
1

Thermodynamics of 
hot Universe

Lecture from the course 
« Introduction to 

cosmoparticle physics »



Equilibrium condition
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T T T

macroscopic
conditions

ab ab ab abn v     - condition of equilibrium
between species a and b.

For matter in Universe, the change of macroscopic parameters is defined by the rate of its expansion:

macroscopic
conditions

1~H
t

 



Equilibrium distribution
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Under conditions of equilibrium, for gases of fermions and bosons we have
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chemical potential is supposed 
to be 0: number of any species 
can be freely changed

3
3

3

d Nn f d p
d x

   3E f d p  

Using this distribution, we can find number and energy densities



Number and energy densities
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Ultrarelativistic case: E=p, d3p=4E2dE
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Notation is introduced:

The given integrals are not trivial, however relation between them can be calculated



Relativistic particles
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From formula above we get in ultrarelativistic case
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Full calculation gives
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Compare with Stefan-
Boltzman law



Nonrelativistic particles
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In non-relativistic case we have: Em>>T
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Multicomonent relativistic gas
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Equation of state

8

0p  -non-relativistic (“dust”-like) matter, the stage of 
dominance of such matter is called MD-stage

3
p 
 - (ultra)relativistic (radiation-like) matter, the 

corresponding stage is called RD-stage

p   - vacuum-like matter (vacuum energy), this 
stage leads to accelerated expansion 
(inflation)

p  
In the general case one can parameterize 

The basic equations of state, as mentioned previously, are



Derivation of p=/3
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Basic relations
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For the matter with equation of state p=, we can get from Friedmann 
equations
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In early Universe density of CMB exceeded the density of matter.

=> Radiation Dominated (RD)-stage took place at T>1 eV.
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Note, that given relations take 
place for flat Universe (K=0 or
=1) without -term. Such 
approximation is justified, since 
the terms K/a2 and, moreover, 
2/3 in Friedmann equation

become negligible while a
decreases even if K,≠0.
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Vacuum dominance
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In case of =–1 we have
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Density of  does not change with time.

=> Then -dominance can start only in a late period, provided that small  exists.

-term is equivalent to the matter 
with e.s. p=– (vacuum energy).

Task: For homogeneous massive scalar field from general expression of 
energy-momentum tensor please show that it leads to vacuum equation 
of state at t<<1/m.



Temperature of early Universe
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Since wavelength of free particle ~a, temperature of photons evolves as a–1.

However, before recombination (T>3000 K, z>1100) and, in particular, at 
RD stage, photons are not free and can get/give the energy from/to other 
matter with which they interact (are in equilibrium).

To define dependence of T from t at RD-stage, one writes
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Contribution of species
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•  depends on t (T) as soon as the number of relativistic 
species changes with T.

• Contribution of non-relativistic species at RD-stage is 
suppressed as exp(-m/T) or defined, as in case of 
nucleons, by small initial excess of their particles over 
antiparticles.
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Evolution with time
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Entropy
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Entropy is conserved for reversible processes.

Entropy is conserved for any closed (sub)system in the absence of 
irreversible processes.

Examples of irreversible processes: radiation of hot bodies (stars),
decays of particles, some phase transitions.

s n

characterizes amount of states in phase 
space occupied by system.
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T
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Gravitational energy is not taken into account



Entropy of multicomponent matter
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For multicomponent matter we have:
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In case of components with different temperatures:
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s =  in case of Ti=T



Freezing out and decoupling
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Freezing out of particles a (and their antiparticles) takes place, when they go out of
thermodynamic equilibrium with particles b. It happens when processes that maintain 
the equilibrium, including reactions changing number of particles a, are stopped (“frozen 
out”) – become slower than the rate of cosmological expansion (H).

a aa aan v H 

Decoupling of particles a from particles b takes place, when they go out of 
thermal (kinetic) equilibrium. It happens when energy exchange between a and 
b, carried out by their scattering processes, becomes ineffective – becomes 
slower than Universe expansion. 

a ab abn v H 

These notions play important role in particle physics of Big Bang Universe 
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a ab ab

a

En v H
E


  It takes the form , if Eab~Ea

a ab abn v H or



Conclusions
• Rate of processes between matter and radiation 

exceeds the rate of expansion in early Universe. 
• Expansion of Universe reproduces an adiabatic 

process (adiabatic cooling and conservation of 
entropy). 

• It proves the validity of thermodynamical 
description for particles in early Universe.

• The conditions of equilibrium, freezing out or 
decoupling are important for evolution of 
particles at early hot stages of cosmological 
evolution.
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