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What is this talk about?

In this talk, I will discuss the geometrical effects of dark matter without
actually invoking the dark matter, per se, in the standard form. It will
be done by modifying the Einstein-Hilbert action, especially in f (R)
model and the new scalar field would be discussed under a conformal
transformation from the Jordan frame to the Einstein frame.
I will also show that the mass of the scalaron undergoes a chameleon
mechanism and becomes large in the high curvature regions to
cause a screening of the fifth force. Then, I would discuss the
cosmological conditions on various features of the scalaron to show
how it can act as a dark matter particle.



The modified gravity action

A =
1

2κ2

∫
d4x
√
−gf (R) +Am(gµν ,Ψm) (1)

where κ2 = 8πG and Am is the action of the matter part with matter
field Ψm.

• The spacetime as homogeneous, isotropic and spatially flat.
• Given by the Friedmann-Lemaitre-Robertson-Walker (FLRW)

spacetime as

ds2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2 θdφ2)] (2)

a(t) is time dependent scale factor and the speed of light c = 1.



The field equations

• We use the metric formalism in which connections Γαβγ are
defined in terms of the metric tensor gµν .

• Varying the action with respect to gµν , the field equations are
given by

F (R)Rµν −
1
2

f (R)gµν

−∇µ∇νF (R) + gµν�F (R) = κ2Tµν , (3)

where F (R) ≡ ∂f
∂R and Tµν is the energy-momentum tensor for

matter.
• The trace of field equations (3) is given by

3�F (R) + F (R)R − 2f (R) = κ2T (4)



Conformal transformation from Jordan frame to
Einstein frame

We rewrite the action in the form

A =

∫ √
−g
(

1
2κ2 F (R)R − U

)
d4x +Am, (5)

where

U =
F (R)R − f (R)

2κ2 . (6)

We switch over to the Einstein frame to see the real effects of dark
matter in form of the scalar degree of freedom. It is possible to derive
an action in the Einstein frame under the conformal transformation

g̃µν = Ω2gµν . (7)



New Ricci scalar degree

R = Ω2(R̃ + 6�̃ω − 6g̃µν∂µω∂νω), (8)

where

ω ≡ ln Ω, ∂µω ≡
∂ω

∂x̃µ
, �̃ω ≡ 1√

−g̃
∂µ(
√
−g̃g̃µν∂νω). (9)

Propagation of R in a new degree of freedom.



New action

The action under the conformal transformation is transformed as

A =

∫
d4x

√
−g̃×[

1
2κ2 FΩ−2(R̃ + 6�̃ω − 6g̃µν∂µω∂νω)− Ω−4U

]
+Am. (10)

The two fold dilatonic coupling in Am:

• Coupling of φ with matter fields through Lagrangian.
• Through

√
−g̃.



Over to scalar field: Conformal degree of freedom

The linear action in R̃ can be written by choosing

Ω2 = F . (11)

A new scalar field φ defined by

κφ ≡
√

3
2

ln F . (12)

Using the relations (11) and (12), the action in Einstein frame is found
as

A =

∫
d4x

√
−g̃
[

1
2κ2 R̃ − 1

2
g̃µν∂µφ∂νφ− V (φ)

]
+Am.

(13)



Geometric potential

V (φ) =
U
F 2 =

FR − f
2κ2F 2 (14)

stands as the potential term of the scalar degree of freedom in a
general f (R) model.
But this is not all! You have contributions from the SM that effectively
draws it to a minimum.



Fixing the form of f(R)

• Constant tangential velocity condition on the motion of a test
particle in the stable orbits of the spiral galaxies (few hundred
km/s).

• f (R) can be given by f (R) = R1+δ, where δ << 1 is related to the
tangential velocity.

• To solve the problem of dark matter, only very small deviation
from general relativistic theory is required: delta ∼ 10−6.

• This shows up scalaron as a “BUILT-IN” field, NOT an
ADDITIONAL one !



In the Einstein frame the scalar field φ is coupled with non-relativistic
matter. This coupling has the relation

Ω2 = F = e−2Qκφ, (15)

where Q is the strength of coupling. Now, from equation (12) and
equation (15), Q is given by

Q = − 1√
6
. (16)

The scalar field arise in the f (R) model given by

f (R) =
R1+δ

(Rc)δ
(17)

where Rc is a constant having unit of the Ricci scalar R and δ is a
small parameter of the model.



Connection of Ricci scalar to scalar field

•

F = (1 + δ)
Rδ

(Rc)δ
. (18)

• For Q = − 1√
6
, the Ricci scalar R in terms of scalar field φ is

given as

R = Rc

[
e
√

2/3κφ

1 + δ

] 1
δ

. (19)

• The field equations for R EQUIVALENTLY transform to the field
equations of φ.



φ- field dynamics

The variation of the action with respect to φ yields the equation of
motion of the scalar field as

�̃φ = V ′(φ) +
κ√
6

T̃ (20)

where �̃φ = 1√
−g̃
∂µ(
√
−g̃g̃µν∂νφ), V ′(φ) = dV

dφ and T̃ = g̃µν T̃µν .

Equation (20) can also be written as

�̃φ = V ′eff (φ) (21)

where V ′eff (φ) = V ′(φ) + κ√
6
T̃ .



The effective potential

Veff (φ) =
δRc

2κ2(1 + δ)
(1+δ)

δ

e
√

2
3

(1−δ)
δ κφ +

1
4
ρe
−4κφ√

6 (22)

• The first part at φmin yields the DE.
• The second part is quite important as DM!



Leading to a minimum

Finding value of the scalar field φ at which Veff (φ) is minimum, dVeff
dφ

given as

V ′eff (φ) =
Rc√
6κ

(1− δ)

(1 + δ)
1+δ
δ

e
√

2
3

(1−δ)
δ κφ − κ√

6
ρe
−4κφ√

6 (23)

For V ′eff (φ) = 0, φ at the minimum of Veff (φ) given by,

φmin =

√
3
2

1
κ

ln

[
(1 + δ)

(
κ2ρ

Rc(1− δ)

) δ
1+δ

]
(24)



Scalaron mass

For the calculation of the mass of the scalar field, we have

V ′′eff (φ) =
Rc

3
(1− δ)2

δ(1 + δ)
1+δ
δ

e
√

2
3

(1−δ)
δ κφ +

2κ2

3
ρe
−4κφ√

6 (25)

which for the value of φmin becomes

V ′′eff (φmin) =
(1− δ)

2δ
1+δ

3δ(1 + δ)
(Rc)

2δ
δ+1 (κ2ρ)

1−δ
1+δ . (26)

Thus, mass of the scalaron (= V ′′eff (φmin)) is clearly given by

m2
φ =

(1− δ)
2δ

1+δ

3δ(1 + δ)
(Rc)

2δ
δ+1 (κ2ρ)

1−δ
1+δ . (27)

Scalaron potential V (φmin) = M2
planck Λ can be identified as the dark

energy.



Scalaron mass with model parameter δ
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Plot for the variation of the scalaron mass mφ with parameter δ. Here,
the black curve corresponds to Rc = Λ (value of cosmological

constant) and the dotted curve to Rc = 1. The value of the energy
density of matter at the galactic scale is ρ = 4× 10−42(GeV )4 for both

curves.



mφ with ρ , Rc = Λ
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The variation of scalaron mass mφ with the energy density ρ of matter.
Here, black and dashed curves correspond to δ = 0.25 and δ = 0.10,

respectively, and Rc = Λ (value of the cosmological constant).



mφ with ρ, δ = 0.25 and Rc = 1
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Plot for the variation of scalaron mass mφ with the energy density ρ of
matter corresponding to δ = 0.25 and Rc = 1.



What do we find?

• The mass of the scalar field depends upon the energy density of
matter.

• The Compton wavelength becomes too small and the fifth force
is almost screened.

• This is consistent with the local galactic and solar system
constraints.

• However, this size puts a constraint on the mass of the scalaron
to act as a dark matter particle and the mass should not be too
high. Interaction with SM possible.



• When Rc = Λ, the scalaron mass decreases with increasing δ,
while in case of Rc = 1, mφ decreases more sharply initially for
smaller values of δ and then increases for its larger values for the
given energy density of matter ρ at the galactic scale.

• Since δ substantially determines the form of the f (R) model,
therefore, we have the model dependent mass of the scalaron. It
tends to infinity as δ tends to zero and our model approaches the
standard general relativistic description.

• Even a small change of δ makes a large difference for such
dependence of the mass on the energy density background.



Scalar field motion

• The equation of motion of the scalar field

d2φ

dt̃2
+ 3H̃

dφ
dt̃

+ V ′eff (φ) = 0. (28)

where H̃ is the Hubble parameter in the Einstein frame.
• When H̃ = 0, the energy of the system is conserved and the

oscillations are periodic.
• When H̃ 6= 0, then it acts to produces a dissipative force against

the oscillations of the scalar field.
• If the Hubble parameter H̃ varies slowly (adiabatically) with time

during the time period T of the oscillation such that

H̃ � ν (29)

The rate of energy loss is proportional to H̃.



Action-angle variable

J =

∮
pdφ = 2

∫ φ2

φ1

√
2(ρφ − Veff (φ))dφ (30)

where p is the momentum and ρφ is the energy density of scalar field.
φ1 and φ2 are the values of φ at which Veff (φ1) = Veff (φ2) = ρφ. The
equation of state w of the scalar field is defined as

w = −1 +
J
ρφ

1
dJ/dρφ

(31)
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Plot for the variation of equation of state w with the energy density ρφ
of scalar field corresponding to δ = 0.20.
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Plot for the variation of equation of state w with the energy density ρφ
of scalar field corresponding to δ = 0.20.



Coupling to massless/massive vector field

LV (gµν ,Aµ) = −1
4

e4
√

1/6κφg̃αµg̃βνFαβFµν. (32)

This does not couple to the scalaron at the classical level. But due to
scale anomaly, at the quantum level it does.
With mass term,

LV−mass(gµν ,Aµ) = −1
2

m2
V e2
√

1/6κφg̃µνAµAν . (33)

Am =

∫
d4x

√
−g̃[LV−mass(g̃µν ,Aµ) + LV−φ(g̃µν ,Aµ, φ)] (34)

where

LV−φ(g̃µν ,Aµ, φ)

= −1
2

m2
V (e−2

√
1/6κφ − 1)g̃µνAµAν . (35)



...and coupling to fermions

In curved spacetime,

LF (γµ, ψ) = iψ̄(x)γµ∇µψ(x) (36)

Coupling appears explicitly!
However, we can recover the action

Am =

∫
d4x

√
−g̃iψ̄′(x)γ̃µ∇̃µψ′(x) (37)

by canonical transformation as

ψ → ψ′ = e−3/2
√

1/6κφψ (38)

For massive fermion, the conformal Lagrangian has additional φ
dependent terms as

LF−φ(ψ′, φ) =
κφ√

6
.mF ψ̄′ψ

′ + O(κ2φ2) (39)



Scalaron as dark matter particle

Background φ = φmin + φ̂, ρEW = (100GeV )4

�̃φmin = V ′(φmin)− κ√
6

e
−4κφmin√

6 ρEW (40)

Mass of scalar dark matter particle in our model

m2
φ =

(1− δ)
2δ

1+δ

3δ(1 + δ)
(Rc)

2δ
δ+1 (κ2ρEW )

1−δ
1+δ . (41)

• Dark matter particle appears and interacts as φ̂.
• The temperature dependent velocity field of Tµ

µ of SM sector set
an anisotropy in mφ and self-interaction of scalaron dark matter.

• MAY EXPLAIN THE OBSERVED OFFSET BETWEEN
BARYONIC HOT GAS AND DM IN CLUSTERS!



Bullet Cluster 1E0657-56



Dark matter mapping



1E0657-56: The offset



MACS J0025.4-1222



MACS : z > 0.3



Chameleonic decay

• The mass of the scalar field depends upon the energy density of
standard matter.

• Anisotropic in the velocity fields of standard matter. May explain
the DM-Hot gas offset in Clusters!

• For a very small δ ∼ 10−6, at the electro-weak scales
ρEW ∼ (100GeV )4, mφ ∼ 10−3 eV,

• At the solar system scales ρ⊙ ∼ 1019eV 4, scalaron must be very
light as ∼ 10−16 eV. PPTA (2018).

• Such particle will not decay soon. Has very WEAK coupling to
FERMION and VECTOR fields



Decay widths into FF̄

Tree level:

LφFF̄ =
κφ√

6

∑
mF ψ̄′Fψ

′
F . (42)

Γ =
N(F )mφm2

Fκ
2

48π

(
1−

4m2
F

m2
φ

)3/2

. (43)

N(F ) = 1 Leptons,
N(F ) = 3 Quarks



Decay into Diphotons and Digluons

• Scale anomaly
• One-loop: the Yukawa vertices/ or involving W bosons in the

standard matter perturbations.

For massless vector fields,

Lanomaly = −
g2

V
8(4π)2

(
3
2

√
1/6κφ

)
F 2
µν(V ). (44)

LφWW =
2κφ√

6
m2

W W +
µ Wµ−. (45)

The net contributions to Γ increase with mφ.

• Bound from cosmological age mφ ≤ 0.24GeV . Our model
suggests mφ ∼ 10−16eV.
BKY-MMV arxiv: 1811.03964 [gr-qc]

• Current bounds: mφ ∼ 10−22eV. Porayko et al. Phys Rev D 98,
102002, (2018) from Parkes Pulsar Timing Array (PPTA).



Dynamical dark matter in an evolving background!

• Scalaron with mφ > 0.23GeV must all decay till now.
• mφ < 0.23GeV must survive.
• Scalaron had a mass spectrum in the early universe due to

density perturbations in the background.
• The inhomogeneities would be co-extensive, and co-moving with

the cosmic evolution.
• However, evolving mφ would change the self-interaction in

scalaron fields. More so in the massive SM backgrounds.
• They produce the observable consequences.



SUMMARY

• Modified gravity f (R) EQUIVALENT to Eistein’s theory with
BUILT-IN scalar field.

• The scalaron couples to matter through Lagrangain AND gravity.
• It shows a kind of dilatonic coupling. Mass increases with the

massive background as in Clusters.
• It can be explained in form of dark matter as the oscillating field.
• Scalaron potential V (φmin) = M2

Planck Λ can be identified as the
dark energy.

• Scalaron is light enough to last at least as long as the age of the
universe.

• Within the solar system, our results match with the PPTA and
other observations.

• The current observations point to an ultra-light scalar dark matter.
• The model parameters are to be tuned with

astrophysical/cosmological observations.



THANK YOU!
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