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Introduction

The era of gravitational wave astronomy

e GW150914: first observation of a BBH coalescence by LIGO-Virgo

e GW170817: first BNS with EM counterparts (multimessenger astronomy)

e Since April 2019: third observation run (O3) ongoing...

Opportunity of new tests of general relativity and modified gravities, in the
strong-field regime of a compact binary merger.



Introduction

“Knowing the chirp to hear it"...
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[courtesy Alexandre Le Tiec]

In general relativity: PN theory, self-force calculations, EOB framework,

numerical relativity...



Introduction

How to adapt these tools to derive analytical waveforms

in modified gravities ?

Consider the example of Einstein-scalar-Gauss-Bonnet (ESGB) theories.

e Félix-Louis Julié, Emanuele Berti, “Post-Newtonian dynamics and black hole thermodynamics

in Einstein-scalar-Gauss-Bonnet gravity,” Phys.Rev. D100 (2019) no.10, 104061

e Marcela Cardenas, Félix-Louis Julié, Nathalie Deruelle, "Thermodynamics sheds light

on black hole dynamics,” Phys. Rev. D97, 12, 124021, 2018.

e Félix-Louis Julié, "Gravitational radiation from compact binary systems in
Einstein-Maxwell-dilaton theories,” JCAP 1810, 10, 033, 2018.

e Félix-Louis Julié, "Reducing the two-body problem in scalar-tensor theories to the motion

of a test particle: a scalar-tensor effective-one-body approach,” Phys. Rev. D97, 2, 024047, 2018.

e Félix-Louis Julié, Nathalie Deruelle, "Two-body problem in scalar-tensor theories as a deformation

of general relativity: an effective-one-body approach,” Phys. Rev. D95, 12, 124054, 2017.
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Einstein-Scalar-Gauss-Bonnet gravity

ESGB vacuum action (G =c=1)

1
o = e “al“x1 /[—g <R —2¢"0,90,0 + af(w)%éB>

e Massless scalar field ¢

e Gauss-Bonnet scalar &g, = R¥P°R,, ., — 4R"R,, + R?

e Fundamental coupling & with dimensions L? and f(¢) defines the ESGB theory
o [dPx —gR%y is a boundary term in D < 4 [Myers 87]

Second order field equations

8
RW=26ﬂg0aV§0 —4a <P,uowﬂ — %Paﬁ) V¢ Vﬂf((0)

1
(e =-— Zaf’(co)%éB

with Py o6 = Riype = 28,1 pRop + 2801 pRo1u + 8u1p8o1 R



Introduction

Hairy black holes in ESGB gravity

Analytical solutions in the small Gauss-Bonnet coupling a limit
e Einstein-dilaton-Gauss-Bonnet, f(¢p) = ¢e?
Mignemi-Stewart 93 at O(a?), Maeda at al. 97 at O(a), Yunes-Stein 11 at O(a)
Ayzenberg-Yunes 14 at O(a?,S?%), Pani et al. 11 at O(a?, S%), Maselli et al. 15 at O(a’, S°)

e Shift-symmetric theories, f(¢) = ¢

Sotiriou-Zhou 14 at O(a?)
e Generic ESGB theories

Julié-Berti 19 at O(a*)
Numerical solutions

e Einstein-dilaton-Gauss-Bonnet, f(¢p) = e?

Kanti et al. 95, Pani-Cardoso 09, Kleihaus 15 (includes spins)
e Shift-symmetric theories, f(¢) = ¢

Delgado et al. 20 (includes spin)
e Generic ESGB theories
Antoniou et al. 18

2

e Quadratic couplings, (@) = ¢*(1 + Ap?) and f(p) = —e™*
Doneva-Yazadjiev 17, Silva et al. 17, Minamitsuji-lkeda 18, Macedo et al. 19, etc...

How to address (analytically) the motion and gravitational radiation of two coalescing ESGB black holes?
See also Witek et al. 19, and Okounkova 20 for numerical waveforms in the small a limit.
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1. ESGB black holes and their thermodynamics

Static, spherically symmetric ESGB black holes

Just coordinate system X

d
ds®> = — A(r)dt* + d
A(r

+ B(r) r’(d6? + sin’0 dp?)

_af (@)
€ =

<1
m2

Solve iteratively the field equations around a Schwarzschild spacetime with

2m . . .
A(r)=1—7+;€Ai(r), B(r)=1+zi:€Bl-(r), (p(r)=(poo+;€(pi(r)

8w
; Paﬂ> VeVPf(g)

Rﬂyz ZGMgoﬁyq) —4a <Pﬂ0”/ﬂ —

1
Lo =—-Zaf (PR

with Rgp = R¥R,, , — 4R"R,, + R*

ESGB black hole, at leading order for simplicity:

2 2 2
2m af’, af’, af (p) (( m m*  2m? afs,
A=1—-——+0— , B=1+0|—— , = @t — + + + 0| —
r < m? ) < m? ) v= m? 2r  2r2 3 m?

Two integration constants: m and ¢, at all orders in the Gauss-Bonnet coupling.



1. ESGB black holes and their thermodynamics

ESGB black hole thermodynamics

e Temperature:

1
T=— where x> = — E(Vﬂfy V”éj’“)rH is the surface gravity

e Wald entropy:

0F |
S, =-— Sanqub\/; o with €, = np,l,,
g HLUPO

Ay . :
Sy = e + 4arxf(py) in ESGB gravity.

e Mass as a global charge:

D 1
M=m+ JD do., D is the scalar “charge” defined as ¢ =, +—+ O (—2>
r r

[Henneaux et al. 02, Cardenas et al. 16, Anabalon-Deruelle-FLJ 16, ...]

The quantities above are calculated in terms of m and ¢_,. At leading order for simplicity:

y 2 / 2 / /
T = 8zm [1+@<%>] S = [Haf(q;oo)m(%)] ACS [1+@(am>]
m m m 2m m?

The variations of S, and M with respect to m and ¢, are such that:

TsS, = 6M
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2. The post-newtonian (PN) dynamics of an ESGB black hole binary

“Skeletonizing” an ESGB black hole

[in GR: Mathisson 1931, Infeld 1950,...]

1

Tesan = 7— Jd“x\/ —8 (R — 280,00, + af(é")*%éla) + I

Generic ansatz for compact bodies

L8, . x] = — JmA(cv) ds,

with ds, = \/—gﬂydxf’“dxA” .

o m,(@) is a function of the local value of ¢ to encompass the effect of the background scalar
field on the equilibrium of a body [Eardley 75, Damour-Esposito-Farése 92].

e Strong equivalence principle violation

Question: How to derive m,(¢) for an ESGB black hole?

Answer: by identifying the BH's fields to those sourced by the particle.



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Comparing the asymptotic expansions of the fields

1 1
R,, = 20,00, — 4a (Pﬂayﬂ -3 gWPaﬁ> VeV f(p) + 8x <T;‘y -5 gWTA>

ds, dm, 6P(x —x,(1))

dt do \/—g

1
O =- Zaf’(go)gééB +4n

SI(x — x,(1)) dx¥ dx¥

with T = m,(p)
A ! dxg dxf At dt

88ap dt  dt

Fields of particle A in its rest frame, xj‘ =0 Fields of the ESGB black hole

uv = My + 5/41/ ( = > +0 <ﬁ> Suw = M + 5,Ltl/ (7) +0 (ﬁ)



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Matching

e the identification yields

Matching conditions

My(P,) = M

my(@Pe,) = =D

e For an ESGB black hole with “secondary hair”, D = D(m, ¢_,) yields a first order differential equation.

At leading order, for simplicity:

Wy TD Ny o 2] =0
dep  2my(@)

e lts resolution involves a unique integration constant .



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

The sensitivity of a hairy ESGB black hole

Iép[g/,tw Q, xX] - - J'mA((p) dSA

e In an arbitrary ESGB theory, BHs are described by a unique constant parameter:

2u3 4n

a S
my(@) = py (1 - /) + > where pu, =M, = =

e Recall: ESGB first law of thermodynamics: 15S,, = oM

where M = om + Dog.,.

Matching conditions
(a)and (b) => oM =0

(@) my(@) =m

As a consequence, 0S5, =0

When ¢, varies slowly, the black hole readjusts its equilibrium configuration, i.e. m,

in keeping its Wald entropy fixed.



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Iggop = —Jd4x\/_ <R 28" 0 q,ayq) + af(go)gi%B> — Z [mA(¢)dsA
A

ESGB two-body Lagrangian at 1PN order

e Harmonic gauge d,(1/—gg") =0

2
1% GM
e Conservative 1PN dynamics: 0 <—> ~ O (—) corrections to Newtonian dynamics

c r

e Solve iteratively the field equations with point particle sources around
8o =—e Y+ 00 ® = @ytop
8o = — 48+ O()

1 1
R,, = 20,00, — 4a <P/mﬂ -3 gWPaﬂ> VeVif(p) + 87:2 <T/‘;‘y -3 gWTA>
ds, dm, §Vx —x,(1)

o dp  \/-g

e The sensitivities m,(¢) and mg(@) are expanded around ¢,

1
(o =— Zaf’((p)gzz 2+ 47:2

Inm, (@) = lnmA+aA(§0 Po) + = ﬁX(ca Po)” +

In mg(p) = Inm +aB((p @p) + ﬁ (@ — %)2 +



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Gauss-Bonnet contributions

1 1 1
AR(X) = A A -0, 9;
Ix—y| [x-Yy]| Ix—y| " |x-Yyl|
(i) Introduce y; #y,
Ahy, = A At g 5 !
P x—yl Ix=wl o Vix=yl U ix -yl
f o 2 0> 0’ 1
ay{oy} aylayj  9yioyi ayjay] ) Ix=yil1x—y,]
(ii) Use Fock's “perimeter formula™ (1939) Y2
1 1
A =In(|x—=y|+[x=Yy, |+ |y; = ¥>])
X =y |[x=y;]
X ny;
(iii) Take the limit e = |y, —y,;| = 0
n Y1
1-3(m,-n)*> 2-9m,,-n;)+ 15, -n,)’
h12(X)= 12 31 + 12 1 - 12 1 +@(€)
2|x—y;|"e 4[x —y;|
Finite Gauss-Bonnet contribution
(iv) Average out n, )
h(x) =

. . . 4
(niyy =0, (nnl)y=8;/3, (ninl nk)=0 2|x—y|



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

ESGB two-body Lagrangian at 1PN order [FLJ-Berti 2019)]

1 1 G gmimy
— 0 0 0y2 0y2 AB""AB
Lyp=—m, —my +EmAvA +EmBVB +

r
1 1 G gmimy [ 3
+§mgvi + gmgvg 520 rA & E(Vf\ +v2) — E(VA Vp) — E(H V)M - Vp) + 745(V4 — Vp)?

G2 ,mimY _ _
- ABZ "— [m(1 +2Bp) + mi(1 + 2B,)] + ALFP + 0(/°)
r

e L, has the same structure as the scalar-tensor Lagrangian at 1PN...

Gy = G( + ajap)
o

1 + afa)

o1 Y

ATS (1 + afad)?

Yap = —?2

and (A < B).

where ag = (d Inm,/de) (@) , ﬂX = (dag/dw)(wo)

e ... except for one new and finite Gauss-Bonnet contribution:

[mg(ag + 2052) + mg(ag + 2052)]

AB " (GM )2 72

B _ af'(¢y) <GM>2 G*mim)
r

e can be regarded as a 3PN correction whenever af'(¢,) < M>.
e In scalar-tensor theories, L,y is known at 2PN [Mirshekari-Will 13] and 3PN [Bernard 19]

e In the regime above, the conservative dynamics in ESGB gravity is hence known at 3PN.



2. The post-newtonian (PN) dynamics of an ESGB black hole binary

Example: Einstein-dilaton-Gauss-Bonnet black holes e
ag = (d Inm,/de)(@,) , ﬂg = (dag/dq))(q)o)

At fourth order in the Gauss-Bonnet coupling a:

o x 133, 35047 . 474404471
— == ==——7

AT T T 240" T 403207 266112000

a82(p0

2u3

‘4 0(x%) with x =

92 = (1/DIn(2x,, i/ @)

T T T T T T T T T T T T T T T T T T T T T T

T T T T T T
0.0

—
-~
N\

-01F
-0.2F

-03}

aa(e
aA Padé(®o)

-04  TTTmmc

! bt :
0S¢ Padé[2,2] X . ;

_O_6k‘1““1““1““1““1, T T R
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

o ag diverges at large ¢, with a slope which increases with the truncation order in a.

2¢gole

ae

e The (2,2) Padé approximant g’%[ag] predicts a pole at Xpole = o = 0.445
HA

e This pole could be the sign of naked singularities [Kanti at al. 95, Doneva-Yazadjiev 17]

2.4 2 ‘QYH ? aezqu 2 .
24af (py)” < = < for a skeletonized EAGB BH.

4n 2u  144/6
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3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

In general relativity, “effective-one-body” (EOB) :

e Map the two-body PN dynamics to the motion of a test particle in an effective static, spherically symmetric

metric [Buonanno-Damour 98]

HQO,P), €= <

C

H, = frop(H)

2
V) —> H/(q.p) . ds; = ggdx"dx"

e Defines a resummation of the PN dynamics, hence describes analytically the coalescence of 2 compact objects in

general relativity, from inspiral to merger.

Z2/M h

AN

A A

e Instrumental to build libraries of waveform templates for LIGO-Virgo

e U



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

In practice, on the simple example of ESGB at 1PN:

Compute the two-body hamiltonian H(Q, P) = PRR + P(pq/} —L,p .

In the center-of-mass frame :

—

?A+FB= 0

7 coefficients (polar coordinates)

HIPN

1PN
with = (WP 4 IPNBBY 4 BINPY) +— (fPNE 4 hIPNAY ) + s
7 R R

The 7 hl.NPN coefficients are computed explicitly and depend on the 6

parameters (mg, ag, ﬂg) and (mg, ag,ﬁg) built from m,(¢) and myz(p)



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

The effective Hamiltonian H,

Geodesic motion in a static, spherically symmetric metric

In Schwarzschild-Droste coordinates (equatorial plane 8 = 1t/2) :

a’se2 = — A(r)dt* + B(r)dr?* + r’d¢?

A(r) and B(r) are arbitrary

Effective Hamiltonian H, (g, p) :

) 2

Py Py _ oL, oL,
H(g,p) = _|Al > +=+—] with = : = —
A4, P) </4 = f2> Pr=—c Pp= ;

Can be expanded :

a dp
A(r)=1+—+—2+---

r r

b,
Br)y=1+—+---

r

and depends on 3 effective parameters at 1PN order, to be determined.



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

EOB mapping [Buonanno-Damour 98]

(i) Canonically transform H :

H(Q,P) — H(q,p)

Generic ansatz G(Q, p) that depends on 3 parameters at 1PN order :

G(Qap) — Rpr <alg)2 +ﬁ1p\% +% + >

(ii) Relate H to H, through the quadratic relation [Damour 2016]

Hq.p) | _ (H(q,p)—M> 1LY (H(q,p)—M>
H H 2 H

0,..0 0,,,0
muympg 0 0 mampg
where U= , M=m; +myg, U=
(m§ + my)? M



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

ds? = — A(r)dt + B(r)dr? + r’d¢p?

It works, i.e., it yields a unique solution in ESGB theories:

FLJ, N. Deruelle [PRD 95, 12, 124054, 2017]

A(r)=1—2<GABM> +2

r

2
(B) — 7AB] <GAfM> + -

G M
( At >+
r

we recognize the PPN Eddington metric written in Droste coordinates, with :

Bir)=1+2|1+74

pr4=1+(B), r*=1+74

where

Q Q 0.0 0\2
maBp + mpp, 5= — 20403 - _ 1 Palap)
AT + aal 472 (1 + aal)?

(B) =

0 0
mA+mB

(See also [Damour, Jaranowski, Schaefer 15] at 4PN in GR; and [FLJ, N.Deruelle 17] at 2PN in scalar-tensor theories.)



3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary

A resummed dynamics

e The inversion of H4q.p) — 1= <H(q,p) _M> [1 +K (H(q,p) _M>]
H p 2 H

defines a “resummed’ EOB Hamiltonian :

H 2 p?
HEOBzM\/1+2V<_e—1> , Where H, = A<ﬂ2+p—r+_¢>
H B r?

e HEOB hence defines a resummed dynamics, e.g., up to the innermost stable circular orbit (ISCO) or light-ring (LR).

P OHgop b= — 0Hgop b = 0Hgop b, = 0Hgop
op, " or py % Y
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4. Gravitational radiation from an ESGB black hole binary

Radiated energy fluxes at infinity

— =F +F with & = JdeIgl (fOO + T&% + T?n%)

(@) 1

X—> 00 X—> 0

F o= J b nl-xde2 ; 3‘7(/) = J T% n.x2dQ2

e F, is given by Einstein's 2nd quadrupole formula at leading order, #** reduces to the Landau-Lifshitz pseudo-tensor

° %p is the extra scalar flux.

In the center-of-mass frame (Pf"‘ + P, = 0) and for circular orbits: [Yagi et al. 2012, FLJ 2018]

e Metric flux (“dressed up” quadrupole formula)
Kepler: (G,zMp)*? = O(v?)

) \ 1073
3V (GABMCI")
g?g = > + ...
S G (1+ afad)

e Scalar flux (with dipolar contribution if @} # ay)

8/3
v? (GABM¢}> 0.0, , 00\
1 A\23 | 16 [ myag + mya 2 _
F, = —(a¥ - ad)? + (GABM¢> AT T ) 4 Z(af - ag)2<1/ 3 f— 2(ﬂ)>
213 15 M 9
G: (1 + adal)

+2(ag — ag)

(m)’ay — (mp)*al N my [ag +a) (a9)* + ﬂgag] — (A < B) ‘o
5M? 3M(1 + afad)



4. Gravitational radiation from an ESGB black hole binary

EOB dynamics including the radiation reaction force

e On quasi-circular orbits : tangential force | £, =

. aPIEOB . . aPIEOB i aPIEOB . aIiEOB

r = R , = , =
. P or %

’ p¢=_

H, pr2 P(%,
where Hgogg =My [ 1+ 20 — -1 and H,=p A\ 1+—F+—7
Iz =B pr

Example: effective trajectory for two EdGB black holes (f(¢) = ¢2?/4):

Z%/(GM)

' =rcos(p), z°=rsin(¢)

my
Asymmetric binary: — = 2 (v=~0.22)
My
BHs with scalar hair (ag =-04, ag =—1.6)

GR limit in yellow

Note : (#*/r¢h)ioo = 0.01



4. Gravitational radiation from an ESGB black hole binary

Last step : compute the ESGB-EOB waveforms up to the ISCO

e Mirrors follow the geodesics of the Jordan metric (in the solar system)

= of? =A% 1+ 2a580) + hl]| + 0 :
8 (©)8, (1 +2a,6¢) + +O0\ 3

e New “breathing’ mode

dzéi i j i 2 L YTT 1
dlInof
where ag y (pg) and
2G g’ 20;
hiJTT 3 i with @Y = Z mg (3xAxJ 6’JxA>
X

. I _ 0..0..1
with QZS—ZmAanA




4. Gravitational radiation from an ESGB black hole binary

Analytical waveforms for an inspiralling ESGB BH binary

\2/3 1/3
h=(GyyMp)  cos2) 50 = (1/4)af - a)(GasMd ) cos(@)

— CIOA=—0.4 ] 0_15; 0

" - 11
S A A AR - |

0.00[ 0.001

< | 1 .
~0.05} \/ \/ ] ~0.05-
—0.10} U ] ~0.10[-

_0.15L ] ~0.15[

69

-0.20 ; 1 1 1 1 1 ; ~0:20 ; \\\\\\
1 . . . . . . . . . . . . . . . . . . . . S S S S S S S S |
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
t/(GM) t/(GM)

e On this example, the scalar amplitude is numerically comparable to the tensor one.

e However, its contribution is numerically lowered by [ag| S 1072 in the solar system

e Observed frequency : f = gﬁ/(ﬂ&fQ)



Conclusion

Recap

e Remarkably, the EOB approach can be extended beyond general relativity. In ESGB and scalar-tensor gravity:

ANy = @;[A;ﬁglor + 2epnit” + (Expy + V€51 ]

e Also works in Einstein-Maxwell-dilaton (EMD) theories at 1PN:  [FLJ 18]

1
Ievp = EJCZ%, /—8 <R —28"0,90,p — e‘za(pF"”Fw)

e The ST and EMD examples suggest a generic “parametrized EOB” (PEOB) ansatz:

Tayl
APEOB() = @é[ASIfKI o+ 2(€Pon + V€U + (€3py F U ExppU”]

e \We generalized Eardley’s sensitivites m,(¢) to hairy black holes, and shed light on the role of the cosmological

environment ¢, of a binary on its dynamics.

e Necessity to observe sources emitting from a large range of redshifts, using LISA?



Conclusion

Future developments

e Pole in the scalar coupling 0:2 predicted by Padé approximants: to be confirmed and interpreted

using numerical BH solutions.
e Skeletonize “scalarized” black holes to include them in the EOB framework. [Silva et al. 17]

e Refine our waveforms using higher PN order Lagrangians and fluxes; e.g., ST-ESGB at 3PN [Bernard 18]

e Match our waveforms to the quasi-normal modes of the final black hole [Brito-Pacilio 2018|

New on arXiv:

Numerical relativity is crucial to further explore the strong field regime near merger & calibrate EOB templates.

e Existing work in ESGB in the small Gauss-Bonnet coupling a limit [Witek et al. 19, Okounkova 20];
e To be extended to the full, non-perturbative theory?

— d+1 formalism in ESGB gravity [FLJ-Berti, arXiv:2004.00003] [see also Witek et al. 20]

Thank you for your attention.



