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Introduction

• Modified gravity: a way to test GR, may explain other problems linked to

dark energy, interesting in its own right...

• Many ways to modify GR (break assumptions of Lovelock’s theorem), a

simple way is to add an extra scalar field mediating the gravitational force

• The ”fifth force” changes the gravitational interaction, but gravity in the

solar system is very well constrained !

Esposito-Farèse, 2005

• How to screen the fifth force ?
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1. Vainshtein screening in spherical

symmetry



How to screen the fifth force ?

• Examples:

• k-Mouflage gravity (Babichev+, 2009) similar to the Vainshtein

mechanism in massive gravity, non-linearities quench the fifth force

• Chameleon gravity, the mass of the scalar increases in regions of high

density (Khoury,Weltman, 2003)

• Symmetron fields, vev of the scalar (coupling to matter) depends on

mass density (Hinterbichler,Khoury, 2010)

• Idea of Vainshtein mechanism: introduce derivative self-interactions of the

scalar field.

S =
M2

P

2

∫
d4x
√
−g [(1 + αφ) R + KNL[φ]] + Sm[gµν , ψm] (1)

• Deviations from GR are predicted far from the source, but it is recovered

inside some radius rV (Vainshtein radius) because of non-linearities
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1. Vainshtein screening in spherical

symmetry

1. Example: cubic galileon



Simple example in spherical symmetry: cubic Galileon

(Luty+, 2003)

S = M2
P

∫
d4x
√
−g

[(
1

2
+ αφ

)
R −

η

2
(∂φ)2 −

β

2
(∂φ)2�φ

]
+ Sm[gµν , ψm]

Tµν = (ρ + P) uµuν + Pgµν

• ds2 = −eν(r)dt2 + eλ(r)dr 2 + r 2
[
dθ2 + sin2 θdϕ2

]
• Weak gravity {λ, rλ′, ν, rν′} � 1, and also assume {φ, rφ′, r 2φ′′} � 1

• The metric equations with P � ρ read:

λ+ rλ′ = ρr 2 + 2αr
(
2φ′ + rφ′′

)
rν′ − λ = −4αrφ′

• Combining these with the scalar equation yields, with M = 4π
∫
ρr 2dr :

2αGM +
(

6α2 + η
)

r 2φ′ − 2βrφ′2 = 0
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Simple example in spherical symmetry: cubic Galileon

• We keep the branch that decays at ∞

φ′ =
2αrrS

k2r 3
V

1−

√
1 +

2GMr 3
V

rS r 3


where we defined k2 = η + 6α2 and r 3

V = 8αβrS/k2
2 :

• Linear regime (r � rV ):

φ′ = −2αrS

k2r 2
⇒ λ =

2GM

r
[1 +O(1)]

• Non-linear regime outside the star (R < r � rV ):

φ′ ∼ rS√
r 3

V r
� {λ′, ν′} ⇒ λ =

2GM

r

[
1 +O

(
r 3/2

r
3/2
V

)]
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1. Vainshtein screening in spherical

symmetry

2. DHOST Ia theories



Degenerate Higher Order Scalar-Tensor (DHOST) theories

S = M2
P

∫
d4x
√
−g

(
f (φ,X )R + K(φ,X )− G3(φ,X )�φ+

5∑
i=1

Ai (φ,X )Li

)
+Sm [gµν , ψm]

L1 = φµνφ
µν , L2 = (�φ)2, L3 = φµνφ

µφν�φ,

L4 = φµφ
νφµαφνα, L5 = (φµνφ

µφν)2

• Different classes of DHOST theories can be obtained (Langlois, Noui;

Crisostomi+, 2016), but only one (subclass Ia) is viable for phenomenology.
In this class 3 functions are constrained:

A2 = −A1

A4 =
8XA3

1 + A2
1(3f + 16XfX ) − X 2 fA2

3 + A3A1(8X 2 fX − 6Xf ) + 2fX A1(3f + 4XfX ) + 2fA3(XfX − f ) + 3ff 2
X

2(f + 2XA1)2

A5 =
(fX + A1 + XA3)(A2

1 − 3XA1A3 + fX A1 − 2fA3)

2(f + 2XA1)2
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Screening in DHOST Ia theories

• The Vainshtein screening works well for Horndeski theories (Babichev+,

2009; Kimura+, 2012; Kase+, 2015...)

• It was shown to be broken inside the matter source for a time-dependent

scalar in Beyond-Horndeski theories (Kobayashi+, 2015; Dima+, 2018;

Langlois+,2018), where the Newtonian forces were shown to be of the form:

ν′

2
=

ḠM

r 2
+ α1ḠM ′′

λ

2r
=

ḠM

r 2
+ α2Ḡ

M ′

r

• More recently, it was shown the the the mechanism can be broken outside

the source also (Hirano+; Crisostomi+, 2019)

• What happens for more realistic axi-symmetric spacetimes ?
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2. Slow rotation



2. Slow rotation

1. Hartle formalism



Hartle formalism

• Introduce a new function accounting for slow rotation (Hartle, 1967), and

add a scalar field:

ds2 = −eν(t,r)dt2 + eλ(t,r)dr 2 + r 2dθ2 + r 2 sin2 θ [dϕ− εω(t, r)dt]2

φ = qt + φ(r)

• Assume matter is a perfect fluid with uniform angular velocity Ω:

Tµν = (ρ+ P) uµuν + Pgµν

uµ =
(

e−ν/2, 0, 0, εΩe−ν/2
)

• We now have a (tϕ) metric equation

E t
ϕ =

1

2M2
P

T t
ϕ
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Frame-dragging equation

• The differential equation for ω is

ω′′ + K1ω
′ + K2 (P + ρ) (ω − Ω) = 0

• The coefficients are different from GR

K1 =
4

r
− λ′ + ν′

2
+

d

dr
ln (f + 2XA1),

K2 = − eλ

f + 2XA1
,

• How does modifying gravity change the solution for ω ? We use the

solutions for {λ, ν, φ} (in spherical symmetry) to find the expressions of K1

and K2
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2. Slow rotation

2. Relativistic stars in shift-symmetric

theories



Vacuum equation in shift-symmetric theories

• In GR, frame-dragging function in vacuum is related to J, the angular

momentum of the star (Papapetrou, 1948)

ω′′ +
4

r
ω′ = 0⇒ ω =

2GJ

r 3

• This was also shown to be the case in some shift-symmetric

(φ→ φ+ const.) quadratic GLPV theories

L = K(X ) + f (X )R + fX

[
(�φ)2 − φµνφµν

]
+

A3(X )

2
εµνασεληκσφµλφνηφαφκ

• K = αX , f = κ+ ηX , A3 = 0 (Cisterna+, 2016), coupling ∼ Gµνφ
µφν

• f = 1
2
,K = α0 + α1X + α2X 2,A3 = const. (Sakstein+, 2017)
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Example: quadratic Horndeski theory

• This can be generalized to all quadratic GLPV theories. As an example,

take A3 = 0 (Horndeski theory) and assume fXX 6= 0

L = K(X ) + f (X )R + fX

[
(�φ)2 − φµνφµν

]

φ′2 =
eλ
[
2fX

(
1 + rν′ − eλ

)
+ r

(
2q2fXXν

′e−ν − rKX e−λ
)]

2fXX (1 + rν′)

eλ =
2 (1 + rν′)

(
f 2
X + ffXX

)
2f 2

X + r 2fX KX + fXX (2f + r 2K + r 2P/M2
P )

• We can get λ′ in terms of φ′2 and eλ, and write K1 in the form

K1 =
4

r
+ F (r , ν, ν′,P) (P + ρ)
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3. Weak-field approximation



3. Weak-field approximation

1. Solution for ω



Weak-field approximation

• We now work in the weak-field approximation

{r n dnλ

dr n
, r n dnν

dr n
, r n dnφ

dr n
} � 1

• The corresponding condition for ω is

ω � Ω

• The (tϕ) equation becomes

ω′′ +
4

r

[
1 +

rδK1

4

]
ω′ =

K2(r)Ω

M2
P

ρ(r)
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Weak-field approximation

• We set ω′(0) = 0 and lim
r→∞

ω = 0, and Ξ1(r) = e−
∫
δK1dr

ω(r) =
Ω

M2
P

∫ r

∞

Ξ1(v)

v 4

(∫ v

0

K2(u)ρ(u)

Ξ1(u)
u4du

)
dv

• Assume the coefficients are

Ξ1 = 1 + εδΞ1 ,

K2 = κ2 (1 + εδK2)

• The leading term is

ω(r) =
κ2Ω

M2
P

∫ r

∞

1

v 4

(∫ v

0

ρ(u)u4du

)
dv +O(ε)

• A priori κ2 6= −2 like in GR, but this constant can be absorbed in the

definition of J as seen from an exterior observer (unless one knows ρ

precisely)
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Power-law corrections

• The leading term is unchanged, but what about leading corrections ?

Assume power-law corrections to coefficients, (r/ri )
si � 1

rδK1

4
=

(
r

r1

)s1

Hr≤R +

(
r

r2

)s2

HR<r≤rV +

(
r

r3

)s3

Hr>rV ,

δK2 =

(
r

r0

)s0

• The leading corrections outside the source are

ω =
2ΩGJ̃

r 3

[
1 +O

(
r

r2

)s2

HR<r�rV +O
(

r

r3

)s3

Hr�rV

]

• Inside the source, assuming a constant density star

ω(r)− ω(0) =
3κ2GJ0r 2

2R5

[
1 +

10ε

(s0 + 5)(s0 + 2)

(
r

r0

)s0
−

40ε

(s1 + 5)(s1 + 2)

(
r

r1

)s1
]
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3. Weak-field approximation

2. Examples with q 6= 0



Time-dependent scalar

• We consider φ = qt + φ(r) with q 6= 0, and the assumption

φ′2 � q2

• Weak-field expression for coefficients

K1 =
4

r
−
λ′ + ν′

2
+

2(fφ + q2A1φ)φ′ − q2
(

fX + 2A1 + q2A1X

) (
ν′ + 2φ′φ′′

q2

)
2(f + q2A1)

,

K2 = −
1

f + q2A1
+O(λ,

φ′2

q2
)

• The corrections to 4/r are generally small, at least if rφ′′/φ′ ∼ O(1),

which means the leading term for ω is the same as GR. What about

leading corrections to ω ?
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Metric potentials in spherical symmetry

x =
φ′

r
, y =

ν′

2r
, z =

λ

2r 2
, M(r) = 4π

∫ r

0

ρ(r̄)r̄ 2dr̄ , A(r) =
GM(r)

q2r 3

• We define the Vainshtein radius as A(rV ) ∼ 1

r 3
V ≡

rS

q2

• Assuming ż ∼ qz , ẏ ∼ qy and dimensionless coeffs of O(1), we obtain for

qr � 1

y = α1A+ β1x + γ1x2 + δ1rxx ′ + η1 ,

z = α2A+ β2x + γ2x2 + δ2rxx ′ + η2

• We use these expressions in the scalar and (tϕ) equations
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Scalar equation and K1

• We get a cubic equation for x (Dima+, 2018; Langlois+,2018)

C3x3 + C2x2 +

(
C1 + Γ1A+ Γ2

(r 3A)′

r 2

)
x + Γ0A+ η3 = 0

• The coefficient K1 is

K1 =
4

r

[
1 + α0r2A + ζ0

(
r3A

)′
+ β0r2x + κ0r3x′ + γ0r2x2 + δ0r3xx′ + σ0r4

(
xx′′ + x′2

)
+ η0r2

]

• We find the solution for x , and deduce the correction to K1. This will give

us the leading corrections to ω in the weak-field approximation
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Outside the Vainshtein radius (A � 1) and qr � 1

• For rV � r � 1/q, linear terms in x dominate. Assuming C1 6= 0, the

scalar equation is

C1x + Γ0A+ η3 = 0

• Two cases depending on η3

• If η3 = 0 (sufficient condition K = G3φ = 0)

x = −
Γ0A
C1
⇒ K1 =

4

r

[
1 +O

( rS

r

)]
• Otherwise Γ0A � η3

x = const.⇒ K1 =
4

r

[
1 +O

(
q2r2

)]
• The corrections to ω are

ω = −κ2GJ

r 3

[
1 +O

( rS

r
, q2r 2

)]
• The corrections are not suppressed by rV (less effective screening)
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Inside the Vainshtein radius (A � 1), assuming C3Γ1 < 0

C3x3 + C2x2 +

(
Γ1A + Γ2

(r3A)′

r2

)
x + Γ0A = 0

• We first consider the case C3 6= 0, and obtain (assume Γ2 < 0)

x = ±

√
−Γ1A− Γ2

(r3A)′

r2

C3

• Inside the star, we have

K1 =
4

r

[
1 +

d

dr
(ι0r 3A+ι1r 4A′ + ι2r 5A′′) +O

(
q2r 2
√
A
)]

meaning leading corrections to ωGR won’t generically be suppressed by rV

• Outside the star

K1 =
4

r

[
1 +O

(
rS

√
r

r
3/2
V

)]
⇒ ω =

2GJ̃

r 3

[
1 +O

(
rS

√
r

r
3/2
V

)]

so corrections are suppressed by rV (analogous to spherical symmetry)
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Example: Shift-symmetric quadratic GLPV theories

L = K(X ) + f (X )R + fX

[
(�φ)2 − φµνφµν

]
+

A3(X )

2
εµνασεληκσφµλφνηφαφκ

• We already that the GR expression for K1 is recovered in vacuum for these

theories. The metric potentials are (Kobayashi+, 2015)

y = G̃

(
M

r 3
− q4A2

3

2[f (q2A3X + 4A3 + 2fXX ) + q2A3fX + 2f 2
X ]
· M ′′

r

)
,

z = G̃

(
M

r 3
+

q2A3(q4A3X + 2fX + 5q2A3 + 2q2fXX )

2[f (q2A3X + 4A3 + 2fXX ) + q2A3fX + 2f 2
X ]
· M ′

r 2

)

• We redefined Newton’s constant as

G̃ =
G

2f − 4q2fX − 2q4fXX − 5q4A3 − q6A3X
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Example: Shift-symmetric quadratic GLPV theories

• Inside the star, ω verifies

ω′′ +
4

r

[
1−

GM′

4(2f − 2q2fX − q4A3)

]
ω′ −

4GM′

r2(2f − 2q2fX − q4A3)
(ω − Ω) = 0

• One can redefine Newton’s constant to get the same equation as GR

G∗ =
G

2f − 2q2fX − q4A3
6= G̃

• The 2 redefinitions do not coincide, even when A3 = 0. In this case the

screening works in spherical symmetry but is less effective for ω

(corrections not suppressed by rV )

• Even if the Vainshtein mechanism works in spherical symmetry, corrections

to ωGR are not necessarily suppressed by powers of rV
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Inside the Vainshtein radius (A � 1), C3 = Γ1 = 0 and C2 6= 0

C2x2 +

(
C1 + Γ2

(r3A)′

r2

)
x + Γ0A + η3 = 0

fA1X + A1fX − fA3 = 0

• The scalar field verifies

x = −
r 2C1 + Γ2(r 3A)′ ±

√
[r 2C1 + Γ2(r 3A)′]2 − 4r 4AC2Γ0

2r 2C2

• In the region R < r � rV , this simplifies to (assuming Γ0C2 < 0)

xout = ±
√
−AΓ0

C2

and we get

K1 =
4

r

[
1 + ξ

rS

r
+O

(
rS

√
r

r
3/2
V

)]
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Example: Survivor theory

• In the context of the EFT of dark energy, cT = 1 and no decay of graviton

into dark energy kill most of DHOST Ia (Ezquiaga+;Creminelli+, 2017;

Creminelli+,2018)

L = f (φ,X )R + K(φ,X )− G3(φ,X )�φ+
3f 2

X

2f
φµφ

νφµαφνα

• For these theories, we have (assume fX 6= 0)

ξ =
fX [2fφ(f + 5q2fX )− 3fq2G3X − 2fq2fXφ]

8(q2fX − 2f )2(fG3X − 3fX fφ)

• The condition for the Vainshtein mechanism to work in spherical symmetry

(Hirano+;Crisostomi+, 2019) implies that the screening is also effective for ω
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Example: Survivor theory

• Inside the star, assume Γ2 6= 0 and choose the branch (Hirano+, 2019)

x ' Γ0

Γ2

r 2A
(r 3A)′

∼ O (1)

• In this case we have

ω′′ +
4

r

[
1− q2fX

(2f − q2fX )2

GM

r
− (f − q2fX )GM ′

2(2f − q2fX )2

]
ω′ − 2GM ′

fr 2
(ω − Ω) = 0

• Deviations from GR will appear at first order in the weak-field expansion

(unless f = 1/2, example cubic galileon)
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Example of ”large” corrections for ω outside the source

K1 =
4

r

[
1 + ξ

rS

r
+O

(
rS

√
r

r
3/2
V

)]

• In the previous example, Vainshtein in spherical symmetry ⇒ rV

suppressed corrections for ω outside the star (ξ = 0). Can we have ξ 6= 0 ?

ξ =
[
f + q2A1

] [
f
(

q2A1X + 2fX

)
+ A1

(
2f + q2fX

)]
ξ0

• A necessary condition for non-rotating Vainshtein is y ' z . In our case

r 2 (y − z) = −4ξ0fX

(
f + q2A1

)2

· rS

r
+O

(
rS

√
r

r
3/2
V

)

• If fX 6= 0, then ξ0 = 0⇒ ξ = 0

• Look for theories with fX = 0, but ξ0 6= 0, for simplicity we set f = 1/2
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Example of ”large” corrections for ω outside the source

fA1X + A1fX − fA3 = 0

• f = 1/2⇒ A1X = A3

ξ = −

(
1 + 2q2A1

) (
2q2A1 + q4A1X

) [
2A1φ

(
4 + 6q2A1 − q4A1X

)
+
(

1 + 2q2A1

) (
3G3X + 2q2A1φX

)]
2
(

2 + 6q2A1 + q4A1X

)2 [
3A1φ

(
2 + 2q2A1 − q4A1X

)
+ 2

(
1 + 2q2A1

) (
G3X + q2A1φX

)] 6= 0

• On the other hand

r 2y = ι3
rS

r
+O

(
rS

√
r

r
3/2
V

)
,

r 2z = ι3
rS

r
+O

(
rS

√
r

r
3/2
V

)

• This means that the corrections to ω are larger than the corrections to the

metric potentials (which are suppressed by rV as usual)

26



3. Weak-field approximation

3. Examples with q = 0



Almost shift-symmetric theories with q=0

• We consider theories of the form

L = [f (X ) + αφ] R + K(X )− G3(X )�φ+
5∑

i=1

Ai (X )Li

• In this way, we evade the no-hair theorem of (Lehébel+, 2017). We

introduce the scalar current which is conserved when α = 0

∇µJµ = −αR

• In the weak-field regime, the scalar equation reads

1

r 2

d

dr

[
r 2J r + α

(
2rλ− r 2ν′

)]
= 0

• We will set the integration constant to 0 for regularity of J2 at the origin
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Example 1: K-essence

• Consider the following theory with an integer p ≥ 2

L =

[
1

2
+ αφ

]
R + µX p

• We neglect non-linear corrections to the (tt) and (rr) eqs

λ =
2GM(r)

r
+ 2αrφ′ ,

ν′ =
2GM(r)

r 2
− 2αφ′

• The scalar verifies

αGM(r)

r 2
+ 3α2φ′ − p

(
−1

2

)p

µφ′2p−1 = 0
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Example 1: K-essence

• For large radii, the linear term dominates

φ′ = − rS

6αr 2
⇒ ω =

2GJ

r 3

[
1 +O

( rS

r

)]
• Define rV by equating linear and non-linear terms

r 2
V ∼

rS

6

(
|µ|p

3 · 2pα2p

) 1
2p−2

• For r � rV , the non-linear term dominates

φ′ = sgn [(−1)pαµ]

(
2p|α|GM(r)

p|µ|r 2

) 1
2p−1
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Example 1: K-essence

• Compare the fifth force to the GR potentials

∣∣∣∣ φ′

{λ′GR, ν
′
GR}

∣∣∣∣ ∼ 1

6α

(
rS r 2

2GM(r)r 2
V

) 2p−2
2p−1

• Screening in spherical symmetry breaks down close to the center of the

source, for r ≤ R3/r 2
V ≡ r∗

• The corrections to K1 and K2 (assuming ρ = const.) are

K out
1 =

4

r

[
1 +O

(
rS

rV

(
r

rV

) 2p−3
2p−1

)]
,

K in
1 =

4

r

[
1 +

rrS

8r 2
V

(
3− 4p

3(1− 2p)

(
r

r∗

) 1
2p−1

− 3r

r∗

)]
,

K2 = −2

[
1 +

rS r 2

R3

(
1 +O

( r∗
r

) 2p−2
2p−1

)]

• Leading corrections also change for ω when r ≤ r∗, but r∗ ∼ 10 m so not

physically relevant 30



Example 2: Cubic galileon

L =

[
1

2
+ αφ

]
R + ηX − βX�φ

• The linear regime is the same as for K-essence. We can define rV , and in

the region r � rV we obtain for ρ = const.

K out
1 =

4

r

[
1 +O

(
rS

√
r

r
3/2
V

)]
,

K in
1 =

4

r

[
1− 3rS r 2

8R3

(
1 +O

(
R3/2

r
3/2
V

))]
,

K2 = −2

[
1 +

rS r 2

R3

(
1 +O

(
R3/2

r
3/2
V

))]

and the corrections to ωGR are also suppressed by powers of rV
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Example 3: Quadratic sector of Horndeski theory

L = [f (X ) + αφ] R + fX

[
(�φ)2 − φµνφµν

]

• We consider theories of the form

f (X ) =
1

2
+ κX p

with an integer p ≥ 1

• For p > 2, case similar to k-essence, screening breaks very close to the

center of the star

• For p = 1, 2, similar to the cubic galileon, the screening is effective

everywhere for r � rV .
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4. Conclusion



Conclusion

• We have shown that in the weak-field approximation, the Vainshtein

mechanism can be extended to axi-symmetric spacetimes outside the star

(and also inside when κ2 = −2)

• In many cases, if the screening operates in spherical symmetry, then the

corrections to ωGR are also suppressed by powers of rV , but there are

counter-examples

• A notable difference to the spherically symmetric case happens in the

region r � rV . While the metric potentials receive leading order

corrections, the frame-dragging function still takes the GR form to leading

order. However, the screening is less effective, because deviations from GR

are not suppressed by powers of rV like in the region r � rV

• We have shown in a particular class of shift-symmetric theories that the

vacuum equation for the frame-dragging function is exactly the same as in

GR (even for relativistic stars). This means that the screening for ω is

perfect in these cases.
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Thank you !
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Example 3: Quadratic sector of Horndeski theory

L = [f (X ) + αφ] R + fX

[
(�φ)2 − φµνφµν

]

• The scalar equation is

αGM(r) + 3α2r 2φ′ + φ′3fXX = 0

• Assume f (X ) 6=
√

X (otherwise the non-linear term becomes constant).

We will consider theories of the form

f (X ) =
1

2
+ κX p

with an integer p ≥ 1



Example 3: Quadratic sector of Horndeski theory p > 1

• We first assume p ≥ 2, so that fXX 6= 0. In this case

K out
1 =

4

r

[
1 +O

(
rS r

r 2
V

)]
,

K in
1 =

4

r

[
1− 3rS r 2

8R3

(
1 +

R2

r 2
V

· O
(

R

r

) 2p−4
2p−1

)]
,

K2 = −2

[
1 +

rS r 2

R3

(
1 +

R2

r 2
V

· O
(

R

r

) 2p−4
2p−1

)]

• For p > 2, the screening in spherical symmetry stops working close to the

center of the star (like in K-essence). The leading corrections to ωGR are

also modified in this region. However, once again, the size of this region is

not physically relevant.



Example 3: Quadratic sector of Horndeski theory p = 1

• For p=1, the leading term in the scalar current disappears, since fXX = 0

αGM(r) + 3α2r 2φ′ + ���φ′3fXX = 0

• One must keep next-to leading terms in both the metric and scalar

equations

λ =
2GM(r)

r
+ 2αrφ′ + 2κφ′2 ,

ν′ =
2GM(r)

r 2
− 2αφ′

αGM(r) + 3α2r 2φ′
[

1 + 2
κφ′

αr
+

2

3

(
κφ′

αr

)2
]

= 0



Example 3: Quadratic sector of Horndeski theory p = 1

• For the Vainshtein screening to be successful in spherical symmetry, one

must assume that the cubic term dominates

φ′ ' − rS

αr 2
V

(
GM(r)

2rS

)1/3

• In this case, we have for ρ = const.

K out
1 =

4

r

[
1 +O

(
rS r

r 2
V

)]
,

K in
1 =

4

r

[
1− 3rS r 2

8R3

(
1 +O

(
R2

r 2
V

)
+O

(
rS r 2

R2rV

))]
,

K2 = −2

[
1 +

rS r 2

R3

(
1 +O

(
R

rV

))]

• The corrections to ωGR are screened by powers of rV
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