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I

Inflation: a reminder



Inflation: a period of accelerated expansion before the 
radiation era that solves the problems of the Hot Big bang model

Structures in universe emerge from 
vacuum quantum fluctuations!



Superhorizon - adiabatic
almost scale-invariant - Gaussian

Primordial universe: observations

Density fluctuations:

Simplest fit to data: single-field slow-roll inflation

Planck 2018



Automatic after single-field inflation: 
all components inherit inhomogeneities of the unique inflaton field. 

Thermal equilibrium reached during reheating after 
multifield inflation does the same. 

Adiabaticity



Almost scale invariance
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Non-Gaussianity
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Gaussianity already tested to better than 0.1%

• Current Planck constraints:

• Slow-roll single field prediction:
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• Scalar field with flat potential in Planck units
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Inflation for fluctuations
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Inflation for fluctuations
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ns � 1 = 2⌘? � 6✏?

The Planck ns-r planer =
Pt(k?)

P⇣(k?)
= 16✏?



ns � 1 = 2⌘? � 6✏?

The Planck ns-r planer =
Pt(k?)

P⇣(k?)
= 16✏?

Concave potentials 
preferred

m2�2 strongly disfavored



II 

The physics of inflation?



Physics of inflation?

- decoupled from the rest of physics

- lack UV completions 

• So far, merely phenomenological description

Single-field slow-roll models:



Physics of inflation?

What is the inflaton?

At which energy inflation occured?

How did it transfert is energy to Standard Model particles?

Which extension of the Standard Model?

The only degree of freedom?

Coupling to other fields?

…

Origin of its potential?

Primordial universe: 

invaluable observational 

probe of high-energy physics



Physics of inflation?

• Inflation is sensitive to the physics at the Planck scale 

• Single-field slow-roll: at best emergent approximate description

• Physical understanding and candidate physical theories motivate 
much more complicated dynamics than the simplest scenarios.

• Cosmologists seek deviations to it in motivated manner



The Eta problem
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Corrections to the low-energy 
effective potential

Slow-roll action

UV-sensitivity of inflation
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Guidance from UV complete theories
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Guidance from UV complete theories

MP

Mmoduli

M�

H

Hope: light inflaton,
Planck-mass moduli

hard 
to achieve

unnatural
(eta problem)

Multiple (light and heavy) degrees of 
freedom: 

zeta not conserved

Steep potentials

Large couplings

Time-dependent masses and couplings

Supergravity, string theory: many degrees of freedom

Find: many fields 
of different masses

MP

H



Heavy fields substantially modify the slow-roll picture

Guidance from UV complete theories
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Heavy fields substantially modify the slow-roll picture

Guidance from UV complete theories
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Reduced ‘speed of sound’ 
of fluctuations ...

... comes with 
derivative interactions

� heavy

… + signatures of particle production not captured 
by single-field EFT



Primordial non-Gaussianities

Euclid (2020)

SKA (2020 +)

Rule out all simplest 
models of inflation

Observational program

Primordial gravitational waves 
and refined power spectrum

Atacama desert

South Pole

Space
Energy scale of inflation 

up to 1016 GeV

Super-Planckian field displacement: 
Quantum Gravity is required

LiteBIRD



Beyond simplest models

• Single field

• Standard kinetic term

• Slow-roll

• Initial vacuum state

• Einstein gravity

UNDER HYPOTHESES Violating any of these 
assumptions in general leads 

to observably large NGs.

fNL & O(1)

fNL = O(✏, ⌘) ⇠ 10�2

and we have a dictionary between 
physical effects and types of 

non-Gaussianities

Maldacena (03)



Shape (dependence on the configuration of triangles)
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The bispectrum

Scale-dependence (growing or shrinking on small scales?)



Heavy field and 
derivative interactions Light degrees of freedom 

beyond the inflaton

Equilateral type (quantum) Local type (classical)

Planck 18 Planck 18 
f eq
NL = �26± 47 f loc

NL = �0.9± 5.1

Inflationary physics and non-Gaussian shapes

f eq
NL ⇠ 1

c2s
� 1 cs � 0.021



Prospects



Prospects

Euclid (2020)

Huge efforts to reach this sensitivity 
with large-scale structure survey

and scale-dependent bias



Prospects

21cm emission from hydrogen 
clouds during dark ages

 radio-astronomy 
from the far side of the moon!



Cosmological collider physics, 
aka NGs in soft limits

Mass Spin
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Cosmological collider physics, 
aka NGs in soft limits

Mass Spin
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Non-Gaussianity as a particle detector
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Physics of inflation?

• Single-field slow-roll: at best emergent approximate description

• Cosmologists seek deviations to it in motivated manner

Looking for new physics…

…is looking for multifield effects

• Inflation provides us with a cosmological collider



III 

Curved field space 
and geometrical destabilization of inflation



Curved field space is generic
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Studied for a long time, but impact and 
consequences not fully appreciated: (e.g.)

- Landscape studies with random potential

- conditions for successful inflation usually (wrongly) 
formulated only in terms of Hessian of potential

Beyond toy-models: multifield inflation
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Riemann curvature and derivatives

Impacts: stability of background, linear fluctuations, NGs

Potential:

Geometry:

What to expect?
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This effect applies during inflation, 
it easily overcomes the effect of the potential, 
and can destabilize inflationary trajectories.

Initially neighboring geodesics tend to fall away from each other 
in the presence of negative curvature. 

Geometrical destabilization of inflation



V (�1,�2)

�1

�2

Renaux-Petel, Turzynski,16
PRL Editors’ Highlight

Basic mechanism

Effective 
single-field dynamics

Light inflaton
+

Extra heavy fields

Simplest ‘realistic’ models (hope):

(valley with steep walls)



V (�1,�2)

More realistic:

Geometrical 
instability

Light inflaton
+

Extra +/- heavy fields
+

Curved field space

Basic mechanism

Competing effects of 
potential and geometry

Renaux-Petel, Turzynski,16
PRL Editors’ Highlight
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Quadratic Lagrangian

coupling via bending

Hessian of 
the potential

Deviation 
of geodesic

Field-space 
curvature
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Effective entropic mass squared:

Hessian
contribution

bending
contribution

‘geometrical’
contribution
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super-Hubble evolution 
of the entropic field

Super-Hubble regime



When the geometrical contribution is negative and large enough, 
it can render the entropic fluctuation tachyonic, even 

with a large mass in the static vacuum: unstable 
background

Hessian
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bending
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contribution
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Rfield spaceM2
Pl ⇠ (MPl/M)2

Let us consider 
for instance

M = O(10�2, 10�3)MPl

Even for 
V;ss

H2
⇠ 100

The effective mass 
becomes tachyonic when:
✏ ! ✏c = 10�4 or 10�2

(string scale,
KK scale, 

GUT scale...)

� 1generically

Geometrical destabilization

Rfield space < 0Necessary condition (2-field):
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• Slow-roll model of inflation, with inflaton 

• Heavy field

• Simple dimension 6 operator suppressed by a mass 
scale of new physics
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Minimal realization



Minimal realization
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• The inflationary trajectory becomes unstable after ✏ ! ✏c
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• Higher-orders in chi suppressed near the inflationary valley

• Does correspond to lots of models in the literature, in which it 
is sometimes said : «chi is stabilized by a large mass» so let us put 
chi=0 (consistently with the equations of motion)



Correction to kinetic terms

Corrections to the low-energy 
effective action

Slow-roll action

✏c ⌧ 1 Geometrical destabilization of inflation

Similarity with the eta-problem
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Corrections to the low-energy 
effective action

Slow-roll action

✏c ⇠ 1 Important for end of inflation/reheating

Similarity with the eta-problem

M ' MP

Turzynski et al, Sfakianakis et al 2018
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Unless symmetry forbids it, 
presence of terms of the form

Corrections to the low-energy 
effective action

Slow-roll action

(respects the approximate shift-symmetry of the inflaton)

✏c ⇠ 1 Important for end of inflation/reheating

Similarity with the eta-problem

�L = c(@�)2
�2

M2

�m
2
� ⇠ c

(@�)2

M2
⇠ c ✏H

2

✓
MP

M

◆2

M ' MP

Turzynski et al, Sfakianakis et al 2018
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Even more obstacles than previously thought in 
realizing a stable phase of inflation

Same origin as eta problem, but symmetry cannot help

Geometry is as important as potential
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of inflation
Multifield alpha-
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orbital inflation
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IV 

Strongly non-geodesic motion & new EFTs



Fate of the instability?

Second sidetracked 
phase of inflationPremature end of inflation

Inhomogeneities dominate Inhomogeneities are shut off 

OR

Renaux-Petel, Turzynski, 
Vennin, 2017

Garcia-Saenz, Renaux-Petel, 
Ronayne,2018

?



Backreaction of fluctuations

Analytical Numerical

Caravano, Ronayne, Renaux-Petel, 
Turzynski,Wieczorek

Grocholski, Kalinowski, Kolanowski, 
Renaux-Petel, Turzynski, Vennin 2019

Similarities with hybrid inflation
Lattice simulations

+ Stochastic analysis

Instability shut off before perturbations reach nonlinear regime
Fate: sidetracked phase
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Additional field: at minimum of 
effective potential, depends on 
kinetic energy of inflaton

Characteristic features 
seen in minimal realization

see ‘gelaton’ Tolley, Wyman 2009

Inflaton: ‘standard’ but 
modified effective potential: flattened compared to original V

see also Dong et al 2011, McAllister et al 2014, Flauger et al 2014

Sidetracked inflation: background



Sidetracked inflation: background

Competition potential vs geometry:
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flat potentials wrt curvature scale
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steep potential in Planck units 
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Interesting for UV embeddings?
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Inflation with strongly non-geodesic motion
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Inflation with strongly non-geodesic motion

Transferred to 
observable 

curvature perturbation

Cremonini et al  2010, 
Brown 2018,

Renaux-Petel et al 
2018, 2019, 

Marsh et al 2019P0 = H
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EFT with imaginary sound speed
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EFT with imaginary sound speed
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 n-point functions also enhanced in flattened configurations 

Similarity with gauge field coupled to the inflaton

Mechanism to generate PBHs

EFT with imaginary sound speed

Fumagalli, Garcia-Saenz, Pinol, 
Renaux-Petel, Ronayne PRL 2019

Powerful model-independent constraints on non-standard inflationary attractors
(e.g. hyperinflation, sidetracked inflation)

Marsh et al 2019

Fumagalli, Renaux-Petel, Ronayne, Witkowski, to appear

h⇣ni
h⇣2in�1

⇠
�
fflat
NL

�n�2



V 

Revisiting non-Gaussianity in multifield 
inflation with curved field space



Theoretical and observational motivations for NGs
+ Many recent developments in multifield inflation

Motivation

curved 
field space

strongly 
non-geodesic motion

UV completions

Need for revisiting non-Gaussianities in multifield inflation 

Generalize Maldacena’s computation to multifield inflation



byproduct: NG signature of heavy fields in curved field space

 Extension of Maldacena’s computation to multifield inflation

Garcia-Saenz, Pinol, Renaux-Petel, 2019
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Revisiting non-Gaussianity 
in multifield inflation
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c2s > 0



Exact and compact

Size of couplings reflect the genuine size of NGs

Impact of boundary terms minimized

Convenient for integrating out massive entropic fluctuations

Beautiful result!



Covariant formulation

Gong and Tanaka, 2011

Beyond liner order, field fluctuations do not transform 
covariantly under field redefinitions

Non-perturbative and 
geometrical definition of 
covariant fluctuations

��I = QI
�

1

2
�I
JKQJQK +

1

6
(2�I

LM�M
JK � �I

JK,L)Q
JQKQL +O(Q4)

credit: Lucas Pinol



Gauche choice

Common choice: spatially flat gauge

dofs: all

intuitive, perturbations of metric negligible in 
decoupling limit for large fNL, less computations

not directly related to observables, symmetries less clear, 
results complex and physics somewhat hidden



Here: ‘comoving’ gauge

Gauche choice

e�IQ
I = 0and

dofs: ⇣ and                       : entropic fluctuation

hcomoving
ij = a2e2⇣�ij

no adiabatic field fluctuation

long computations not to have misleading results, 
but it is now done!

direct observable, symmetries manifest, 
simple results amenable to analytical approximations

F ⌘ esIQ
I



Brute force cubic Lagrangian

… Expansion is necessary 
but not sufficient …

is misleading

Genuine size 
(purely adiabatic)

L3 � O(✏0, ✏)⇣3

L3 ⇠ O(✏2)⇣3

Task: render this explicit in 
the more complicated multifield situation



Manipulating the cubic Lagrangian

Principles:

One can use freely the linear eoms

One performs (many many) integrations by part

Temporal boundary terms (total derivative) contribute to 
correlation functions and should be kept

�S(2)

�⇣
= 0

�S(2)

�F = 0and

Arroja and Tanaka 2011
Burrage, Ribeiro, Seery, 2011
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Result
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.
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like Maldacena (but chi is multifield)



Result

‘new multifield’ interactions



Result

boundary terms



Exact and compact

Size of couplings reflect the genuine size of NGs

Impact of boundary terms minimized

Convenient for integrating out massive entropic fluctuations

Result



Integrating out heavy entropic fluctuations
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Including all interactions

A is a UV-dependent parameter, independent of cs in general
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Consistency check

Gelaton
Tolley and Wyman 2010

In our work: chi fluctuations are integrated out 
about two-field background, and P(X)-like cubic action

L = �1

2
e2b(�)(@�)2 � 1

2
(@�)2 � V (�,�)

Under conditions, the full field chi can be integrated out

LEFT = e2b(�?(�,X))X � V (�,�?(�, X)) = P (X,�)

Agreement: same P(X) and 
explicit observables in terms of V and b



Multifield cubic action in terms of directly 
observable curvature perturbation

+ Genuine size of interactions made manifest

Exact, compact, unifies previous results 
Starting point for many applications

First application: single-field EFT 
when heavy entropic fluctuation

+ Observable signatures of curved field space

Revisiting non-Gaussianity 
in multifield inflation



Conclusions

• Inflation: leading paradigm for primordial cosmology

• Formidable laboratory for very high-energy physics

• Quest of primordial GWs and non-Gaussianities

Energy scale 
of inflation

particle 
detector

• Recent developments about field space geometry: theoretical 
challenges and new observational perspectives



One can not afford that anymore! 

1980’s first models: potential chosen at will

1990’s eta-problem: must ensure flatness of potential in QFT

Historical perspective*

2000’s multiple fields: often ‘standard kinetic terms for simplicity’ 
or geometrical effects overlooked

*obviously schematic

Today: must ensure control over potential + geometry

New theoretical challenges and 
new observational perspectives



Thank you!



Back-up slides



Expanding the action up to cubic order

Sufficient to solve the constraints at linear order
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Impact of boundary terms

B⇣(k1,k2,k3)�B⇣,bulk(k1,k2,k3) =

�2 b(k1,k2,k3)P⇣(k1)P⇣(k2) + 2 perms.

�2 c(k1,k2,k3)P⇣(k3)P⇣p⇣ (k2) + 5 perms.

�a(k1,k2,k3)P⇣F (k1)P⇣(k2) + 5 perms.

with



Impact of boundary terms

B⇣(k1,k2,k3)�B⇣,bulk(k1,k2,k3) =

�2 b(k1,k2,k3)P⇣(k1)P⇣(k2) + 2 perms.

�2 c(k1,k2,k3)P⇣(k3)P⇣p⇣ (k2) + 5 perms.

�a(k1,k2,k3)P⇣F (k1)P⇣(k2) + 5 perms.

with

- last 2 terms negligible on super-Hubble scale, 
independently of the conservation or not of zeta

- first term relevant only if entropic modes do not decay



Integrating out heavy entropic fluctuations

Effective cubic action:



Integrating out heavy entropic fluctuations
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Effective cubic action:
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