. We can define ry, and in
the region r < ry we obtain for p = const.

out_4 rSf
P 1+o< /)]
ry
in 4 3rsr? R3/?
K1r|:1 oR? <1+O(3/2 ,
ry
2 R3/2
Ky, = =2 1—1—? 1+0 7
ry

and the corrections to wgr are also suppressed by powers of ry

31



Example 3: Quadratic sector of Horndeski theory

£ =[F(X) +ag] R+ fx [(O8) — 0" ]

e We consider theories of the form

F(X) = % +KXP
with an integer p > 1

e For p > 2, case similar to k-essence, screening breaks very close to the
center of the star

e For p =1,2, similar to the cubic galileon, the screening is effective
everywhere for r < ry.

32



4, Conclusion




Conclusion

e We have shown that in the weak-field approximation, the Vainshtein
mechanism can be extended to axi-symmetric spacetimes outside the star
(and also inside when k, = —2)

e In many cases, if the screening operates in spherical symmetry, then the
corrections to wgr are also suppressed by powers of ry, but there are
counter-examples

e A notable difference to the spherically symmetric case happens in the
region r > ry. While the metric potentials receive leading order
corrections, the frame-dragging function still takes the GR form to leading
order. However, the screening is less effective, because deviations from GR
are not suppressed by powers of ry like in the region r < ry

e \We have shown in a particular class of shift-symmetric theories that the
vacuum equation for the frame-dragging function is exactly the same as in
GR (even for relativistic stars). This means that the screening for w is
perfect in these cases.

33



Thank you !
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Example 3: Quadratic sector of Horndeski theory

£=[F(X)+ag] R+ f [(O6) — 6" |

e The scalar equation is
aGM(r) +3a°r*¢' + ¢ fx =0

e Assume f(X) # v X (otherwise the non-linear term becomes constant).
We will consider theories of the form

F(X) = 5 +mX?

with an integer p > 1



Example 3: Quadratic sector of Horndeski theory p > 1

e We first assume p > 2, so that fxx # 0. In this case

i)
r 7
4
inf 3rsr? R? R\ 201
Klr[l 8R3 (1+r\2/'0 r ’
2 2 =t
rsr R R\ 21
1+R3<1+,3'0(,) )]

e For p > 2, the screening in spherical symmetry stops working close to the

~

Ky = —2

center of the star (like in K-essence). The leading corrections to wgr are
also modified in this region. However, once again, the size of this region is
not physically relevant.



Example 3: Quadratic sector of Horndeski theory p =1

e For p=1, the leading term in the scalar current disappears, since fxx =0
aGM(r) +3a°r’¢ + ¢>fx =0

e One must keep next-to leading terms in both the metric and scalar

equations
A= 39%312_%2ar¢'+_zn¢@,
v = 72G/\Z(r) — 204(1)’
7

2.2,/
aGM(r) +3a°r°¢ o T3\ o

/ 7\ 2
1+f¢+2<w)}=o



Example 3: Quadratic sector of Horndeski theory p =1

e For the Vainshtein screening to be successful in spherical symmetry, one
must assume that the cubic term dominates

oS (GM(r))“

ary, 2rs

e In this case, we have for p = const.

e = 2 {HO(%)} :
r I
in_ 4 3rsr? R? rsr?
Ki —?{1— oR? (1+O<r\2/ + O Rery ,

=25 (10 (7))

e The corrections to wgr are screened by powers of ry
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