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Introduction



Introduction

Standard model of Cosmology

Standard model of cosmology, namely the ACDM model' has been a grand success. We have
been able to model our universe using six basic parameters?.

Parameter Best Fit

Dark Matter

Qph? 0.02233 £ 0.00015

Q.h? 0.1198 4 0.0012
10060pmc  1.04089 £ 0.00031
T 0.0540 + 0.0074
DarkcEneray Jag In(1010 Ay) 3.043 +0.014
ns 0.9652 =+ 0.0042

However, many questions remain!

1 Figure from: http://planck.cf.ac.uk/results/cosmic-microwave-background.

2Pplanck Collaboration: N. Aghanim et al., arXiv: 1807.06209[astro-ph.CQO].
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Introduction

Small scale problems of dark matter

Despite the success of CDM at large scales, it is plagued with issues at small scales® (< 10kpc ).
Of them, two most pertinent issues are:

@ Core vs Cusp: CDM predicts that the halos have a cusp in the density profile at its centre.
However, observations of low surface brightness galaxies and dwarf galaxies indicate that the
density profiles at the centre of halos are shallower and hence has a core.

@ Missing satellites: Simulations of CDM over predicts the number of dwarf satellites in local
group by an order of magnitude.

Of these two issues, it has been suggested that the latter can be alleviated to an extent if one
considers the effects of baryons*.

3For a recent review, see James S. Bullock and Michael Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343387 (2017).
4S. Garrison-Kimmel et al. , arXiv:1806.04143 [astro-ph.GA].
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Introduction

Some proposals for overcoming small scale issues

In order to overcome the small scale issues several alternatives to CDM has been proposed.

@ Warm Dark Matter: In this model®, dark matter particles possess a thermal velocity which
allows them to free stream. This free streaming suppresses the formation of small scale
structure and resolves the core-cusp problem.

@ Collisional Dark Matter: In this model®, dark matter particles interact with each other. The
presence of collisions, provides a way to solve the issues at small scales.

In this work, we will consider a different approach to resolving the small scale issues.

5See, for instance, Y. P. Jing, Modern Physics Letters A 16, 17951800 (2001).

63ee, for instance, Paolo Salucci and Nicola Turini, arXiv:1707.01059 [astro-ph.CO].
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Fuzzy dark matter

Fuzzy dark matter

@ In Fuzzy Dark Matter (FDM)’, the dark matter is composed of ultra light bosons of mass
m ~ 10724 — 10~22eV, which exist as a Bose Einstein Condensate (BEC).

@ All the large scale properties of the FDM are expected to be similar to that of CDM. However
at small scales, the quantum properties of the BEC affects the formation of structure.

@ Due to small mass of bosons, their de Broglie wavelength is of the order of kpc scales,

h 10-22eV 100k
ap = 2 :1.20><< ¢ )x( m/s)kpc
p mp Up mp Uy

@ The de Broglie wavelength manifests itself as a Jeans length below which the quantum pres-
sure due to the uncertainty principle acts against gravity. Thus, below the de Broglie wave-

length, the pressure suppresses the formation of structure and flattens the density profile.
7Wayne Hu, Rennan Barkana, and Andrei Gruzinov, Phys. Rev. Lett. 85, 11581161 (2000).
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Fuzzy dark matter

Axions

@ A candidate for ultra light bosonic dark matter are axions®. Axions are spin zero periodic fields
and they arise in several scenarios.

@ Due to the periodicity, the axion field possess a quasi shift symmetry i.e. the shift symmetry is
only partly broken which makes it nearly massless or ultra light.

@ Axions are described by®
[ae v [ L2 698 0, 4056 — it (1 — cos(8))

where ¢ is the dimensionless field and mass of the field, . = ;?/F where 1 and F are two
parameters.

@ The axion is governed by the equation of motion,
é+3H¢ + m? sin(¢) = 0.

8D, J. E. Marsh, Phys. Rept. 643, 179 (2016).

9Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, and Edward Witten, Phys. Rev. D 95, 043541 (2017).
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Fuzzy dark matter

Axions as FDM candidate

@ The axion is governed by the equation of motion,

é+3H¢ + m? sin(¢) = 0.

@ Early on in the universe, H >> m?, in that limit the growing solution is ¢ oc constant.

@ As universe expands, H becomes comparable to m?. In that limit, the axion has an oscillating
solution which decays as ¢(t) x a(t)~*/2, i.e. the energy density of the axion field, p,, o a .

@ Thus, in this oscillatory phase, the axion behaves like classical CDM.

@ By analyzing the perturbed Klein Gordon equation of the axions in the non-relativistic limit,
one can rewrite the Klein-Gordon equation as a Gross-Pitaevskii equation'®. Hence, one can
interpret the axions as a BEC.

10, Suarez and P-H. Chavanis, Phys. Rev. D 92, 023510 (2015).
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Gross-Pitaevskii-Poisson System

Gross-Pitaevskii-Poisson System

Since the axions exist as a BEC, the system of interest is a BEC evolving under the effect of gravity.
The state of such a BEC is described by the condensate wave function (¢, 7) governed by the
Gross-Pitaevskii-Poisson (GPP) system,

. 9 7—> h2 4 ShQ
n??E TN gy ) 4 ma, e )+ T, 7P, 7)
V2e(t, 7) = 4nG [p(t, 7))

where,

m is the mass of boson,

®(t, 7') is the gravitational potential,

p(t, ) = |i(t, 7)|% is the mass density and

as is the s-wave scattering length of bosons. A positive, zero and negative value of a, implies a
repulsive, nil and attractive self-interaction of bosons respectively.

Structure formation in this system can be studied using numerical simulations.

V. Sreenath Spherical Collapse in Fuzzy Dark Matter 28 September, 2018 12/51



Gross-Pitaevskii-Poisson System

Numerical simulations : Large scales

Numerical simulations'' show that at large scales structures formed in FDM resembles that
formed in CDM, as illustrated in this figure.

picture from Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst, Nature Phys. 10, 496499 (2014).
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Gross-Pitaevskii-Poisson System

Numerical simulations : Small scales

A more resolved view'? shows the differences from that of CDM.

200 kpc
—ty

12picture from Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst, Nature Phys. 10, 496499 (2014).
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Gross-Pitaevskii-Poisson System

Results from numerical simulations

@ At large scales, simulations show that the structures formed in FDM is similar to that produced
in CDM.

@ High resolution simulations show that FDM halo centers have a solitonic core with outer pro-
files similar to the NFW profile.

@ As the solitonic core accretes more matter, it grows and are surrounded by virialized halos
with fine-scale, large-amplitude fringes.

@ The surrounding halos are supported against gravity by quantum and turbulent pressure and
hence fluctuates in density and velocity.
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Gross-Pitaevskii-Poisson System

Motivation

@ Though the numerical simulations are required to have an exact understanding of structure
formation, analytical approximations often provide useful insights.

@ With this motivation, we will study the time evolution of a spherical mass shell of a Newtonian
self-gravitating FDM under certain approximations.
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Gross-Pitaevskii-Poisson System

Gross-Pitaevskii-Poisson System

The system under consideration is that of a self-gravitating BEC which is governed by the Gross-
Pitaevskii-Poisson (GPP) system,

ihaw%’t?) _ _;Lmv%(t, ) £ md(t, T)o(t, T) + 47;2;71 [t )Pyt )
V2O, 7) = 4xG [yt )%

where,

m is the mass of boson,

®(t, 77) is the gravitational potential,

p(t, ) = |ib(t, 7)|% is the mass density and

as is the s-wave scattering length of bosons. A positive, zero and negative value of a, implies a
repulsive, nil and attractive self-interaction of bosons respectively.

In order to study the evolution of a spherical shell of FDM, it is convenient to rewrite the GPP

system as fluid equations.
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GPP system in terms of fluid variables

Madelung transformation

It is often convenient to express the GPP equations, describing the FDM halo, in terms of fluid
variables, namely density and velocity'3. This can be achieved by performing a Madelung trans-
formation#,

Y(t, ) = \/p(t, ) exp(i S(t, 7)/h)

where p(t, 7) and S(t, 7') are real quantities.

18P H. Chavanis, A&A 537, A127 (2012).

14E. Madelung, Zeitschrift fiir Physik 40, 322326 (1927).
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Fluid equations in a static universe

Up on applying the transformation to the GPP system, defining
vs(t, )

m

U, 7) =
equating real and imaginary parts and using the identity,
(T -V = V(u?/2) — T x (V x0) = V(u2/2),
we obtain,
% vV () = 0,
@ - - Fe- YO

AVELiN

47TG 0,

which are respectively the continuity, Euler and Poisson equations of a fluid with density p
and velocity @
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Fluid equations in a static universe

Thus, using Madelung transformation, one can rewrite the GPP system as fluid equations, namely,
17)
3—;) vV () = 0,
P
j+(7€)ﬁ = _z_eq)_@

AVALiN

47 G p.
Some remarks are in order,

@ Since, U (t, ) = w we see that ©/ is irrotational.
@ In the Euler equation, the quantum pressure is given by,

Q. 7):_L2 Ve W {V% 1(Vp)2],

2m /p  4m
@ The pressure arising from self-interactions is given by,
2magsh?
P, 7) =120 2
m

3
Note that the above equation describes an equation of state of a polytrope of index one.

P 2 p?
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GPP system in terms of fluid variables

Fluid equations in an expanding universe

In an expanding universe, 7 (t) = a(t) 7.

Using the relation,
0 0

5?_816?

where H(t) = a(t)/a(t) is the Hubble parameter, the fluid equations can be written as,

—HT-V,

D g Yy ?pﬁ) —0,
6t

@_H7€ 7?)7 Vp Vo Vg

ap a am’

V2q) = 471G da?p,

where ¥ is now with respect to 7.
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GPP system in terms of fluid variables

Perturbed fluid equations in an expanding universe

Let us now split the density, velocity and gravitational potential in to its background part and a
perturbation on top of it, i.e.

p = pp(1+9), whered = dp/py
U =H7 + 7, and
® = Py + ¢, where®, = —ir?/(2a).

Using these definitions, one could write the perturbed part of the fluid equations as,

95 v

—+E-[7(1+5)1=o

ot
o7 (T -V dma,R? Vo, B2 V2 1(Vp)?
E—FH?—F a T am? ?p— a +4m2a3?{p 2 pQ}

V20, = 47 G a® pyd.

In writing the perturbed part of Euler equation, we have retained the full density, p, on the

right hand side for later convenience.
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Evolution of a spherical shell

Consider a spherically overdense distribution of FDM. Consider a spherical shell of radius R(t) =
a(t)X (t), enclosing certain mass, centered in the overdense region. A fluid element on that shell

would have a velocity, 7 = H B + o/, where the velocity of the fluid element is in radial direction.

The acceleration of that fluid element can be computed as,

@—@:Hﬁ—FH(Hﬁ—s—?)—F

A2 de a T

ov (T-V)

28 September, 2018 25/51
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Evolution of a spherical shell

Equation of motion of a spherical shell

Up on using the perturbed Euler equation and the fact that ?@b = —a ﬁ/cﬂ, we obtain,

(VP)T .

dt? a am? a 4m?2 a3

CR _ Vo, dralrg Ve, @ v 1
- - p 2 p?

Combining the background and perturbed parts of the gravitational potential, one can write the
equation of motion of the spherical shell as,

2R dma,h? 2 5[V 1(Vp)?
A %‘?‘“mﬁ{ - }

where the spatial derivatives are now with respect to » and are evaluated on the shell,
r = R(t).
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Evolution of a spherical shell

Equation of motion of a spherical shell

The equation of motion of the spherical shell is,

25 Ara, h? B2
dt2 - m3 ?p—?@+4m2

Thus, the evolution of the shell is governed by three forces,
@ Gravitational attractive force

@ A quantum repulsive force

@ A force arising due to the bosonic interactions which could be attractive (a, < 0) or repulsive
(as > 0).

V. Sreenath Spherical Collapse in Fuzzy Dark Matter 28 September, 2018 27151



Spherical collapse in CDM



Spherical collapse in CDM
Spherical collapse in CDM

The equation of spherical collapse in CDM can be obtained by taking the limit » — 0,

0
0
2B dra B2 B o[V V7]
= — - Vo =" .
e ﬁ ve + @[ P2 p? }
For an over dense spherical region containing an arbitrary mass M, the above equation becomes,
R oM
2 R2°

We shall assume that the shell is initially expanding along with the Hubble flow. The trajectory of
the shell is determined by the first integral of motion, namely,

2
1<dR> _GM _

2\ dt R
If E > 0, the shell will expand for ever with the Hubble flow. On the other hand, if £ < 0, the
shell will eventually stop expanding, turn around and then start collapsing to the center.
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Spherical collapse in CDM

Motion of a spherical shell in CDM

For a shell with E < 0, the evolution of radius of the shell R containing mass 1/ is given by'®,

R = Al — cos(9)]
t = BI[Y —sin()]

where A® = G M B?.
Let us now try to understand the behaviour of the solution,

whend = 7, R(7) = Ry = 24
whent? = 2w, R(27) = Rpmin = 0.

Thus we see that, a spherical shell containing an overdense region, turns around and collapses
to the center, i.e. the radius of the shell does not have a lower bound.

15T, Padmanabhan, “Structure formation in the universe* (Cambridge University Press, 1993).
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Spherical collapse in CDM
Expression for overdensity in CDM

Let us assume that the background spacetime is EdS. The average density contained in a spherical
shell of radius R containing mass M is given by p = M/(47 R?/3). In an EdS universe, the
background density is given by p, = 1/(67 G t2).

Hence, the average overdensity inside the spherical shell is

- p 9G M¢?
Lhd= =

Substituting equations for R and ¢, we obtain
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Spherical collapse in FDM with power law density profile

Power law profile

In order to study the spherical collapse of FDM, we need to assume a density profile for the
overdense region.

For simplicity, let us consider a power law density profile of the form,

plt,r) = 34;7;(\5)3 (th)>_7,

where the normalization factors has been chosen in such a way that, L(¢) is the radius of the
shell which encloses a mass M and ~ is a positive number less than 3 (by demanding that density
should be positive).

Assuming that the FDM overdense region maintains such a density profile throughout the evolution,
one can derive the equation of motion for the spherical shell.
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Spherical collapse in FDM with power law density profile

Equation of motion for a spherical shell

For a shell of radius L(t), containing mass M, the equation of motion can be written as,

d?L ash> M G M h?
e =B e @ e

As explained before, the evolution of the shell is governed by three forces, namely,
@ the repulsive (a, > 0) or attractive (a, < 0) force due to bosonic self-interaction,
@ attractive gravitational force
@ repulsive quantum force.

Note that, for the power law profile, in order for the quantum force to be positive and non-vanishing,
one requires y < 2.
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Spherical collapse in FDM with power law density profile Case of non-interacting Bosons

Case of non-interacting Bosons

In the absence of interactions (a; = 0), the equation of motion of the spherical shell can be written
as,
d’L  k 2

maE T T
where k = G Mmand > = (2y — ~?) h?/4.

This equation is mathematically, though not physically, similar to the equation governing the re-

duced mass in a two-body Kepler problem. Hence, we will draw insights from the solution of
Kepler problem to solve the above equation.

Initially, let the overdense shell be expanding along with the Hubble flow. The shell will eventually
turn around if the initial value of the first integral of motion of the shell is negative, i.e. if,

1 dr\? 12 k
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Spherical collapse in FDM with power law density profile

Analytical solution

Case of non-interacting Bosons

If £ < 0, the evolution of the shell is given by

L = A(l — ecos?)
3\ 1/2
t = (mA ) (9 — e sind)
k
where, A = —k/(2 E) and expression for ¢ is,

2E? ER2 2
e = /14 lz\/1+ w2y =7
m k2

G2M?2m3 2 '

Note that, since F < 0, the value of ¢ < 1. Let us now try to understand the behaviour of the
solution,

whend = 0, L(0) = Lym = Al — ¢)
whent = m, L(7) = Lpar = A1 + e).

Since e < 1, the radius of the shell is thus bounded from below and hence will oscillate

between the two extremum values.
V. Sreenath

Spherical Collapse in Fuzzy Dark Matter
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Spherical collapse in FDM with power law density profile Case of non-interacting Bosons

Numerical evolution

For numerical simulations, it is convenient to rewrite equation of motion in terms of dimensionless
variables as,
Py 2y =77

dr2 48 y?
where, we have definedy = L/Lqandr = t/tq, with Lo = 1? /(G M m?)andtq = \/LE)/(G M).

In order to fix the initial conditions, we assume that,

@ in the beginning, the shell containing an average overdensity of §; = 1077, is expanding
according to the Hubble flow,

@ the universe is Einstein de Sitter(EdS), i.e. the scale factor scales with time as a o t2/2,
@ we assume that £ < 0.
For v = 107 !°, we have numerically solved for y(7) and compared with the analytical solutions

expressed in terms of y(7).
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Spherical collapse in FDM with power law density profile Case of non-interacting Bosons

Numerical evolution

150_ T T T T 3

analytic

®  numeric

0.50

0.25r

0.00 '
0 2 4 6

We have assumed that the shell contains a mass M = 9.1 x 107 Mgun, the mass of boson to be
m = 8.1 x 10723eV and initial values y; = 107° and §; = 10~°. Such a shell would oscillate
between Lyin = 3.57 x 1078 pcand L. = 1.9kpc.

It is interesting to note that 1 — ¢ = O(10~!1), hence such a vast difference in L,,i, and Lyax. . @)
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Spherical collapse in FDM with power law density profile Case of non-interacting Bosons

Expression for overdensity

In an EdS spacetime, the average overdensity inside the spherical shell is

" 9G Mt?
1+6=" ==
- pp 2 L3
Substituting equations for for L and ¢, we obtain

— e sing)2
1+5:2(19 esmﬂ).
2 (1 — ecos?)?
The above expression for average overdensity within the shell has the following properties:
@ since ¢ < 1, the overdensity does not diverge as v — 2,
@ the averaged overdensity is fluctuating and increasing with time

@ inthelimit h — 0, e — 1, it reproduces the CDM expression for averaged overdensity.

V. Sreenath

Spherical Collapse in Fuzzy Dark Matter 28 September, 2018



Spherical collapse in FDM with power law density profile Case of non-interacting Bosons

Overdensity in the linear regime

Let us now turn our attention to the behaviour of 5 in the small ¥ limit. Up on Taylor expanding the
expression for 4(«)) about ¥ ~ 0, we obtain

1_|_5Ng v 2176 V2 2_|_
T 2\1 —e¢ 4 1—e¢

@ The above expansion for § would be valid only if ¥ << 1 — e. However, in this limit, the
above expression imply that 0 ~ —1 which indicate an underdensity.

@ If as we saw in the previous slide, 1 — ¢ is very small, then one could first take the limit of
e — 1 and then the limit ¥ — 0. Up on taking the limit in this order we obtain,

302
— X a,

o 20

1

which is similar to that in CDM.

The above discussion seem to indicate that, in this model, for an overdense region, a
sensible small ¢ limit exists only if the limit ¢ — 1 can be taken before the ¥ — 0 limit.
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Spherical collapse in FDM with power law density profile Case of interacting bosons

Equation of motion

Due to the lack of analytical solution, we will approach the problem numerically.
For as # 0, we can rewrite equation of motion in dimensionless form as

Py a3y =97 N 2y — 9% 1
dr2 y4 4y3 yz’

where, a; = aa, with a, = 7%/(G M?m) and « can be greater than, equal to or less than zero
which corresponds to repulsive, nil and attractive interaction respectively.

In order to understand the effect of interactions, it is convenient to look at the form of the effective
potential governing the evolution of the shell,
a3y —9%) | 2y —~?

1
i + DA
3y3 8y3 Y

Viy) =
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Spherical collapse in FDM with power law density profile Case of interacting bosons

Effective potential

\_ - —_—a = —-16x 1072
102} | a=—-15x 1072
s | —- a =00 .
10°F R : a=10x 10 4
= R B EELED a=10x 10"
0 H H p—
= I /'/-
S/ _108 L | / i
_109 i | / |
! -
_100F N\, J
—10M - .
2l A v e e e i
1012 107" 107 107 100% 1007 107
Yy

Horizontal black dashed line denotes the effective energy of the fluid element of the shell with a
density profile specified by v = 10~'° and with initial conditions §; = 107° and y; = 10~ and
curves denote the effective potential of the fluid element for various values of a. As we can see,
for a = —1.6 x 10~'2, the potential does not have a region which is bounded from both sides
hence the quantum pressure cannot stop the collapse of the shell. For all other values of «, a@
shown in the figure, the shell will oscillate.
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Spherical collapse in FDM with power law density profile Case of interacting bosons

Numerical solution

1.50F 1
1.25
1.00
=0.75
0.50

0.25

0.00

The evolution of the shell for different values of « > 0 are shown. The effect of increasing « is a
shift in the minimum of the potential to larger values of y. This would cause the fluid element
oscillate between larger values of maximum and minimum and with a longer period. @
The markers indicate the analytical expression.
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Spherical collapse in FDM with power law density profile Case of interacting bosons

Comparison with analytical expression

From the previous plot, it appears that the match between the numerical result for « > 0 and the
analytical result for « = 0 is good.

@ This is because, in this toy model, the effect of interactions is only felt at small scales where
as at large scales, the force is dominated by gravity.

@ Though not evident from the plot, the minimum value of y differs from the analytical value as
the value of « is non-zero.

@ In particular, the analytical expression predicts a minimum radius of 1,,;, = 2.5 x 10~ where
as the numerical simulations indicate a minimum radius of 1.5 x 10—, 7.08 x 10~ and 1.0 x
1078 fora = —1.5 x 1072, 5 x 107 and 10~ respectively.

@ Hence, one can conclude that, for the parameters that we have considered, the analytical
expression derived for non-interacting bosons, holds at large to medium scales for the case of

interacting bosons.
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Summary and discussion

Summary

@ FDM is a compelling model for dark matter. The quantum nature of FDM which gets mani-
fested at kpc scales is capable of resolving the small scale issues that has been ailing CDM.
FDM halo can be described as a self-gravitating BEC and hence is governed by the GPP
equations.

@ With the goal of gaining analytical insights in to the evolution of an FDM halo, we investigated
the time evolution of a spherical shell containing an overdense region.

@ We studied the system in its hydrodynamical form, i.e. as a fluid with density p and velocity @
evolving under the effect of opposing forces of Newtonian gravity and quantum pressure.

@ Assuming a spherically symmetric power law profile, we derived the expression for the time
evolution of a shell comprising of non-interacting bosons. We verified the analytical results by
comparing it with numerics. We found that due to the quantum pressure, the collapse was

bounded from below.
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Summary and discussion

Summary

@ Using the analytical expressions, we derived the expression for overdensity of FDM halo in an
EdS spacetime and studied its linear regime.

@ Further, we numerically studied the evolution of a spherical shell in the presence of interactions
and compared the evolution with the case of non-interacting bosons.

@ We saw that for repulsive interactions, the effect of stronger interaction is to increase the
minima of the potential, which in turn makes the shell oscillate between larger minimum and
maximum radius.

@ While, in the case of attractive interactions, the shell will oscillate only if the value of |a,| << a,.

@ We also found that, for the parameters that we considered, the analytical expression
derived for the case of non-interacting bosons is a good approximation at large to medium

scales. .§
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Summary and discussion

Discussion

Before we conclude, few remarks are in order.

@ Even though this study was motivated by the possibility of FDM being a viable dark matter
candidate, the analytical calculations performed in this paper hold for any non-interacting
BEC collapsing under the effect of gravity.

@ In this analysis, the equation of motion was derived by assuming a power law density profile.
The equation will remain valid only till the the shape of the profile remains unchanged.

@ As the shell turns around and collapses, the shell will eventually interact with other shells. We
have not taken in to account such interactions.

@ In this work we have used the hydrodynamic description to model the system. It is not clear
how well does the hydrodynamic description captures the physics underlying the GPP
equations.

It would be interesting to explore these points further.
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Thank you very much for your attention!
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