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With the creation of physics as a science based on experience, the
view was affirmed that the electrical and magnetic properties of bodies
differ significantly. This view was clearly expressed by William Gilbert
in 1600. The identity of the laws of attraction and repulsion for electric
charges and magnetic charges, the poles of magnets, established in
1785 by Charles Coulomb, again raised the question of the similarity
of electric and magnetic forces, but by the end of the 18th century
it was found out that under laboratory conditions it is impossible
to create a body with a non-zero magnetic charge. The concept of
a “magnetically charged substance” was permanently expelled from
physics after the work of Ampere in 1820, in which it was proved that
a circuit with an electric current creates the same magnetic field as
a magnetic dipole. However, by the 1930s, ideas about the sources of
magnetic fields starting changing.
The equations of classical electrodynamics formulated by Maxwell connect
the electric and magnetic fields with the motion of charged particles.
These equations are almost symmetrical with respect to electricity and
magnetism. So the equations of electrostatics and magnetostatics are
have the form:

𝑑𝑖𝑣�⃗� “ 4𝜋𝜌; 𝑟𝑜𝑡�⃗� “ 0; 𝑑𝑖𝑣�⃗� “ 0; 𝑟𝑜𝑡�⃗� “ 4𝜋�⃗� (1)

The simplest case of the appearance of a monopole in theory is obtained
by symmetrizing these equations. As Dirac [1] has shown, this leads to
the fact that in the presence of a magnetic charge, the electric charge
must be quantized.

By analogy with the formula �⃗� “ 𝑞
𝑟3 �⃗�, we can define the magnetic

charge carried by the magnetic monopole by the formula �⃗� “
𝜇
𝑟3 �⃗�.

Where 𝜇 is the magnetic charge, �⃗�, �⃗� are the electric and magnetic
fields strengths, q is the electric charge, r is the distance to the source
of field.
And we also define the vector potential which connected with the
magnetic field: �⃗� “ 𝑟𝑜𝑡�⃗�
The vector potential cannot be specified as a continuous function everywhere
outside the magnetic charge. To show this, we write the flux of the
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magnetic field through the surfaces Σ1 and Σ2 stretched over the
contour 𝛾:

𝐹1 “

ż

Σ1

�⃗�𝑑�⃗� “

¿

𝛾

�⃗�𝑑�⃗� 𝐹2 “

ż

Σ2

�⃗�𝑑�⃗� “ ´

¿

𝛾

�⃗�𝑑�⃗� “ ´𝐹1 (2)

Then the total flow through the surface Σ “ Σ1 ` Σ2 is equal to:
𝐹 “ 𝐹1 ` 𝐹2 “ 0 if �⃗�p�⃗�q is a continuous function �⃗� : Σ Ñ 𝑇𝑀 .
However, in the presence of the source 𝐹 “ 4𝜋𝜇 ‰ 0. i.e. �⃗� is not a
continuous function on Σ surface.

To show how the presence of a magnetic charge leads to the quantization
of electric charge, let us use the formulation of quantum mechanics in
Feynman Integrals, within the framework of which the amplitude of
a particle transition from point 1 to point 2 during time 𝑡2 ´ 𝑡1 is
expressed as follows:

ă 2, 𝑡2|1, 𝑡1 ą“

ż

𝑒𝑥𝑝p
𝑖𝑆r�⃗�s

~
q𝐷r�⃗�s, 𝑆 “ 𝑆0 ` 𝑒

ż 2

1

�⃗�p�⃗�q𝑑�⃗� (3)

Consider the relative phase of two trajectories 𝛾1 and 𝛾2:

1

~
p𝑆r𝛾1s ´ 𝑆r𝛾2sq “

𝑒

~

¿

𝛾1Yp´𝛾2q

�⃗�p�⃗�q𝑑�⃗� (4)

Thus, the contribution to the amplitude by these paths is either 𝑒
~𝐹1, or

´ 𝑒
~𝐹2. But the amplitude shouldn’t depend on this uncertainty. Thus,

it is easy to see that the electric charge is determined by the degree of a
continuous mapping 𝑆1 Ñ 𝑆1 (the fundamental group 𝜋1p𝑆

1q “ Z) due
to the requirement of amplitude invariance connected to the change of
the relative phase.

𝑒

~
𝐹1 ´ p´

𝑒

~
𝐹2q “

𝑒

~
𝐹 “ 2𝜋𝑛 (5)

Then
𝑒 “

𝑛~
2𝜇

𝑛 P Z (6)
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This is the Dirac quantization rule for electric charge in the presence
of a magnetic monopole.
In 1974, t’Hooft and Polyakov showed [2] that a magnetic monopole
could occur in gauge models of electro-weak interactions. However,
the existence of a magnetic monopole solution requires a compact
group of unifying symmetry, which includes electromagnetic symmetry,
which isn’t the case in the framework of Standard Model’s Electroweak
Interactions.

A magnetic charge, unlike an electric one, is not a Noether, but it
has a topological nature. A more detailed study of this phenomenon
leads to the concept of the Polyakov-t’Hooft monopoles, which naturally
arise in the presence of gauge fields in topologically nontrivial field
theory models with spontaneously broken symmetry. [3]
Consider the system, which described by the Lagrangian:

L “
1

2
p▽𝜇�⃗�q

2
´ 𝜆p�⃗�2

´ 𝑎2q2 ´
1

4
p𝐹𝜇𝜈q

2 (7)

𝐹𝜇𝜈 “ B𝜇�⃗�𝜈 ´ B𝜈�⃗�𝜇 ` 𝑔�⃗�𝜇 ˆ �⃗�𝜇 (8)

𝐹𝜇𝜈 is the tensor of the gauge field �⃗�𝜇, which is an adjoint representation
of the 𝑆𝑂p3q gauge group. �⃗� is the isovector Higgs field and ▽𝜇�⃗� “

B𝜇�⃗�` 𝑔�⃗�𝜇ˆ �⃗�. The smallest energy value of such a system is achieved
on the field configurations �⃗� “ 𝑐𝑜𝑛𝑠𝑡, |�⃗�| “ 𝑎2. That is, on vacuum
spheroids. So 𝑆𝑂p3q group can move any point of 𝑆2 to any other.
i.e. 𝑆𝑂p3q acts transitively at this spheroids but not faithful, because
for any point 𝑥 P 𝑆3 there are infinite elements of 𝑆𝑂p2q Ă 𝑆𝑂p3q
which don’t move 𝑥. i.e. ℎ𝑥 “ 𝑥 for all ℎ P 𝑆𝑂p2q Ă 𝑆𝑂p3q. So if
we map 𝑆𝑂p3q as a set to 𝑆2, we see that each point of the sphere
𝑆2 corresponds to an infinite number of elements 𝑆𝑂p2q Ă 𝑆𝑂p3q i.e.,
the ’Ker’ of the mapping 𝑆𝑂p3q Ñ 𝑆2 is 𝑆𝑂p2q. In this case 𝑆𝑂p3q
symmetry broken down to 𝑆𝑂p2q symmetry. And 𝑆𝑂p2q symmetry
is persists after 𝑆𝑂p3q breaking. [5] Thus, the topological space of
vacuums is homeomorphic to the quotient space 𝑆2 “ 𝑆𝑂p3q{𝑆𝑂p2q,
which is homeomorphic to the two-dimensional sphere 𝑆2

𝑎 of radius 𝑎

in an isotopic space. I.e. the mapping �⃗� : 𝑆2
8 Ñ 𝑆2

𝑎 on the asymptotics
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�⃗� Ñ 8 is characterized by the second homotopy group 𝜋2p𝑆
2q “

𝜋2p𝑆𝑂p3q{𝑆𝑂p2qq “ Z. Thus, the field configuration can be associated
with a topological charge 𝑄. For example, by calculating the flux
through the 𝑆2

8 vacuum sphere:

𝐹 “

ż

𝑆2
8

�⃗�𝑑Σ⃗ “
1

2

ż

𝑆2
8

𝜖𝑖𝑗𝑘�⃗�𝐹𝑗𝑘𝑑Σ𝑖 “ ´
4𝜋𝑄

𝑔
(9)

In this case, the homotopy classes will be separated by an infinite
potential barrier. Comparing this with the Gauss formula 𝐹 “ 4𝜋𝜇,
we conclude that the magnetic charge has a topological nature and
is proportional to the degree of mapping �⃗� : 𝑆2

8 Ñ 𝑆2
𝑎 or 𝜇 “ ´

𝑄
𝑔 .

Because of higher homotopy groups are abelian, we conclude that the
magnetic charge is additive.

The considered approach is generalized to the case of arbitrary
gauge symmetries and their arbitrary violations. To find out whether
magnetic monopoles arises in the theory under consideration, it suffices
to consider 𝜋2p𝐺{𝐻q, where G is the full group of gauge symmetry, H
is the group of unbroken symmetries. The criteria for the existence of
monopoles in such a model is the nontriviality of 𝜋2p𝐺{𝐻q. Because
if 𝜋2p𝐺{𝐻q is trivial (i.e. 𝜋2p𝐺{𝐻q contains only one element 0) then
𝜇 “ ´𝑄

𝑔 “ 0
If G is simply connected, then from consideration of the exact sequence
of the bundle 𝐺Ñ 𝐺{𝐻 with layer H

...
𝑝˚
ÝÑ 𝜋𝑖`1p𝐺{𝐻q

B
ÝÑ 𝜋𝑖p𝐻q

𝑖˚
ÝÑ 𝜋𝑖p𝐺q

𝑝˚
ÝÑ 𝜋𝑖p𝐺{𝐻q

B
ÝÑ 𝜋𝑖´1p𝐻q

𝑖˚
ÝÑ ...

(10)
and because G is simply connected :

0
𝑝˚
ÝÑ 𝜋2p𝐺{𝐻q

B
ÝÑ 𝜋1p𝐻q

𝑖˚
ÝÑ 0 (11)

it follows that 𝜋2p𝐺{𝐻q « 𝜋1p𝐻q [5]. This situation is common for the
grand unified theories [3]. For example, if electromagnetic and color
symmetries are not broken, i.e., 𝐻 « 𝑆𝑈p3q ˆ 𝑈p1q then 𝜋1p𝐻q «
𝜋1p𝑈p1qq « Z, i.e., these theories predicts the existence of magnetic
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monopoles. It is easy to verify that in the standard model monopoles
are absent because second homotopy group of the bundles base is trivial
for the Standard Model gauge groups.

It is important to note that before the phase transition, massive
magnetic monopoles simply don’t exist, because symmetry has not
been violated at this epoch. They arise in the universe after a phase
transition.

In the grand unification models, the symmetry of electromagnetic
interactions was included in the grand unification (GUT) compact
symmetry group. So, the existence of magnetic monopoles with Dirac
magnetic charge is an inevitable topological consequence of the GUT
symmetry breaking. The monopoles mass is determined by their vacuum
average. The predicted mass of such monopoles was about 𝑚 „ Λ

𝑒 ,
where Λ is the typical magnitude of the GUT symmetry breaking. For
Λ „ 1015𝐺𝑒𝑉 , monopoles mass is 𝑚 „ 1016𝐺𝑒𝑉 , which explains the
negative results of searches for monopoles on accelerators.

The proton decay p𝑝` Ñ 𝑒`𝑒´𝑒`q with a cross section determined
by the proton size p𝜎 „ 10´28𝑐𝑚2q is induced in the magnetic monopoles
singular field. This process is explained as follows:

The minimum extension of the standard model should include the
direct product of SM gauge groups as a subgroup. The minimal group
that includes 𝑆𝑈p3qˆ𝑆𝑈p2qˆ𝑈p1q is the 𝑆𝑈p5q group. One can build
a minimal great unification model, based on this group.
The fundamental fermions in this model will be included in the Lagrangian
in the form of two SU(5) representations. Because in this model one
can’t manage to place all the known fundamental fermions of each
generation into one representation. However it could be done with the
help of two representations: A first one is the quintet, which has the
form:

`

𝑑𝑟 𝑑𝑔 𝑑𝑏 𝑒` 𝜈𝑒
˘

(12)
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And the second one is decouplet:
¨

˚

˚

˚

˚

˝

0 𝑢𝐵 ´𝑢𝐺 ´𝑢𝑅 𝑑𝑅
´𝑢𝐵 0 𝑢𝑅 ´𝑢𝐺 ´𝑑𝐺
´𝑢𝐺 ´𝑢𝑅 0 ´𝑢𝐵 ´𝑑𝐵
𝑢𝑅 𝑢𝐺 𝑢𝐵 0 ´𝑒`

𝑑𝑅 𝑑𝐺 𝑑𝐵 𝑒` 0

˛

‹

‹

‹

‹

‚

(13)

Further, for our purposes it will be sufficient to consider only the
quintet representation of 𝑆𝑈p5q.
𝑆𝑈p5q includes 24 generators, 12 of which characterize the standard
model gauge interactions mediators, because 𝑆𝑈p3qˆ𝑆𝑈p2qˆ𝑈p1q Ă
𝑆𝑈p5q. The remaining 12 carriers are unique for this GUT model, and
they are responsible for the proton decay reaction in the magnetic
monopole field.
All 24 mediators can be described using the adjoint representation of
𝑆𝑈p5q group:

¨

˚

˚

˚

˚

˝

𝐺´ 2𝐵{
?

30
𝑋1

𝑋2

𝑋3

𝑌1

𝑌2

𝑌3

𝑋1 𝑋2 𝑋3 𝑊 3{
?

2` 3𝐵{
?

30 𝑊`

𝑌 1 𝑌 2 𝑌 3 𝑊´ ´𝑊 3{
?

2` 3𝐵{
?

30

˛

‹

‹

‹

‹

‚

(14)

where G is the 3ˆ3 matrix of gluons, 𝐵 corresponds to the 𝑈p1q gauge
boson, 𝐵 `𝑊 3 gives the photon and the 𝑍 boson states.
It is easy to show that the forms constructed of the fermions quintuplet
and decuplet, as well as the gauge adjoint representation of the 𝑆𝑈p5q
group, affect all possible standart model vertices. However, in the
𝑆𝑈p5q theory the amount of vertices turn out to be larger than they
were in the SM. One of the new vertices is a vertex describing the X
boson - quarks interaction:
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`

𝑑𝑟 𝑑𝑔 𝑑𝑏 𝑒` 𝜈𝑒
˘

¨

¨

˚

˚

˚

˚

˝

0 0 0 𝑋1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˝

𝑑𝑟
𝑑𝑔
𝑑𝑏
𝑒`

𝜈𝑒

˛

‹

‹

‹

‹

‚

“ 𝑑𝑟 ¨𝑋1 ¨ 𝑒
` (15)

Showed vertex clearly leads to the baryon number conservation violation.
Similar vertices for 𝑋2 and 𝑋3 will differ from this one only in the
mediators color. Similarly, the Y boson is responsible for the transformation
of quarks into neutrinos. Another new vertice in this theory is 𝑢 ¨𝑋 ¨𝑢

To explain the low intensity of proton decay, bosons X and Y are
assumed to be very massive (their masses greater than 1014 GeV).
Therefore, it is impossible to observe them directly in any experiments
with the modern development of technology.
However, in a singular field of a massive monopole, such a decay
becomes possible due to the sufficient mass of the magnetic monopole.
A picture illustrating this process is shown at the top. So the process

𝑝` `𝑀 Ñ 𝑒` `𝑀` 𝜋0

ë 𝑒`𝑒´
(16)

describes the possibility of proton decay p𝑝` Ñ 𝑒`𝑒´𝑒`q in the presence
of a magnetic monopole.

According to the hot Universe model and modern cosmological
models, particles with a mass of 𝑚 of any kind should be in equilibrium
at 𝑇 ą 𝑚 if the interaction of these particles is strong enough to

7



satisfy equilibrium conditions with plasma and radiation. This means
that the rate of the reactions 𝜎𝑣 is large enough to satisfy condition
𝑛p𝑇 qp𝜎𝑣q ą Γ. where 𝑛p𝑇 q is the number of particles density at the
temperature 𝑇 and Γ „ 𝑇 2

𝑚𝑝𝑙
is the cosmological expansion rate. When

the temperature drops to 𝑇 ă 𝑚 At the temperature 𝑇 𝑇𝑓 , when the
particles interaction rate is compared with the cosmological expansion
rate, the particles get out of equilibrium. As a result, the particles are
freeze out, and their relative concentration does not change anymore,
because the decreasing of temperature leads to the fact that the rate
of expansion begins to exceed the rate of annihilation of monopole-
antimonopole pairs, which should have led to relic magnetic monopoles
concentration freeze out.

The annihilation cross section is determined by the Coulomb attraction
of magnetic charges. The rate of annihilation of the monopole and
antimonopole can be obtain in the diffusion approximation with considering
the diffusion of particles with a magnetic charge ´𝜇 to an absorbing
sphere with a radius 𝑎 ă Γ0 and with a magnetic charge `𝜇. [4]

Then for the magnetic monopoles mass 𝑚 „ 1016𝐺𝑒𝑉 - the magnetic
monopoles density turns out to be 16 orders of magnitude greater
than the baryon density. In order to solve the problem of monopoles
overproduction, an inflationary cosmological model was proposed, in
which the initial concentration of monopoles was strongly suppressed.

The considered mechanism of the topological formation of monopoles
in the process of phase transition occurs in such a way that first the
monopole field is formed in space and only then the singularity of
this field is localized. It is clear that the local field generated in the
phase transition has no orientation. Thus, together with monopoles and
antimonopoles, magnetic field loops can appear, forming the primary
magnetic fields structure in the Universe.
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Conclusion

Magnetic monopoles play an important role in fundamental physics
and cosmology. Being an integral part of grand unification theories,
they (their experimental discovery) are the indicators of their correctness.
Also they are gives an important constraints on the parameters of
these theories. The contradictions arising in such theories, connecting
with the overproduction of monopoles in the early universe, are one of
indications of correctness of inflation theory, within the framework of
which these contradictions can be resolved.

The magnetic charge of a monopole naturally turns out to be
quantized; in addition, its presence inevitably leads to the quantization
of the electric charge, the quantum nature of which is not completely
clear today.

An important indirect experimental indication of the presence of
magnetic monopoles would be the detection of the proton decay, the
rate of which greatly increases in the presence of magnetic monopoles.
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