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N.S. Mankoč Borštnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Why Nature Made a Choice of Clifford and not Grassmann Coordi-
nates
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Preface

The series of annual workshops on ”What Comes Beyond the Standard Models?”
started in 1998 with the idea of Norma and Holger for organizing a real workshop,
in which participants would spend most of the time in discussions, confronting
different approaches and ideas. Workshops take place in the picturesque town
of Bled by the lake of the same name, surrounded by beautiful mountains and
offering pleasant walks and mountaineering.
This year was the 20th anniversary workshop. We celebrated this by offering a
talk to the general audience of Bled with the title ”How far do we understand
the Universe in this moment?”, given by Holger Bech Frits Nielsen in the lecture
hall of the Bled School of Management. The lecture hall was kindly offered by the
founder of the school Danica Purg.
In our very open minded, friendly, cooperative, long, tough and demanding dis-
cussions several physicists and even some mathematicians have contributed. Most
of topics presented and discussed in our Bled workshops concern the proposals
how to explain physics beyond the so far accepted and experimentally confirmed
both standard models — in elementary particle physics and cosmology — in
order to understand the origin of assumptions of both standard models and be
consequently able to make predictions for future experiments. Although most
of participants are theoretical physicists, many of them with their own sugges-
tions how to make the next step beyond the accepted models and theories, and
several knowing running experiments in details, the participants from the experi-
mental laboratories were very appreciated, helping a lot to understand what do
measurements really tell and which kinds of predictions can best be tested.
The (long) presentations (with breaks and continuations over several days), fol-
lowed by very detailed discussions, have been extremely useful, at least for the
organizers. We hope and believe, however, that this is the case also for most of
participants, including students. Many a time, namely, talks turned into very ped-
agogical presentations in order to clarify the assumptions and the detailed steps,
analyzing the ideas, statements, proofs of statements and possible predictions,
confronting participants’ proposals with the proposals in the literature or with
proposals of the other participants, so that all possible weak points of the propos-
als showed up very clearly. The ideas therefore seem to develop in these years
considerably faster than they would without our workshops.
This year the gravitational waves were again confirmed, this time from two merg-
ing neutron stars — the predicted possible source of heavy elements in the universe
— measured also with the for a few second delayed electromagnetic signal. Such
events offer new opportunity to be explained by theories, proposed and discussed
in our workshops, showing the way beyond the standard models.
This year particle physics experiments have not brought much new, although a lot
of work and effort has been put in, but the news will hopefully come when further
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analyses of the data gathered with 13 TeV on the LHC will be done. The analyses
might show whether there are the new family to the observed three and the new
scalar fields, which determine the higgs and the Yukawa couplings, as well as
the heavy fifth family explaining the dark matter content, all these predicted by
the spin-charge-family theory and discussed in this proceedings. Such analysis
might provide a test also of the hypothesis that dark atoms, composed of new
stable double charged particles, can explain the puzzling excess of slow positrons,
annihilating in the center of Galaxy, as well as the excess of high energy cosmic
positrons.
The new data might answer the question, whether laws of nature are elegant (as
predicted by the spin-charge-family theory and also — up to the families — other
Kaluza-Klein-like theories and the string theories) or ”she is just using gauge
groups when needed” (what many models assume, some of them with additional
discrete symmetries, as in several in this proceedings).
Shall the study of Grassmann space in confrontation with Clifford space for the
description of the internal degrees of freedom for fermions, discussed in this
proceedings in the first and second quantization of fields, help to better understand
the “elegance of the laws of nature” and consequently the laws of nature? Will
the complex action including future and past, also studied in this proceedings,
help? Both studies have for the working hypotheses that “all the mathematics
is a part of nature”. Will the assumption that ”nature started” with bosons (as
commuting fields) only, fermionizing bosons to obtain anti commuting fermion
fields, as discussed in this proceedings, help? Might the extension of the Dirac sea
to bosons (which are their own antiparticles), also presented in this proceedings,
help as well to understand better the elegance of nature?
Although the supersymmetry might not be confirmed in the low energy regime,
yet the regularization by higher derivatives in N = 1 supersymmetric gauge
theories, in some cases to all the orders, might speak for the “elegance of the
nature”.
The fact that the spin-charge-family theory offers the explanation for all the as-

sumptions of the standard model, predicting the symmetry S̃U(2)× S̃U(2)×U(1)
of mass matrices for four rather than three observed families, explaining also other
phenomenas, like the dark matter existence and the matter/antimatter asymmetry
(even “miraculous” cancellation of the triangle anomaly in the standard model
seems natural in the spin-charge-family theory), it might very well be that there
is the fourth family. New data on mixing matrices of quarks and leptons, when
accurate enough, will help to determine in which interval can masses of the fourth
family members be expected. There are several papers in this proceedings man-
ifesting that the more work is put into the spin-charge-family theory the more
explanations for the observed phenomena and the better theoretical grounds for
this theory offers.
There are attempts in this proceedings to recognize the origin of families by
guessing symmetries of the 3 × 3 mass matrices (this would hardly work if the
3× 3mass matrices are indeed the submatrices of the 4× 4mass matrices). There
are also attempts in this proceedings to understand the appearance of families by
guessing new degrees of freedom at higher energies.
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The idea of compositeness of quarks and leptons are again coming back in a new
context, presented in this proceedings, opening again the question whether the
compositness exists at all — could such clusters be at all massless — and how far
can one continue with compositness.
As every year also this year there has been not enough time to mature the very
discerning and innovative discussions, for which we have spent a lot of time,
into the written contributions, although some of the ideas started in previous
workshops and continued through several years. Since the time to prepare the
proceedings is indeed very short, less than two months, authors did not have a
time to polish their contributions carefully enough, but this is compensated by the
fresh content of the contributions.
Questions and answers as well as lectures enabled by M.Yu. Khlopov via Virtual
Institute of Astroparticle Physics (viavca.in2p3.fr/site.html) of APC have in ample
discussions helped to resolve many dilemmas. Google Analytics, showing more
than 226 thousand visits to this site from 152 countries, indicates world wide
interest to the problems of physics beyond the Standard models, discussed at Bled
Workshop.
The reader can find the records of all the talks delivered by cosmovia since Bled
2009 on viavca.in2p3.fr/site.html in Previous - Conferences. The three talks de-
livered by: Norma Mankoč Borštnik (Spin-charge-family theory explains all the
assumptions of the standard model, offers explanation for the dark matter, for
the matter/antimatter asymmetry, explains miraculous triangle anomaly cancel-
lation,...making several predictions), Abdelhak Djouadi (A deeper probe of new
physics scenarii at the LHC) and M. Yu. Khlopov and Yu. S. Smirnov (Search
for double charged particles as direct test for Dark Atom Constituents), can be
accessed directly at
http://viavca.in2p3.fr/what comes beyond the standard model 2017.html
Most of the talks can be found on the workshop homepage
http://bsm.fmf.uni-lj.si/.
Bled Workshops owe their success to participants who have at Bled in the heart of
Slovene Julian Alps enabled friendly and active sharing of information and ideas,
yet their success was boosted by videoconferences.
Let us conclude this preface by thanking cordially and warmly to all the partici-
pants, present personally or through the teleconferences at the Bled workshop, for
their excellent presentations and in particular for really fruitful discussions and
the good and friendly working atmosphere.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(the Organizing comittee)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(the Editors)

Ljubljana, December 2017
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1 Predgovor (Preface in Slovenian Language)

Serija delavnic ,,Kako preseči oba standardna modela, kozmološkega in elek-
trošibkega” (”What Comes Beyond the Standard Models?”) se je začela leta 1998 z
idejo Norme in Holgerja, da bi organizirali delavnice, v katerih bi udeleženci v
izčrpnih diskusijah kritično soočili različne ideje in teorije. Delavnicapoteka na
Bledu ob slikovitem jezeru, kjer prijetni sprehodi in pohodi na čudovite gore, ki
kipijo nad mestom, ponujajo priložnosti in vzpodbudo za diskusije.
To leto smo imeli jubilejno 20. delavnico. To smo proslavili s predavanjem za
splošno občinstvo na Bledu z naslovom “Kako dobro razumemo naše Vesolje v tem
trenutku ?”, ki ga je imel Holger Bech Frits Nielsen v predavalnici IEDC (Blejska
šola za management). Predavalnico nam je prijazno odstopila ustanoviteljica te
šole, gospa Danica Purg.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov.
Večina predlogov teorij in modelov, predstavljenih in diskutiranih na naših Ble-
jskih delavnicah, išče odgovore na vprašanja, ki jih v fizikalni skupnosti sprejeta
in s številnimi poskusi potrjena standardni model osnovnih fermionskih in bo-
zonskih polj ter kozmološki standardni model puščata odprta. Čeprav je večina
udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako narediti naslednji
korak onkraj sprejetih modelov in teorij, in tudi taki, ki poznajo zelo dobro potek
poskusov, so še posebej dobrodošli predstavniki eksperimentalnih laboratorijev,
ki nam pomagajo v odprtih diskusijah razjasniti resnično sporočilo meritev in
ugotoviti, kakšne napovedi so potrebne, da jih lahko s poskusi dovolj zanesljivo
preverijo.
Organizatorji moramo priznati, da smo se na blejskih delavnicah v (dolgih) pred-
stavitvah (z odmori in nadaljevanji čez več dni), ki so jim sledile zelo podrobne
diskusije, naučili veliko, morda več kot večina udeležencev. Upamo in verjamemo,
da so veliko odnesli tudi študentje in večina udeležencev. Velikokrat so se pre-
davanja spremenila v zelo pedagoške predstavitve, ki so pojasnile predpostavke
in podrobne korake, soočile predstavljene predloge s predlogi v literaturi ali s
predlogi ostalih udeležencev ter jasno pokazale, kje utegnejo tičati šibke točke
predlogov. Zdi se, da so se ideje v teh letih razvijale bistveno hitreje, zahvaljujoč
prav tem delavnicam.
To leto so ponovno zaznali gravitacijske valove, tokrat iz zlitja dveh nevtronskih
zved — verjame se, da se pri takih pojavih tvori večina zelo težkih elementov,
ki so prisotni v vesolju — kar je omogočilo spremljanje posledic zlitja tudi z
elektromagnetnimi valovi. Takšni pojavi ponujajo nove možnosti za razlago s
teorijami, ki jih predstavljamo in o katerih razpravljamo na naših delavnicah in
kažejo pot onkraj standardnih modelov.
To leto poskusi niso prinesli veliko novega, četudi je bilo v eksperimente vloženega
ogromno dela, idej in truda. Nove rezultate in z njimi nova spoznanja je pričakovati
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šele, ko bodo narejene podrobnejše analize podatkov, pridobljenih na posodoblje-
nem trkalniku (the Large Hadron Collider) pri 13 TeV. Tedaj bomo morda izvedeli
ali obstajajo nova družina in nova skalarna polja, ki dolov cajo Higgsove in Yukaw-
ine sklopitve, pa tudi težka peta družina, ki razlaga temno snov (kar napoveduje
teorija spinov-nabojev-družin obravnavana v več prispevkih in diskusijah v tem
zborniku). Take analize bi lahko omogočile preveritev hipoteze, da obstoj tem-
nih atomov, ki jih sestavljajo novi nabiti delci z dvojnim nabojem, lahko pojasni
presežek počasnih pozitronov, ki se anihilirajo v centru Rimske Ceste in presežek
kozmičnih pozitronov visokih energij.
Novi podatki bodo morda dali odgovor na vprašanje, ali so zakoni narave pre-
prosti (kot napove teorija spinov-nabojev-družin kakor tudi — razen družin —
ostale teorije Kaluza-Kleinovega tipa, pa tudi teorije strun), ali pa narava preprosto
“uporabi umeritvene grupe, kadar jih potrebuje” (kar počne veliko modelov, neka-
teri z dodatnimi diskretnimi simetrijami, kot v tem zborniku).
Bo študij uporabe Grassmannovega prostora v namesto Cliffordovega prostora za
opis vseh notranjih prostostnih stopenj fermionov ter prva in druga kvantizacija
polj v vsakem od obeh prostorov, kar obravnavamo v temzborniku, pripomogla k
boljšemu razumevanju “elegance naravnih zakonov” ter posledično zakonov? Bo
pripomoglo k ugotovitvi, kakši so zakoni narave, proučevanje enačb gibanja, ki
sledijo iz kompleksne akcije, ki vključuje preteklost in prihodnost, kar je prav tako
predstavljeno v tem zborniku? Oba pristopa privzameta kot delovno hipotezo,
da je “vsa matematika del narave”. Ali bo pomagala predpostavka, da je “narava
začela” samo z bozoni (ki so komutirajoča polja), nato fermionizirala bozone, kar
je dalo antikomutirajoča fermionska polja (prav tako predstavljeno v zborniku)?
Lahko razširitev Diracovega morja na bozone (ki so sami sebi antidelci), tudi
predstavljena v zborniku, pomaga bolje razumeti eleganco narave?
Čeprav supersimetrije pri nizkih energijah morda ne bo opazili, lahko regular-
izacijo supersimetričnih umeritvenih teorij za N = 1, v nekaterih primerih v vseh
redih, razumemo kot argument za “eleganco narave”.
Dejstvo, da teorija spinov-nabojev-družin ponuja razlago predpostavk standard-

nega modela, napove simetrijo S̃U(2)×S̃U(2)×U(1) masnih matrik za štiri družine,
namesto opaženih treh družin, ter pojasni še druge pojave, kot je obstoj temne
snovi in asimetrija snovi/antisnovi (celo “čudežno” odpravo trikotniške anomalije
v standardnem modelu), je argument za možen obstoj četrte družine. Novi podatki
o mešalnih matrikah kvarkov in leptonov bodo, če bodo dovolj natančni, pomagali
določiti interval pričakovanih mas za člane četrte družine. V tem zborniku je nekaj
prispevkov, ki kažejo, da z več vloženem delu ter napoveduje nove pojave.
V zborniku predstavimo tudi pristope, v katerih poskušajo pojasniti izvor družin
z ugibanjem simetrij masnih matrik za tri družine (kar v primeru, da so te matrike
v resnici podmatrike 3× 3matrik 4× 4 ne bo dosti pomagalo). V zborniku so pred-
stavljeni tudi poskusi, da bi razumeli pojav družin z ugibanjem novih prostostnih
stopenj pri visokih energijah.
Poskusi, da bi lastnosti leptonov in kvarkov razložili kot gručo delcev, se znova
pojavljajo, tokrat v zborniku v novem kontekstu, ki znova odpira vprašanje, ali so
lahko takšne gruče sploh lahko (skoraj) brez mase in kako daleč lahko s podstruk-
turo strukture smiselno nadaljujemo.
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Kot vsako leto nam tudi letos ni uspelo predstaviti v zborniku kar nekaj zelo
obetavnih diskusij, ki so tekle na delavnici in za katere smo porabili veliko časa.
Premalo je bilo časa do zaključka redakcije, manj kot dva meseca, zato avtorji
niso mogli povsem izpiliti prispevkov, vendar upamo, da to nadomesti svežina
prispevkov.
Četudi so k uspehu ,,Blejskih delavnic” največ prispevali udeleženci, ki so na
Bledu omogočili prijateljsko in aktivno izmenjavo mnenj v osrčju slovenskih
Julijcev, so k uspehu prispevale tudi videokonference, ki so povezale delavnice z
laboratoriji po svetu. Vprašanja in odgovori ter tudi predavanja, ki jih je v zadnjih
letih omogočil M.Yu. Khlopov preko Virtual Institute of Astroparticle Physics
(viavca.in2p3.fr/site.html, APC, Pariz), so v izčrpnih diskusijah pomagali razčistiti
marsikatero dilemo. Storitev Google Analytics pokaže več kot 226 tisoč obiskov
te spletne strani iz več kot 152 držav sveta, kar kaže na širok interes v svetu za
probleme fizke onkraj standardnih modelov, ki jih obravanavamo na blejskih
delavnicah.
Bralec najde zapise vseh predavanj, objavljenih preko ”cosmovia” od leta 2009,
na viavca.in2p3.fr/site.html v povezavi Previous - Conferences. Troje letošnjih
predavanj,
Norma Mankoč Borštnik (Spin-charge-family theory explains all the assump-
tions of the standard model, offers explanation for the dark matter, for the mat-
ter/antimatter asymmetry, explains miraculous triangle anomaly cancellation, ...
making several predictions), Abdelhak Djouadi (A deeper probe of new physics
scenarii at the LHC) in M. Yu. Khlopov ter Yu. S. Smirnov (Search for double
charged particles as direct test for Dark Atom Constituents), je dostopnih na
http://viavca.in2p3.fr/what comes beyond the standard model 2017.html
Večino predavanj najde bralec na spletni strani delavnice na
http://bsm.fmf.uni-lj.si/.

Naj zaključimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem, pris-
otnim na Bledu osebno ali preko videokonferenc, za njihova predavanja in še
posebno za zelo plodne diskusije in odlično vzdušje.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(uredniki)

Ljubljana, grudna (decembra) 2017
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1 Texture Zero Mass Matrices and Their Implications

G. Ahuja ?
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Abstract. We have made an attempt to briefly address the issue of texture zero fermion
mass matrices from the ‘bottom-up’ perspective. Essentials pertaining to texture zero mass
matrices have been summarized and using the facility of Weak Basis transformations, the
implications of the texture zero mass matrices so obtained have been examined for the
quark as well as the lepton sector.

Povzetek. Avtorica obravnava masne matrike za kvarke in leptone, ki imajo ničelne ele-
mente razporejene po določenih vzorcih. Povzame bistvene značilnosti takih masnih matrik,
ki jih transformira v šibko bazo ter določi proste parametre iz eksperimentalnih podatkov.

Keywords: Texture zero mass matrices, Weak Basis transformations, Quark mass
matrices, Lepton mass matrices

1.1 Introduction

Understanding fermion masses and mixings is of paramount importance in the
field of High Energy Physics. Regarding the quark case, at present one has a
fairly good idea of the masses as well as the mixing angles [1]. In particular, one
finds that both the quark masses as well as the mixing angles exhibit a clear cut
hierarchy. For the case of neutrinos, although, recently refinements of the reactor
mixing angle s13 [2,3], the solar mixing angle s12 and the atmospheric mixing
angle s23 have been carried out, however, regarding the neutrino masses, in the
absence of their absolute measurements, one has their interpretation only in terms
of the neutrino mass-squared differences [4].

In order to understand the underlying pattern of fermion masses and flavor
mixings, experimental efforts in the form of continuous refinements of the fermion
mixing data are being carried out regularly. Along with these attempts, large
amounts of efforts at the phenomenological end are also being made. In the
present context, we have followed the “bottom-up” approach which involves
phenomenological formulation of mass matrices which may eventually provide
clues for the efforts carried out through the “top-down” approach. In this context,
an interesting idea being investigated in the quark as well as leptonic sector is
that of the texture zero mass matrices [5]-[8]. In the present paper, after presenting
a brief outline of the essentials pertaining to the texture zero mass matrices in

? E-mail: gulsheen@pu.ac.in
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2 G. Ahuja

Section 2, the details of the analyses corresponding to the quark and leptonic
sectors have been presented in Sections 3.1 and 3.2 respectively. Finally, Section 4,
summarizes our conclusions.

1.2 Essentials pertaining to texture zero mass matrices

Fermion masses, along with fermion mixings, provide a good opportunity to
hunt for physics beyond the SM. In view of the relationship of fermion mixing
phenomenon with that of the fermion mass matrices, understanding flavor physics
essentially implies formulating fermion mass matrices. The lack of a viable ap-
proach from the top-down perspective brings up the need for formulating fermion
mass matrices from a bottom-up approach. In this context, initially, incorporating
the texture zero approach, several ansatze were suggested for quark mass matrices.

1.2.1 Quark mass matrices

In the Standard Model (SM), the fermion mass matrices, having their origin in
the Higgs fermion couplings, are completely arbitrary, therefore, the number of
free parameters available with a general mass matrix is larger than the physical
observables. For example, if no restrictions are imposed, there are 36 real free
parameters in the two 3× 3 general complex mass matrices,MU andMD, which
in the quark sector need to describe 10 physical observables, i.e., 6 quark masses, 3
mixing angles and 1 CP violating phase. Similarly, in the leptonic sector, physical
observables described by lepton mass matrices are 6 lepton masses, 3 mixing
angles and 1 CP violating phase for Dirac neutrinos (2 additional phases in case
neutrinos are Majorana particles). Therefore, to develop viable phenomenological
fermion mass matrices, as a first step, one needs to constrain the number of free
parameters associated with the mass matrices so as to obtain valuable clues for
developing an understanding of fermion mixing phenomenology.

In the SM and its extensions in which righthanded quarks are singlets, the
above mentioned task is accomplished by considering the fermion mass matrices
to be Hermitian. This brings down the number of real free parameters from 36 to
18, which however, is still a large number compared to the number of observables.
To this end, Weinberg implicitly and Fritzsch [9,10] explicitly proposed the idea
of texture zero mass matrices which imparted considerable predictability to the
fermion mass matrices. This approach involves assuming certain elements of the
Hermitian quark mass matrices to be zero, e.g., the typical Fritzsch texture zero
Hermitian quark mass matrices are given by

MU =

 0 AU 0

A∗U 0 BU
0 B∗U CU

 , MD =

 0 AD 0

A∗D 0 BD
0 B∗D CD

 , (1.1)

whereMU andMD refer to the mass matrices in the up and down sector respec-
tively. Such matrices were named as texture zero mass matrices with a particular
matrix defined as texture ‘n’ zero if the sum of the number of diagonal zeros and
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1 Texture Zero Mass Matrices and Their Implications 3

half the number of the symmetrically placed off diagonal zeros is ‘n’. Each of
the above matrix is texture three zero type, together these are known as texture
six zero Fritzsch mass matrices. On lines of these ansatze, by considering lesser
number of texture zeros, several possible Fritzsch like texture zero mass matrices
can be formulated. Also, one can get non Fritzsch like mass matrices by shifting
the position of Ci(i = U,D) on the diagonal as well as by shifting the position of
zeros among the non diagonal elements. One can thus obtain a very large number
of possible texture zero mass matrices.

An analysis of these mass matrices involves firstly diagonalizing them using
bi-unitary orthogonal transformations and then obtaining the fermion mixing
matrix using the relationship between the mass matrices and the mixing matrices.
The corresponding mixing matrix is compared with the experimentally available
mixing matrix which then determines the viability of a given texture zero mass
matrix. As an example, we present here essentials pertaining to the diagonalization
of texture 4 zero mass matrices. A general Fritzsch-like texture 2 zero mass matrix
can be expressed as

Mk =

 0 Ak 0

A∗k Dk Bk
0 B∗k Ck

 , (1.2)

where k = l, νD, for neutrino case and k = U,D, for quark case. Considering
both the matrices of either the up and the down sector for quarks or the charged
lepton or neutrino sector for leptons to be the texture 2 zero type, one essentially
obtains the case of texture 4 zero mass matrices. Texture 6 zero mass matrices
can be obtained from the above mentioned matrices by taking both Dk to be zero
in both sets of mass matrices. Texture 5 zero matrices can be obtained by taking
Dk = 0 in one of the two mass matrices.

To fix the notations and conventions, we detail the formalism connecting the
mass matrix to the mixing matrix. The mass matrices, for Hermitian as well as
symmetric case, can be exactly diagonalized. To facilitate diagonalization, the mass
matrixMk can be expressed as

Mk = QkM
r
kPk, (1.3)

or
Mr
k = Q†kMkP

†
k, (1.4)

where Mr
k is a real symmetric matrix with real eigenvalues and Qk and Pk are

diagonal phase matrices. For the Hermitian case Q†k = Pk, whereas for the sym-
metric case under certain conditions Qk = Pk. In general, the real matrix Mr

k is
diagonalized by the orthogonal transformation Ok, e.g.,

Mdiag
k = OTkM

r
kOk, (1.5)

which on using equation (4) can be written as

Mdiag
k = OTkQ

†
kMkP

†
kOk. (1.6)
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Using the method, mentioned above, we reproduce the general diagonalizing
transformation Ok, e.g.,±Ok(11) ±Ok(12) ±Ok(13)±Ok(21) ∓Ok(22) ±Ok(23)

∓Ok(31) ±Ok(32) ±Ok(33)

 , (1.7)

where

Ok(11) =

√
m2m3(m3 −m2 −Dk)

(m1 −m2 +m3 −Dk)(m3 −m1)(m1 +m2)
,

Ok(12) =

√
m1m3(m1 +m3 −Dk)

(m1 −m2 +m3 −Dk)(m3 +m2)(m1 +m2)
,

Ok(13) =

√
m1m2(m2 −m1 +Dk)

(m1 −m2 +m3 −Dk)(m3 +m2)(m3 −m1)
,

Ok(21) =

√
m1(m3 −m2 −Dk)

(m3 −m1)(m1 +m2)
,

Ok(22) =

√
m2(m3 +m1 −Dk)

(m2 +m3)(m1 +m2)
,

Ok(23) =

√
m3(m2 −m1 +Dk)

(m3 +m2)(m1 +m2)
,

Ok(31) =

√
m1(m2 −m1 +Dk)(m1 +m3 −Dk)

(m1 −m2 +m3 −Dk)(m3 −m1)(m1 +m2)
,

Ok(32) =

√
m2(m2 −m1 +Dk)(m3 −m2 −Dk)

(m1 −m2 +m3 −Dk)(m3 +m2)(m1 +m2)
,

Ok(33) =

√
m3(m3 −m2 −Dk)(m1 +m3 −Dk)

(m1 −m2 +m3 −Dk)(m3 −m1)(m3 +m2)
, (1.8)

m1,−m2,m3 being the eigenvalues ofMk.
While carrying out the analysis of texture zero mass matrices, the viability

of the formulated mass matrices is ensured by checking the compatibility of the
mixing matrices so obtained from these with the low energy data. In order to
obtain the mixing matrix, we note that in the SM, the quark mass terms for three
generations of quarks can be expressed as

qU
L
MUqUR + qD

L
MDqDR , (1.9)
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1 Texture Zero Mass Matrices and Their Implications 5

where qUL(R)
and qDL(R)

are the left (right) handed quark fields for the up sector
(u, c, t) and down sector (d, s, b) respectively.MU andMD are the mass matrices
for the up and the down sector of quarks. In order to re-express above equation in
terms of the physical quark fields, one can diagonalize the mass matrices by the
following bi-unitary transformations

V†U
L
MUVUR =Mdiag

U ≡ Diag(mu,mc,mt), (1.10)

V†D
L
MDVDR =Mdiag

D ≡ Diag(md,ms,mb), (1.11)

whereMdiag
U,D are real and diagonal, while VU

L
, VU

R
etc. denote the eigenvalues

of the mass matrices, i.e., the physical quark masses. Using the above equations,
one can rewrite equation (9) as

qU
L
VU

L
Mdiag
U V†U

R
qUR + qD

L
VD

L
Mdiag
D V†D

R
qDR (1.12)

which can be re-expressed in terms of physical quark fields as

qphysU
L
Mdiag
U qphysU

R
+ qphysD

L
Mdiag
D qphysD

R
, (1.13)

where qphysU
L

= V†U
L
qUL and qphysD

L
= V†D

L
qDR and so on. The mismatch of

diagonalizations of up and down quark mass matrices leads to the quark mixing
matrix VCKM, referred to as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [11]
given as

VCKM = V†U
L
VU

R
. (1.14)

Over the past few years, both in the quark as well as lepton sector, a large
number of analyses [5]-[8] have been carried out which establish the texture zero
approach as a viable one for explaining the fermion mixing data. However, as
mentioned earlier, since the number of possible texture zero mass matrices is very
large, one has to carry out an exhaustive analysis of all possible texture zero mass
matrices. To account for this limitation, therefore, Branco et al. [12,13] and Fritzsch
and Xing [14,15] have proposed the concept of ‘Weak Basis (WB) transformations’.

Within the SM and some of its extensions, one has the facility of making
Weak Basis (WB) transformations W on the quark fields, e.g., qL →WqL, qR →
WqR, q′L → Wq′L, q

′
R → Wq′R. These are unitary transformations which leave

the gauge currents real and diagonal but transform the mass matrices as

MU →W†MUW, MD →W†MDW. (1.15)

Without loss of generality, this approach introduces zeros in the quark mass
matrices leading to a reduction in the number of parameters defining the mass
matrices. Following this, one can arrive at two kinds of structures of the mass
matrices, e.g., Branco et al. [12,13] give

Mq =

 0 ∗ 0∗ ∗ ∗
0 ∗ ∗

 , Mq
′ =

 0 ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 , q, q
′
= U,D, (1.16)
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whereas Fritzsch and Xing [14,15] give

Mq =

 ∗ ∗ 0∗ ∗ ∗
0 ∗ ∗

 , q = U,D. (1.17)

The mass matrices so obtained can thereafter be considered texture zero mass
matrices and same methodology can be used to analyze these. Interestingly, one
now has an additional advantage that the large number of possible structures are
not all independent. Several of these are related through WB transformations and
therefore yield the same structure of the diagonalizing transformations leading
to similar mixing matrices, making the number of matrices to be analyzed much
less than before. However, there is a limitation too, i.e, this idea does not result
in constraining the parameter space of the elements of the mass matrices. To
overcome this, one can further impose a condition on the elements of the mass
matrices by considering the following hierarchy for these [8]

(1, i) . (2, j) . (3, 3); i = 1, 2, 3, j = 2, 3. (1.18)

1.2.2 Lepton mass matrices

Keeping in mind the quark lepton universality [16], similar to the case of texture
zero quark mass matrices discussed in the previous section, it becomes desirable
to carry out a corresponding analysis in the lepton sector also. In the case of
leptons, several attempts have been made to formulate the phenomenological
mass matrices considering charged leptons to be diagonal, usually referred to as
the flavor basis case [17]. However, in the present work, we have considered the
non flavor basis [18], wherein, texture is imposed on both the charged lepton mass
matrix as well as on the neutrino mass matrix. The ‘smallness’ of the neutrino
masses is best described in terms of ‘seesaw mechanism’ [19] given by

Mν = −MT
νDM

−1
R MνD, (1.19)

withMν,MνD andMR corresponding to the light Majorana neutrino mass matrix,
the Dirac neutrino mass matrix and the heavy right handed Majorana neutrino
mass matrix respectively.

The methodology of analyzing the texture zero lepton mass matrices remains
essentially the same as that for the case of quarks. One can impose texture on
the charged lepton mass matrixMl and on the Dirac neutrino mass matrixMνD.
Equation (1.19) can then be used to obtain the Majorana neutrino matrix Mν

which along with the matrixMl allows the construction of the Pontecorvo Maki
Nakagawa Sakata (PMNS) matrix [20] for examining the viability of the mass
matrices. Using these ideas, in the following we have briefly summarized the
results of the analyses in the case of quarks [21] as well as leptons [22].
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1.3 Results and discussion

1.3.1 Texture zero quark mass matrices

We begin with the the most general Hermitian mass matrices, given by

Mq =

 Eq Aq FqA∗q Dq Bq
F∗q B

∗
q Cq

 (q = U,D). (1.20)

Invoking WB transformations, zeros can be introduced in these matrices using a
unitary matrix W, leading to

MU =

 EU AU 0

A∗U DU BU
0 B∗U CU

 , MD =

 ED AD 0

A∗D DD BD
0 B∗D CD

 . (1.21)

One may note that these matrices are, in fact, texture one zero each, together these
are referred as texture two zero mass matrices.

To check the viability of these mass matrices, one needs to examine the com-
patibility of the CKM matrix reproduced through these with the recent quark
mixing data. Results of a detailed analysis of these matrices, carried out in Ref.
[21], reveal that using the following quark masses and the mass ratios at theMZ

scale as inputs [23]

mu = 1.38+0.42−0.41MeV, md = 2.82±0.48MeV, ms = 57
+18
−12MeV,

mc = 0.638
+0.043
−0.084GeV, mb = 2.86+0.16−0.06GeV, mt = 172.1±1.2GeV, (1.22)

mu/md = 0.553±0.043,ms/md = 18.9±0.8

and imposing the latest values [1] of the three mixing angles as constraints for the
construction of the CKM matrix, one arrives at

VCKM =

 0.9739− 0.9745 0.2246− 0.2259 0.00337− 0.003650.2224− 0.2259 0.9730− 0.9990 0.0408− 0.0422

0.0076− 0.0101 0.0408− 0.0422 0.9990− 0.9999

 , (1.23)

this being fully compatible with the one given by Particle Data Group (PDG) [1].
In order to examine whether these mass matrices can accommodate CP violation
in the quark sector, in the present work we have made an attempt to reproduce the
CP violating Jarlskog’s rephasing invariant parameter J. One obtains a range of J
= (2.494− 3.365)× 10−5, this again being compatible with its latest experimental
value (3.04+0.21−0.20)× 10−5 [1].

1.3.2 Texture zero lepton mass matrices

Similar to the quark case, using the facility of WB transformations, wherein it is
possible to make a unitary transformation, one can reduce the general lepton mass
matrices to

Ml =

 El Al 0

A∗l Dl Bl
0 B∗l Cl

 , MνD =

 EνD AνD 0

A∗νD DνD BνD
0 B∗νD CνD

 . (1.24)
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A detailed analysis of these mass matrices has been carried out in Ref. [22]. In the
present work, for the normal and inverted ordering of neutrino masses, we have
first examined the viability of these mass matrices and then we have investigated
their implications for CP violation in the leptonic sector.

The latest situation regarding neutrinos masses and mixing angles at 3σ C.L.
is summarized as follows [24]

∆m221 = (7.02− 8.09)× 10−5eV2; ∆m223 = (2.325− 2.599)× 10−3eV2; (1.25)

sin2 θ12 = 0.270− 0.344; sin2 θ23 = 0.385− 0.644; sin2 θ13 = 0.0188− 0.0251.
(1.26)

The 3σ C.L. ranges of the PMNS matrix elements recently constructed by Garcia et
al.[24] are as follows

UPMNS =

0.801− 0.845 0.514− 0.580 0.137− 0.1580.225− 0.517 0.441− 0.699 0.164− 0.793

0.246− 0.529 0.464− 0.713 0.590− 0.776

 . (1.27)

For the inverted and normal neutrino mass orderings, the mass matrices men-
tioned in equation (1.24) yield the following magnitudes of the corresponding
PMNS matrix elements [22] respectively

UIOPMNS =

 0.034− 0.859 0.0867− 0.593 0.135− 0.9960.250− 0.971 0.068− 0.812 0.043− 0.808

0.103− 0.621 0.395− 0.822 0.088− 0.810

 . (1.28)

UNOPMNS =

 0.444− 0.993 0.123− 0.837 0.004− 0.2880.061− 0.816 0.410− 0.941 0.047− 0.872

0.012− 0.848 0.049− 0.779 0.460− 0.992

 . (1.29)

For both the mass orderings, one finds that the 3σ C.L. ranges of the PMNS
matrix elements given by Garcia et al. are inclusive in the ranges of the PMNS
matrix elements found here, thereby ensuring the viability of texture two zero
mass matrices considered here. Further, analogous to the case of quarks, we have
made an attempt to find constraints for the CP violating Jarlskog’s rephasing
invariant parameter in the leptonic sector also. For the inverted mass ordering, one
obtains a range of J from −0.05− 0.05, whereas, for the normal mass ordering the,
parameter J is obtained in the range −0.03− 0.03. These observations, therefore,
lead one to conclude that the texture two zero leptonic mass matrices are not
only compatible with the recent leptonic mixing data but also provide interesting
bounds for the Jarlskog’s rephasing invariant parameter.

1.4 Summary and Conclusions

To summarize, in the present work, we have made an attempt to provide an
overview of texture zero fermion mass matrices. For the case of both quarks and
leptons, incorporating the texture zero approach as well as using the WB transfor-
mations, analyses of the “general” fermion mass matrices have been discussed.
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After examining the viability of these mass matrices, we have obtained interesting
bounds on the Jarlskog’s rephasing invariant parameter in the quark and leptonic
sector.
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Abstract. The nonbaryonic dark matter of the Universe is assumed to consist of new stable
particles. Stable particle candidates for cosmological dark matter are usually considered
as neutral and weakly interacting. However stable charged leptons and quarks can also
exist hidden in elusive dark atoms and can play a role of dark matter. Such possibility is
strongly restricted by the constraints on anomalous isotopes of light elements that form
positively charged heavy species with ordinary electrons. This problem might be avoided,
if stable particles with charge -2 exist and there are no stable particles with charges +1 and
-1. These conditions cannot be realized in supersymmetric models, but can be satisfied in
several alternative scenarios, which are discussed in this paper. The excessive -2 charged
particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-
interacting form of the dark matter. O-helium dark matter can provide solution for the
puzzles of dark matter searches. The successful development of composite dark matter
scenarios appeals to experimental search for doubly charged constituents of dark atoms.
Estimates of production cross section of such particles at LHC are presented and discussed.
Signatures of double charged particles in the ATLAS experiment are outlined.

Povzetek. Avtorji predpostavijo, da temno snov, ki ni iz barionov poznanih treh družin,
sestavljajo novi stabilni delci. Običajno za njih predlagajo nevtralne delce s šibko interakcijo,
pa tudi stabilne nabite leptone in kvarke, vezane v “temne atome”. To zadnjo možnost so
poskusi močno omejili.Tem omejitvam se lahko izognemo, če privzamemo, da obstajajo
stabilni (temni) delci z nabojem −2, ni pa stabilnih (temnih) delcev z naboji +1 in −1.
Tega privzetka ne moremo narediti v modelih s supersimetrijo, lahko pa ga naredimo v
alternativnih modelih, ki jih avtorji obravnavajo. Višek delcev z nabojem −2 se veže s
prvotnim helijem v “atome” O-helija, katerega interakcija je posledično običajna jedrska.
Taka temna snov pojasni rezultate tistih poskusov iskanja temne snovi, ki je še niso zaznali.
Obravnavajo preseke za te delce pri poskusih na LHC in predvidijo rezultate meritev na
ATLASu.
? Presented first part of talk at Bled

?? Presented second part of talk by VIA teleconference
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2.1 Introduction

The observation of exotic stable multi-charge objects would represent striking
evidence for physics beyond the Standard Model. Cosmological arguments put
severe constraints on possible properties of such objects. Such particles (see e.g.
Ref. [1] for review and reference) should be stable, provide the measured dark
matter density and be decoupled from plasma and radiation at least before the
beginning of matter dominated stage. The easiest way to satisfy these conditions is
to involve neutral elementary weakly interacting massive particles (WIMPs). SUSY
Models provide a list of possible WIMP candidates: neutralino, axino, gravitino
etc., However it may not be the only particle physics solution for the dark matter
problem.

One of such alternative solutions is based on the existence of heavy stable
charged particles bound in neutral dark atoms. Dark atoms offer an interesting
possibility to solve the puzzles of dark matter searches. It turns out that even stable
electrically charged particles can exist hidden in such atoms, bound by ordinary
Coulomb interactions (see [1–3] and references therein). Stable particles with
charge -1 are excluded due to overproduction of anomalous isotopes. However,
there doesn’t appear such an evident contradiction for negatively doubly charged
particles.

There exist several types of particle models where heavy stable -2 charged
species, O−−, are predicted:

(a) AC-leptons, predicted as an extension of the Standard Model, based on the
approach of almost-commutative geometry [4–7].

(b) Technileptons and anti-technibaryons in the framework of Walking Technicolor
(WTC) [8–14].

(c) stable ”heavy quark clusters” ŪŪŪ formed by anti-U quark of 4th generation
[4,15–19]

(d) and, finally, stable charged clusters ū5ū5ū5 of (anti)quarks ū5 of 5th family
can follow from the approach, unifying spins and charges[20].

All these models also predict corresponding +2 charge particles. If these posi-
tively charged particles remain free in the early Universe, they can recombine
with ordinary electrons in anomalous helium, which is strongly constrained in
terrestrial matter. Therefore a cosmological scenario should provide a mechanism
which suppresses anomalous helium. There are two possible mechanisms than
can provide a suppression:

(i) The abundance of anomalous helium in the Galaxy may be significant, but in
terrestrial matter a recombination mechanism could suppress this abundance
below experimental upper limits [4,6]. The existence of a new U(1) gauge
symmetry, causing new Coulomb-like long range interactions between charged
dark matter particles, is crucial for this mechanism. This leads inevitably to
the existence of dark radiation in the form of hidden photons.
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(ii) Free positively charged particles are already suppressed in the early Universe
and the abundance of anomalous helium in the Galaxy is negligible [2,16].

These two possibilities correspond to two different cosmological scenarios of dark
atoms. The first one is realized in the scenario with AC leptons, forming neutral
AC atoms [6]. The second assumes a charge asymmetry of the O−− which forms
the atom-like states with primordial helium [2,16].

If new stable species belong to non-trivial representations of the SU(2) elec-
troweak group, sphaleron transitions at high temperatures can provide the relation
between baryon asymmetry and excess of -2 charge stable species, as it was demon-
strated in the case of WTC [8,21–23].

After it is formed in the Standard Big Bang Nucleosynthesis (BBN), 4He
screens the O−− charged particles in composite (4He++O−−) OHe “atoms” [16].
In all the models of OHe, O−− behaves either as a lepton or as a specific “heavy
quark cluster” with strongly suppressed hadronic interactions. The cosmological
scenario of the OHe Universe involves only one parameter of new physics − the
mass of O−−. Such a scenario is insensitive to the properties of O−− (except for
its mass), since the main features of the OHe dark atoms are determined by their
nuclear interacting helium shell. In terrestrial matter such dark matter species
are slowed down and cannot cause significant nuclear recoil in the underground
detectors, making them elusive in direct WIMP search experiments (where detec-
tion is based on nuclear recoil) such as CDMS, XENON100 and LUX. The positive
results of DAMA experiments (see [24] for review and references) can find in
this scenario a nontrivial explanation due to a low energy radiative capture of
OHe by intermediate mass nuclei [2,1,3]. This explains the negative results of the
XENON100 and LUX experiments. The rate of this capture is proportional to the
temperature: this leads to a suppression of this effect in cryogenic detectors, such
as CDMS.

OHe collisions in the central part of the Galaxy lead to OHe excitations, and
de-excitations with pair production in E0 transitions can explain the excess of the
positron-annihilation line, observed by INTEGRAL in the galactic bulge [1,3,21,27].

One should note that the nuclear physics of OHe is in the course of develop-
ment and its basic element for a successful and self-consistent OHe dark matter
scenario is related to the existence of a dipole Coulomb barrier, arising in the pro-
cess of OHe-nucleus interaction and providing the dominance of elastic collisions
of OHe with nuclei. This problem is the main open question of composite dark
matter, which implies correct quantum mechanical solution [28]. The lack of such
a barrier and essential contribution of inelastic OHe-nucleus processes seem to
lead to inevitable overproduction of anomalous isotopes [29].

Production of pairs of elementary stable doubly charged heavy leptons is
characterized by a number of distinct experimental signatures that would provide
effective search for them at the experiments at the LHC and test the atom-like
structure of the cosmological dark matter. Moreover, astrophysical consequences
of composite dark matter model can reproduce experimentally detected excess in
positron annihilation line and high energy positron fraction in cosmic rays only
if the mass of double charged X particles is in the 1 TeV range (Section 2). We
discuss confrontation of these predictions and experimental data in Section 3. The
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current status and expected progress in experimental searches for stable double
charged particles as constituents of composite dark matter are summarized in the
concluding Section 4.

2.2 Indirect effects of composite dark matter

The existence of such form of matter as O-helium should lead to a number of
astrophysical signatures, which can constrain or prove this hypothesis. One of the
signatures of O-helium can be a presence of an anomalous low Z/A component
in the cosmic ray flux. O-helium atoms that are present in the Galaxy in the form
of the dark matter can be destroyed in astrophysical processes and free X can be
accelerated as ordinary charged particles. O-helium atoms can be ionized due to
nuclear interaction with cosmic rays or in the front of a shock wave in the Super-
nova explosions, where they were effectively accumulated during star evolution
[16]. If the mechanisms of X acceleration are effective, the low Z/A component
with charge 2 should be present in cosmic rays at the level of FX/Fp ∼ 10−9m−1

o

[21], and might be observed by PAMELA and AMS02 cosmic ray experiments.
Heremo is the mass of O-helium in TeV, FX and Fp are the fluxes of X and protons,
respectively.

2.2.1 Excess of positron annihilation line in the galactic bulge

Another signature of O-helium in the Galaxy is the excess of the positron annihila-
tion line in cosmic gamma radiation due to de-excitation of the O-helium after its
interaction in the interstellar space. If 2S level of O-helium is excited, its direct one-
photon transition to the 1S ground state is forbidden and the de-excitation mainly
goes through direct pair production. In principle this mechanism of positron
production can explain the excess in positron annihilation line from the galactic
bulge, measured by the INTEGRAL experiment. Due to the large uncertainty of
DM distribution in the galactic bulge this interpretation of the INTEGRAL data is
possible in a wide range of masses of O-helium with the minimal required central
density of O-helium dark matter atmo = 1.25TeV [25,26]For the smaller values
ofmo on needs larger central density to provide effective excitation of O-helium
in collisions Current analysis favors lowest values of central dark matter density,
making possible O-helium explanation for this excess only for a narrow window
around this minimal value (see Fig. 2.1)

2.2.2 Composite dark matter solution for high energy positron excess

In a two-component dark atom model, based on Walking Technicolor, a sparse
WIMP-like component of atom-like state, made of positive and neg- ative doubly
charged techniparticles, is present together with the dominant OHe dark atom and
the decays of doubly positive charged techniparticles to pairs of same-sign leptons
can explain the excess of high-energy cosmic-ray positrons, found in PAMELA and
AMS02 experiments [17]. This explana- tion is possible for the mass of decaying
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Fig. 2.1. Dark matter is subdominant in the central part of Galaxy. It strongly suppresses it
dynamical effect and causes large uncertainty in dark matter density and velocity distribu-
tion. At this uncertainty one can explain the positron line excess, observed by INTERGRAL,
for a wide range of mo given by the curve with minimum at mo = 1.25TeV. However,
recent analysis of possible dark matter distribution in the galactic bulge favor minimal
value of its central density.

Fig. 2.2. Best fit high energy positron fluxes from decaying composite dark matter in con-
frontation with the results of AMS02 experiment.
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+2 charged particle below 1 TeV and depends on the branching ratios of leptonic
channels (See Fig. 2.2).

Since even pure lepton decay channels are inevitably accompanied by gamma
radiation the important constraint on this model follows from the measurement of
cosmic gamma ray background in FERMI/LAT experiment. The multi-parameter

Fig. 2.3. Gamma ray flux accompanying the best fit high energy positron fluxes from decay-
ing composite dark matter reproducing the results of AMS02 experiment, in confrontation
with FERMI/LAT measurement of gamma ray background.

analysis of decaying dark atom constituent model determines the maximal model
independent value of the mass of decaying +2 charge particle, at which this
explanation is possible

mo < 1TeV.

One should take into account that according to even in this range hypothesis
on decaying composite dark matter, distributed in the galactic halo, can lead to
gamma ray flux exceeding the measured by FERMI/LAT.

2.2.3 Sensitivity of indirect effect of composite dark matter to the mass of
their double charged constituents

We see that indirect effects of composite dark matter strongly depend on the mass
of its double charged constituents.

To explain the excess of positron annihilation line in the galactic bulge mass
of double charged constituent of O-helium should be in a narrow window around

mo = 1.25TeV.
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To explain the excess of high energy cosmic ray positrons by decays of con-
stituents of composite dark matter with charge +2 and to avoid overproduction
of gamma background, accompanying such decays, the mass of such constituent
should be in the range

mo < 1TeV.

These predictions should be confronted with the experimental data on the
accelerator search for stable double charged particles.

2.3 Searches for stable multi-charged particles

A new charged massive particle with electric charge 6= 1ewould represent a dra-
matic deviation from the predictions of the Standard Model, and such a spectacular
discovery would lead to fundamental insights and critical theoretical develop-
ments. Searches for such kind of particles were carried out in many cosmic ray
and collider experiments (see for instance review in [38]). Experimental search for
double charged particles is of a special interest because of important cosmological
sequences discussed in previous sections. In a tree approximation, such particles
cannot decay to pair of quarks due to electric charge conservation and only decays
to the same sign leptons are possible. The latter implies lepton number noncon-
servation, being a profound signature of new physics. In general, it makes such
states sufficiently long-living in a cosmological scale.

Obviously, such experiments are limited to look only for the “long-lived”
particles, which do not decay within a detector, as opposed to truly stable particles,
which do not decay at all. Since the kinematics and cross sections for double
charged particle production processes cannot be reliably predicted, search results
at collider experiments are usually quoted as cross section limits for a range of
charges and masses for well-defined kinematic models. In these experiments,
the mass limit was set at the level of up to 100 GeV(see e.g. for review [38]).

The CDF experiment collaboration performed a search for long-lived double
charged Higgs bosons (H++, H−−) with 292 pb−1 of data collected in pp̄ collisions
at
√
s = 1.96 TeV [39]. The dominant production mode considered was pp̄ →

γ?/Z+ X→ H++H−− + X.
Background sources include jets fragmenting to high-pT tracks, Z → ee,

Z→ µµ, and Z→ ττ, where at least one τ decays hadronically. Number of events
expected from these backgrounds in the signal region was estimated to be < 10−5

at 68% confidence level (CL).
Not a single event with a H++ or H−− was found in experimental data. This

allows to set cross-section limit shown in Fig. 2.4 as a horizontal solid line. Next-
to-leading order theoretical calculations of the cross-section for pair production of
H±± bosons for left-handed and right-handed couplings are also shown in this
figure. Comparison of expected and observed cross-section limits gives the follow-
ing mass constrains: 133 and 109 GeV on the masses of long-lived H±±L and H±±R ,
respectively, at 95% CL as shown in Fig. 2.4. In case of degenerate H±±L and H±±R
bosons, the mass limit was set to 146 GeV.
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with a flat prior for the signal cross section and Gaussian
priors for the uncertainties on acceptance, background, and
integrated luminosity (6%) [24]. The 95% C.L. upper limit
on the cross section (which varies from 39.7 fb at mH�� �
90 GeV=c2 to 32.6 fb at mH�� � 160 GeV=c2, see Fig. 2)
is converted into an H�� mass limit by comparing to the
theoretical p �p ! ��=Z� X ! H��H�� � X cross sec-
tion at next-to-leading order [25] using the CTEQ6 [22] set
of PDFs. We include uncertainties in the theoretical cross
sections due to PDFs (5%) [22] and higher-order QCD
corrections (7.5%) [25] in the extraction of the mass limit,
for a total systematic uncertainty of 14%. The theoretical
cross sections are computed separately for H��

L and H��
R

bosons that couple to left- and right-handed particles,
respectively. When only one of these states is accessible,
we exclude the long-lived H��

L boson below a mass of
133 GeV=c2 and the long-lived H��

R boson below a mass
of 109 GeV=c2, both at the 95% C.L. When the two states
are degenerate in mass, we exclude mH�� < 146 GeV=c2

at the 95% C.L.
In conclusion, we have searched for long-lived doubly

charged particles using their signatures of high ionization
and muonlike penetration. No evidence is found for pair-
production of such particles, and we set the individual
lower limits of 133 GeV=c2 and 109 GeV=c2, respec-
tively, on the masses of long-lived H��

L and H��
R bosons.

The mass limit for the case of degenerate H��
L and H��

R
bosons is 146 GeV=c2.
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FIG. 2. The comparison of the experimental cross section
upper limit with the theoretical next-to-leading order cross
section [25] for pair production of H�� bosons. The theoretical
cross sections are computed separately for bosons with left-
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R ) couplings, and summed

for the case that their masses are degenerate.
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Fig. 2.4. The comparison of the experimental cross section upper limit with the theoretical
next-to-leading order cross section for pair production of H±± bosons. The theoretical cross
sections are computed separately for bosons with left-handed (H±±L ) and right-handed
(H±±R ) couplings, and summed for the case that their masses are degenerate, [39].

2.3.1 Searches at Large Hadron Collider

Significant increase of beam energy at the Large Hadron Collider (LHC) opens
a new era in the high energy physics and allows accessing uncharted territories
of particle masses. In this section the results of searches for the multi-charged
particles, performed by the ATLAS and the CMS collaborations at LHC, will be
described.

Calculations of the cross sections assume that these particles are generated as
new massive spin-1/2 ones, neutral under SU(3)C and SU(2)L.

ATLAS experiment at LHC In Run 1 (2010–2012), the ATLAS [40] collaboration
at LHC performed two searches for long-lived multi-charged particles, including
the double charged particles: one search with 4.4 fb−1 of data collected in pp
collisions at

√
s = 7 TeV [41], and another one with 20.3 fb−1 collected at

√
s =

8 TeV [42].
Both these searches feature particles with large transverse momentum values,

traversing the entire ATLAS detector. An energy loss of a double charged particle
is by a factor of q2 = 4 higher than that of single charged particle. Such particles
will leave a very characteristic signature of high ionization in the detector. More
specifically, the searches look for particles with anomalously high ionization on
their tracks in three independent detector subsystems: silicon pixel detector (Pixel)
and transition radiation tracker (TRT) in the ATLAS inner detector, and monitoring
drift tubes (MDT) in the muon system.

The estimate of the expected background originating from the SM processes
and providing input into the signal region D was calculated to be 0.013±0.002(stat.)±
0.003(syst.) events.

In order to define cross section, a reconstruction efficiency of signal particles
has to be known. This value is defined as a fraction of simulated events with at
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Fig. 2.5. The signal efficiencies for different masses and charges of the multi-charged parti-
cles for the DY production model. Double charged particles are denoted as “z = 2” (red
points and line). The picture is taken from [42].

least one multi-charged particle satisfying all of the aforementioned criteria over
the number of all generated events. In other words, it is a search sensitivity to find
a hypothetical particle with the ATLAS experiment. These values are shown in
Fig. 2.5 for each considered signal sample containing particles with charges from 2

to 6.

Fig. 2.6. Observed 95% CL cross-section upper limits and theoretical cross-sections as
functions of the multi-charged particles mass. Again, the double charged particles are
denoted as “z = 2” (red points and lines). The picture is taken from [42].
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No events with double charged particles were found in neither 2011 or 2012
experimental data sets, setting the lower mass limits to 430 and 660 GeV, respec-
tively, at 95% CL. The comparison of observed cross-section upper limits and
theoretically predicted cross-sections is shown in Fig. 2.6.

CMS experiment at LHC In parallel to the ATLAS experiment, the CMS [43]
collaboration at LHC performed a search for double charged particles, using
5.0 fb−1 of data collected in pp collisions at

√
s = 7 TeV and 18.8 fb−1 collected at√

s = 8 TeV [44].
The search features particles with high ionization along their tracks in the in-

ner silicon pixel and strip tracker. Tracks with specific ionization Ih > 3 MeV/cm
were selected. The muon system was used to measure the time-of-flight values.
Tracks with 1/β > 1.2were considered.

For the part of the search based on the
√
s = 7 TeV data, the number of events

in the signal region, expected from SM processes, was estimated to be 0.15± 0.04,
whereas for the

√
s = 8 TeV part it was 0.52±0.11 events. The uncertainties include

both statistical and systematical contributions. 0 and 1 events were observed in
the signal regions for the 7 and 8 TeV analyses, respectively, which is consistent
with the predicted event rate.

Comparison between observed upper cross section limits and theoretically
predicted cross section values for the 8 TeV is shown in Fig. 2.7.

For the 8 TeV search, the mass limit of 665 GeV was obtained. This result
(within uncertainties) is very close to the ATLAS limit of 660 GeV for the 8 TeV
data set. Also, CMS treated the results obtained at 7 and 8 TeV as combined. This
allowed to push the lower mass limit to 685 GeV at 95% CL. A combination of
the results of two experiments for 8 TeV would mean an increase of statistics by
a factor of 2. Having said that, one can conclude that the mass limit based on
the results of both experiment for double charged particles can be set at the level
of about 730 GeV.

What one expects from LHC Run 2 Considering a recent CMS Physics Analysis
Summary [45] and an ATLAS paper in preparation, both on the searches for double
charged particles in data delivered by LHC to these experiments in 2015–2016,
we may conclude that each of these two experiments will be able to set a lower
mass limit on the double charged particles atm = 1000± 50 GeV. Going further
and considering the data taking periods of ATLAS and CMS until the end of
Run 2 (end of 2018), we can estimate a low limit on the double charged particles
mass corresponding to the Run 2 data set. Several assumptions are made in these
speculations:

• by the end of 2018, ATLAS and CMS will each record about 120 fb−1 of√
s = 13 TeV data;

• signal efficiency will remain at a present level in both experiments, without
being compromised by high detector occupancy or any other effects;

• no double charged particle candidates will be in observed in the first place.
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Fig. 2.7. Observed 95% CL cross-section upper limits and theoretical cross-sections as
functions of the multi-charged particles mass in CMS search at the

√
s = 8 TeV. The double

charged particles are denoted as “|Q| = 2e”. The picture is taken from [44].

Considering all of the above, the ATLAS and CMS collaborations may each
be expected to set the lower mass limits at the level of 1.2 TeV based on their
analyses of the entire 13 TeV data set. If these two experiments combined their
independently gathered statistics together for this kind of search, the limits would
go as high as up to 1.3 TeV.

2.4 Conclusions

The existence of heavy stable neutral particles is one of the popular solutions
for the dark matter problem. However, DM considered to be electrically neutral,
potentially can be formed by stable heavy charged particles bound in neutral atom-
like states by Coulomb attraction. Analysis of the cosmological data and atomic
composition of the Universe gives the constrains on the particle charge showing
that only -2 charged constituents, being trapped by primordial helium in neutral
O-helium states, can avoid the problem of overproduction of the anomalous
isotopes of chemical elements, which are severely constrained by observations.
Cosmological model of O-helium dark matter can even explain puzzles of direct
dark matter searches.

Stable charge -2 states (X−−) can be elementary like AC-leptons or technilep-
tons, or look like technibaryons. The latter, composed of techniquarks, reveal their
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structure at much higher energy scale and should be produced at colliders and
accelerators as elementary species. They can also be composite like “heavy quark
clusters” ŪŪŪ formed by anti-U quark in one of the models of fourth generation
[16] or ū5ū5ū5 of (anti)quarks ū5 of stable 5th family in the approach [20].

In the context of composite dark matter scenario accelerator search for stable
doubly charged leptons acquires the meaning of direct critical test for existence of
charged constituents of cosmological dark matter.

The signature for AC leptons and techniparticles is unique and distinctive
what allows to separate them from other hypothetical exotic particles. Compos-
ite dark matter models can explain observed excess of high energy positrons
and gamma radiation in positron annihilation line at the masses of X−− in the
range of 1 TeV, it makes search for double charged particles in this range direct
experimental test for these predictions of composite dark matter models.

Test for composite X−− can be only indirect: through the search for heavy
hadrons, composed of single U or Ū and light quarks (similar to R-hadrons).

The ATLAS and CMS collaborations at the Large Hadron Collider are search-
ing for the double charged particles since 2011. The most stringent results achieved
so far exclude the existence of such particles up to their mass of 680 GeV. This
value was obtained by both ATLAS and CMS collaborations independently. It
is expected that if these two collaborations combine their independently gath-
ered statistics of LHC Run 2 (2015–2018), the lower mass limit of double charged
particles could reach the level of about 1.3 TeV.
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Abstract. The L-R symmetric composite model for quarks and leptons where constituent
preons are bound by the SO(n)L × SO(n)R gauge forces is reconsidered. We find that just
the eight left-handed and right-handed preons, their local metaflavor symmetry SU(8)MF
and accompanying global chiral symmetry SU(8)L×SU(8)R may determine physical world
at small distances. This result for an admissible number of preons filling the fundamental
multiplet of some SU(N)MF symmetry group appears as a solution to the ’t Hooft’s anomaly
matching condition precisely for N = 8, provided that this condition is satisfied separately
for the L-preon and R-preon composites which fill individually a single multiplet of the
SU(N) rather than a set of its multiplets. We next show that an appropriate L-R symmetry
violation reduces an initially emerged vectorlike SU(8) theory down to the conventional
SU(5) GUT with an extra local family symmetry SU(3)F and three standard generations of
quarks and leptons. Though the tiny radius of compositeness for universal preons compos-
ing both quarks and leptons makes it impossible to immediately confirm their composite
nature, theory predicts the several extra heavy SU(5) × SU(3)F multiplets located at the
scales from O(1) TeV up to the Planck mass scale that may appear of actual experimental
interest.

Povzetek. Avtor obravnava model sestavljenih kvarkov in leptonov s simetrijo L-R, v
katerem sestavne delce (preone) veže sila umeritve SO(n)L × SO(n)R. Fiziko na majhnih
razdaljah v tem primeru določa samo osem levoročnih in desnoročnih preonov z njihovo
lokalno meta-okusno simetrijo SU(N)MF in ustrezno globalno kiralno simetrijo SU(N)L ×
SU(N)R. Ta rezultat za N = 8 zadosti ’t Hooftovemu pogoju za ujemanje anomalij, če velja
posebej za gruče levoročnih in posebej za gruče desnoročnih preonov, če vsako od gruč
določa bodisi levoročni bodisi desnročni multiplet. Avtor pokaže, da približna zlomitev
simetrije L − R vodi do GUT SU(5), ki pa ima dodatno lokalno simetrijo SU(3)F, s katero
opiše tri družine družine kvarkov in leptonov. Teorija napove več zelo težkih multipletov
SU(5) × SU(3)F, ki imajo mase od O(1) TeV do Planckove skale, kar bi lahko opazili pri
poskusih.

Keywords: Composite, Preon, Family, Grand unified theory

? E-mail: j.chkareuli@iliauni.edu.ge
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3.1 Preamble

It has long recognized that there is no meaningful internal symmetry scheme
beyond the known Grand Unified Theories like as the SU(5), SO(10), or E(6)
GUTs which could be well suited for classification of all observed quarks and lep-
tons. Any attempt to describe all three quark-lepton families in the grand unified
framework leads to higher symmetries with enormously extended representations
which also contain lots of exotic states that never been detected in an experiment.
This may motivate us to continue seeking a solution in some subparticle or preon
models for quark and leptons just like as in the nineteen-sixties the spectroscopy
of hadrons had required to seek a solution in the quark model for hadrons in
the framework of the so-called Eightfold Way. This term was coined by Murray
Gell-Mann in 1961 to describe a classification scheme for hadrons, that he had
devised, according to which the known baryons and mesons are grouped into
the eight-member families of some global hadron flavor symmetry SU(3) [1]. This
concept had finally led to the hypothesis of quarks locating in the fundamental
triplet of this symmetry, and consequently to a compositeness of baryons and
mesons observed. We try to show now that the Eightfold Way idea looks much
more adequate when it is applied to a next level of the matter elementarity, namely,
to elementary preons and composite quarks and leptons. Remarkably, just the
eight preons and their generic SU(8) symmetry seem to determine in a somewhat
special way the fundamental entities of the physical world and its total internal
symmetry. Interestingly, not only the number ”eight” for preons but also its break-
down into some special subdivisions corresponds to the spirit of the Eightfold
Way that will be seen from a brief sketch given below.

In more detail, the Eightfold Way or Noble Eightfold Path [2] is a summary of
the path of Buddhist practices leading, as supposed, to a true liberation. Keeping
in mind the particle physics we propose that the eight spoke Dharma wheel
which symbolizes the Noble Eightfold Path could be associated with eight preon
fields (or superfields, in general) Pi (i = 1, . . . , 8) being the fundamental octet
of the basic flavor symmetry SU(8). They may carry out the eight fundamental
quantum numbers which has been detected so far. These numbers are related
to the weak isospin, color and families of quarks and leptons. Accordingly, we
will refer to these preons as a collection of ”isons” Pw (w = 1, 2), ”chromons” Pc
(c = 1, 2, 3) and ”famons” Pf (f = 1, 2, 3). Surprisingly, the Noble Eightfold Path is
also originally divided into three similar basic divisions. They are:

(1) The Insight consisting of the Right view and the Right resolve,
(2) The Moral virtue consisting of the Right speech, the Right action and the

Right livelihood,
(3) The Meditation consisting of the Right effort, the Right mindfulness and

the Right Concentration.
This analogy with a similar decomposition of the sacred number eight, 8 =

2+ 3+ 3, which appears in the expected breakdown of the generic preon SU(8)
symmetry

SU(8)→ SU(2)W × SU(3)C × SU(3)F , (3.1)

looks indeed rather impressive.
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In principle, it is not necessary to generically relate the Eightfold Way concept
to preons and composite quarks and leptons. First of all, it is related to the eight
fundamental quantum charges of particle physics presently observed. They corre-
spond in fact to the two weak isospin orientations, the three types of colors and
the three species of quark-lepton families, all of which may be accommodated in
the unified SU(8) theory. Their carriers could be or could not be the elementary
preons, though the preon model composing the observed quark and leptons at
appropriate distances seems to reflect this concept in the most transparent way.

We find, resurrecting to an extent the old Eightfold Way idea in an initially L-R
symmetric and SU(N) invariant physical world, that just the eight left-handed and
right-handed preons and their basic flavor symmetry SU(8) appear as a solution
to the ’t Hooft’s anomaly matching condition [3] providing the chiral symmetry
preservation at all distances involved and, therefore, masslessness of emerged
composite fermions. We show that this happens if (1) this condition is satisfied sep-
arately for the L-preon and R-preon composites and (2) each of these two series of
composites fill only one irreducible representation of the starting SU(N) symmetry
group rather than a set of its representations. We next show that an appropriate
L-R symmetry violation reduces an emerged vectorlike SU(8) theory down to
one of its chiral remnants being of significant physical interest. Particularly, this
violation implies that, while there still remains the starting chiral symmetry for the
left-handed preons and their composites, for the right-handed states we only have
the broken chiral symmetry [SU(5)×SU(3)]R. Therefore, whereas nothing changes
for the left-handed preon composites still filling the total multiplet of the SU(8),
the right-handed preon composites will fill only some particular submultiplets
in it. As a result, we eventually come to the conventional SU(5) GUT with an
extra local family symmetry SU(3)F and three standard generations of quarks
and leptons. Moreover, the theory has the universal gauge coupling constant run-
ning down from the SU(8) unification scale, and also predicts some extra heavy
SU(5) × SU(3)F multiplets located at the scales from O(1) TeV up to the Planck
mass that may appear of actual experimental interest. For simplicity, we largely
work in an ordinary spacetime framework, though extension to the conventional
N = 1 supersymmetry with preons and composites treated as standard scalar
superfields could generally be made. All these issues are successively considered
in the subsequent sections 3.2–3.7, and in the final section 3.8 we present our
conclusion.

Some attempt to classify quark-lepton families in the framework of the SU(8)
GUT with composite quarks and leptons had been made quite a long ago [4],
though with some special requirements which presently seem not necessary or
could be in principle derived rather than postulated. Since then also many other
things became better understood, especially the fact that the chiral family symme-
try subgroup SU(3)F of the SU(8), taken by its own, was turned out to be rather
successful in description of quark-lepton generations. At the same time, there have
not yet appeared, as mentioned above, any other meaningful internal symmetry
for an appropriate classification of all the observed quarks and leptons. All that
motivates us to address this essential problem once again.
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3.2 Preons - metaflavors and metacolors

We start formulating a few key elements of preon models (for some significant
references, see [5,6]), partially refining some issues given in our old paper [4].

• We propose that there is an exact L-R symmetry at small distances where
N elementary massless left-handed and right-handed preons, PiL and PiR
(i = 1, . . . ,N), possess a local metaflavor symmetry SU(N)MF including the
known physical charges, such as weak isospin, color, and family number. The
preons, both PiL and PiR, are located in its fundamental representation.
• The preons also possess a local metacolor symmetry GMC = GLMC × GRMC

with n metacolors (n is odd) which bind preons into composites - quarks,
leptons and other states. In contrast to their common metaflavors, preons have
different metacolors for the left-right and left-handed components, PαiL and
Pα
′

iR, where α and α′ are indices of the corresponding metacolor subgroups
GLMC (α = 1, ..., n) and GRMC (α′ = 1, ..., n), respectively. As a consequence,
there are two types of composites at large distances being composed from
them separately with a radius of compositeness, RMC ∼ 1/ΛMC, where ΛMC
corresponds to the scale of the preon confinement for the asymptotically free
(or infrared divergent) GL,RMC symmetries. Obviously, the preon condensate〈
PLPR

〉
which could cause theΛMC order masses for composites is principally

impossible. This is in sharp contrast to an ordinary QCD case where the left-
handed and right-handed quarks forms the 〈qLqR〉 condensate thus leading
to the ΛC order masses (ΛC ∼ (0.1÷ 1)GeV) for mesons and baryons. Due to
the L-R symmetry, the metacolor symmetry groups GLMC and GRMC are taken
identical with a similar confinement for both of sets of preons. If one also
proposes that the preon metacolor symmetry GMC is generically anomaly-
free for any matter content involved, then for independent left-handed and
right-handed preons one comes to an input chiral orthogonal symmetry of the
type

GMC = SO(n)LMC × SO(n)RMC, n = 3, 5, ... (3.2)

for the n-preon configurations of composites. For reasons of economy, it is
usually proposed that fermion composites have the minimal 3-preon configu-
ration.

• Apart from the local symmetries, metacolors and metaflavors, the preons PαiL
and Pα

′

iR possess an accompanying chiral global symmetry

K(N) = SU(N)L × SU(N)R (3.3)

being unbroken at the small distances. We omitted above the Abelian chiral
U(1)L,R symmetries in K(N) since the corresponding currents have Adler-Bell-
Jackiw anomalies in the triangle graph where they couple to two metagluons
[7]. In fact, their divergences for massless preons are given by

∂µJ
µ
L,R = n

g2L,R
16π2

GµνL,RG
ρσ
L,Rεµνρσ (3.4)

where GµνL,R are the metagluon field strengths for the SO(n)L,RMC metacolors,
respectively, while gL,R are the appropriate gauge coupling constants. Thereby,
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the chiral symmetries U(1)L,R, which would present the conserved chiral hy-
percharges in the classical Lagrangian with massless preons, appear broken
by the quantum corrections (3.4) that make us to leave only the non-Abelian
chiral symmetry (3.3) in the theory. Nevertheless, one could presumably still
use these symmetries at the small distances, r� RMC, where the corrections
(3.4) may become unessential due to asymptotic freedom in the metacolor
theory considered. We will refer to this regime as the valent preon approxi-
mation in which one may individually recognize each preon no matter it is
free or bound in a composite fermion. Therefore, the chiral preon numbers
or hypercharges YL,R related to the symmetries U(1)L,R may be considered
in this approximation as the almost conserved classical charges according to
which the preon and composite states are allowed to be classified.
• The fact that the left-handed and right-handed preons do not form the

〈
PLPR

〉
condensate may be generally considered as a necessary but not yet a suffi-
cient condition for masslessness of composites. The genuine massless fermion
composites are presumably only those which preserve chiral symmetry of
preons (3.3) at large distances that is controlled by the ’t Hooft’s anomaly
matching (AM) condition [3]. For reasons of simplicity, we do not consider
below boson composites, the effective scalar or vector fields. Generally, they
being no protected by any symmetry will become very heavy (with masses
of the order of the compositeness scale ΛMC) and decouple from a low-lying
particle spectrum.

3.3 AM conditions for N metaflavors

The AM condition [3] states in general that triangle anomalies related to Nmass-
less elementary preons, both left-handed and right-handed, have to match those
for massless fermions (including quarks and leptons) being composed by the
metacolor forces arranged by the proposed local symmetry SO(n)LMC× SO(n)RMC.
Based on the starting L-R symmetry in our model we will require, in some contrast
to the original AM condition [3], that fermions composed from the left-handed and
right-handed preons with their own metacolors, SO(n)LMC and SO(n)RMC, have to
satisfy the AM condition separately, whereas the metaflavor triangle anomalies
of the L-preon and R-preon composites may in general compensate each other.
Therefore, in our L-R symmetric preon model one does not need to specially intro-
duce elementary metacolor singlet fermions, called the ”spectator fermions” [3],
to cancel these anomalies both at the small and large distances.

The AM condition puts in general powerful constraints on the classification
of massless composite fermions with respect to the underlying local metaflavor
symmetry SU(N)MF or some of its subgroups, depending on the extent to which
the accompanying global chiral symmetry (3.3) of preons remains at large distances.
In one way or another, the AM condition∑

r

ira(r) = na(N) (3.5)

for preons (the right side) and composite fermions (the left side) should be satisfied.
Here a(N) and a(r) are the group coefficients of triangle anomalies related to the
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groups SU(N)L or SU(N)R in (3.3) whose coefficients are calculated in an ordinary
way,

a(r)dABC = Tr({TATB}TC)r , Tr(TATB) =
1

2
δAB (3.6)

where TA (A,B,C = 1, . . . ,N2 − 1) are the SU(N) generators taken in the corre-
sponding representation r. The a(N) corresponds a fundamental representation
and is trivially equal to±1 (for left-handed and right-handed preons, respectively),
while a(r) is related to a representation r for massless composite fermions. The
values of the factors ir give a number of times the representation r appears in a
spectrum of composite fermions and are taken positive for the left-handed states
and negative for the right-handed ones.

The anomaly coefficients for composites a(r) contain an explicit dependence
on the number of preons N, due to which one could try to find this number
from the AM condition. However, in general, there are too many solutions to the
condition (3.5) for any value of N. Nevertheless, for some special, though natural,
requirements an actual solution may only appear for N = 8, as we will see below.

Indeed, to strengthen the AM condition one could think that it would more
appropriate to have all composite quarks and leptons in a single representation of
the unified symmetry group rather than in some set of its representations. This,
though would not largely influence the gauge sector of the unified theory, could
make its Yukawa sector much less arbitrary. Apart from that, the composites
belonging to different representations would have in general different preon
numbers that could look rather unnatural. Let us propose for the moment that we
only have the minimal three-preon fermion composites formed by the metacolor
forces which correspond to the SO(3)LMC × SO(3)RMC symmetry case in (3.2). We
will, therefore, require that only some single representation r0 for massless three-
preon states has to satisfy the AM condition that simply gives in (3.5)

a(r0) = 3 (3.7)

individually for L-preon and R-preon composites.
Now, calculating the anomaly coefficients for all possible three L-preon and

three R-preon composites one respectively has (see also [4,8])

Ψ{ijk}L,R , N2/2+ 9N/2+ 9,

Ψ[ijk]L,R , N2/2− 9N/2+ 9,

Ψ{[ij]k}L,R, N2 − 9,

Ψi{jk}L,R , N2/2+ 7N/2− 1,

Ψi[jk]L,R , N2/2− 7N/2− 1 (3.8)

with all appropriate SU(N)L,R representations listed (anomaly coefficients for
right-handed composites have to be taken with an opposite sign). Putting then
each of the above anomaly coefficients in (3.8) into the AM condition (3.7) one
can readily find that there is a solution with an integer N only for the last tensors
Ψi[jk]L,R , and this is in fact the unique ”eightfold” solution

N2/2− 7N/2− 1 = 3, N = 8 . (3.9)
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Remarkably, the same solution N = 8 independently appears if one requires
that the SU(N) symmetry has to possess the right SU(5) GUT assignment [5]
for the observed quark-lepton families in order to be in fact in accordance with
observations. This means that one of its specified representations has to contain
an equal numbers of the SU(5) anti-quintets 5

k
and decuplets 10[k,l] (k, l are the

SU(5) indices). Indeed, decomposing SU(N) into SU(5)× SU(N− 5) one find that
this equality does not exist for any 3-index representation (3.8) but the last one
Ψi[jk], for which it reads as

(N− 5)(N− 6)/2 = N− 5, N = 8 (3.10)

thus leading again to the ”eightfold” SU(8) metaflavor symmetry.
Let us note that, apart the minimal 3-preon states, there are also possible some

alternative higher preon configurations for composite quarks and leptons. More-
over, the SO(3)L,RMC metacolors providing the three-preon structure of composite
quarks and leptons may appear insufficient for the preon confinement, unless one
invokes some special strong coupling regime [9]. For the asymptotically free SO(n)
metacolor, one must generally require n > 2+ 2N/11, due to which the composite
quarks and leptons have to appear at least as five-preon states. Checking generally
all possible n-index representations of SU(N) we find that the AM condition only
works for some combination of its ”traced” tensors Ψi[jk]L,R and ΨiL,R obtained
after taking traces out of the proper n-index tensors Ψi...[jk...]L,R. This eventually
leads to the equation generalizing the above anomaly matching condition (3.9)

N2/2− 7N/2− 1+ p = n (3.11)

where p is a number of the traced fundamental multiplets ΨiL,R for composites.
One can see that there appear some reasonable solutions only for n− p = 3 and,
therefore, one has again solutions for the ”eightfold” metaflavor symmetry SU(8).

Apart from the AM condition (3.5) there would be in general another kind
of constraint on composite models which has been also proposed in [3]. This con-
straint requires the anomaly matching for preons and composites, even if some of
introduced N preons become successively heavier than the scale of compositeness
and consequently decouple from the entire theory. As a result, the AM condition
should work for any number of preons remained massless (thus basically being
independent of N) that could make generally classification of composite fermions
quite arbitrary. Fortunately, such an extra constraint is not applicable to our L-R
symmetric model where the Dirac masses for preons are not possible by definition,
whereas the Majorana masses would mean breaking of the input local metaflavor
SU(N)MF symmetry1.

Most importantly, the orthogonal symmetry for metacolor (3.2) allows to
consider more possible composite configurations than it is in the case of an unitary
metacolor symmetry, as in the conventional SU(3) color for QCD. The above
strengthening of the AM condition, according to which composites only fill a

1 Apart from that, it has been generally argued [5] that the nonperturbative effects may not
be analytic in the preon mass so that for the large and small preon masses the theories
may be quite different, thus avoiding this additional constraint.
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single multiplet of the metaflavor SU(N)MF symmetry group, has unambiguously
led us to the composite multiplets Ψi[jk]L,R having the same classical U(1)L,R
fermion numbers or hypercharges YL,R as the preons themselves. We argued in the
previous section that these hypercharges may be considered in the valent preon
approximation as the almost conserved classical charges according to which the
preon and composite states could be classified. With all that in mind, one could
assume that there may work some extra selection rule according to which only
composites satisfying the condition

YL,R(preons) = YL,R(composites) (3.12)

appear in physical spectrum in the orthogonal left-right metacolor case.
We can directly see that the condition (3.12) trivially works for the simplest

composite states which could be constructed out of a single preon PαiL or Pα
′

iR, whose
metacolor charge is screened by the metagluon fields AαLµ and Aα

′

Rµ of SO(n)LMC
and SO(n)RMC, respectively. These composites will also satisfy the general AM
condition (3.5) provided that one admits the n left-handed and right-handed fun-
damental multiplets of the SU(N)MF to participate (iN = n). In our L-R symmetric
model, however, such massless composites will necessarily pair up, thus becoming
very massive and decoupling from the low-lying particle spectrum, no matter
the starting L-R symmetry becomes later broken or not. This in sharp contrast to
the models [8] with the orthogonal metacolor group SO(n) for the single chirality
preons, where such massless composite generally appear to be in contradiction
with observations. Moreover, in this case the composite multi-preon states for
quarks and leptons seem hardly to be stable, since they could freely dissociate into
three screened preon states.

One could wonder why the condition (3.12) does not work in the familiar QCD
case with elementary quarks and composite baryons. The point is that, despite
some conceptual similarity, QCD is the principally different theory. The first and
immediate is that the unitary color SU(3)C, in contrast to the orthogonal ones,
allows by definition no other quark number for baryons but YB = 3Yq. The most
important aspect of this difference is, however, that the color symmetry SU(3)C is
vectorlike due to which chiral symmetry in QCD is broken by quark-antiquark
condensates with the corresponding zero-mass Goldstone bosons (pions, kaons
etc.) providing the singularity of the three-point function. As a consequence, the
AM condition implies in this case that dynamics requires spontaneous breakdown
of chiral symmetry rather than an existence of massless composite fermions, as
happens in the orthogonal metacolor case discussed above.

We find below in section 3.5 that, though the proposed condition (3.12) looks
rather trivial in the L-R symmetry phase of the theory, it may become rather
significant when this symmetry becomes spontaneously broken.

3.4 Composites - the L-R symmetry phase

So, we have at small distances the preons given by the Weil fields

PαiL , Pα
′

iR (i = 1, . . . , 8; α = 1, 2, 3; α′ = 1, 2, 3) (3.13)
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belonging to the fundamental octet of the local metaflavor symmetry SU(8)MF
and to triplets of the metacolor symmetry SO(3)LMC × SO(3)RMC which are local,
and there is also the accompanying global chiral symmetry

K(8) = SU(8)L × SU(8)R (3.14)

of the eight preon species (3.13). At large distances, on the other hand, we have
composites located, respectively, in the left-handed and right-handed multiplets
of the SU(8)MF

Ψi[jk]L(216) , Ψi[jk]R(216) , (3.15)

where their dimensions are explicitly indicated. The chiral symmetry (3.14), ac-
cording to the AM condition taken, remains at large distances. Due to a total L-R
symmetry of preons and composites the triangle anomalies both at small and
large distances appears automatically compensated. Decomposing the SU(8)MF
composite multiplets (3.15) into the SU(5)× SU(3)F components one has

216L,R =
[
(5+ 10, 3) + (45, 1) + (5, 8) + (24, 3) + (1, 3) + (1, 6)

]
L,R

(3.16)

where the first term for the left-handed composites, (5+10, 3)L, could be associated
with the standard SU(5) GUT assignment for quarks and leptons [5] extended by
some family symmetry SU(3)F, while other multiplets are somewhat exotic and,
hopefully, could be made heavy to decouple them from an observed low-lying
particle spectrum.

The determination of the explicit form of the wave function for composite
states (3.15) is a complicated dynamical problem related to the yet unknown
dynamics of the preon confinement. We propose that some basic feature of these
composites are simply given by an expression

Ψi[jk]L(x) ∝ εαβγ
(
P
αi

L γµP
β
L[j

)
γµPγ

k]L(x) (3.17)

where indices α, β, γ belong to the metacolor symmetry SO(3)LMC. In the valent
preon approximation, the preon current (3.17) corresponds to a bound state of
three left-handed preons with zero mass (p2 = (p1 + p2 + p3)

2 = 0) being formed
by massless preons (p21 = p

2
2 = p

2
3 = 0) which are moving in a common direction.

It is then clear that a state with a spin of 1/2 (and a helicity −1/2) can be only
obtained by assembling two preons and one antipreon into a quark or lepton. In
a similar way one can construct the preon current Ψi[jk]R which corresponds to a
multiplet of states again with a spin of 1/2 (but a helicity +1/2) composed from
right-handed preons. This is simply achieved by making the proper replacements
in (3.17) leading to the composite states

Ψi[jk]R(x) ∝ εα′β′γ′
(
P
α′i

R γµP
β′

R[j

)
γµPγ

′

k]R(x) (3.18)

where indices α′, β′, γ′ belong now to the metacolor symmetry SO(3)RMC. For the
simplest composite states which can be constructed out of a single preon PαiL or
Pα
′

iR , whose metacolor charge is screened by the metagluon fields AαLµ and Aα
′

Rµ of
SO(3)LMC and SO(3)RMC, the wave functions may be written as

ΨiL(x) ∝ AαLµγµPαiL(x) , ΨiR(x) ∝ Aα
′

Rµγ
µPα

′

iR(x) , (3.19)
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respectively.
Let us remark in conclusion that the whole theory so far considered is certainly

vectorlike with respect to preons (3.13), as well as composites (3.15). This means
that, while preons are left massless being protected by their metacolors, all the
L-preon and R-preon composites being metacolor singlets will pair up due to some
quantum gravitational transitions and, therefore, acquire some Dirac masses. We
find below that due to closeness of the compositeness scale ΛMC to the Planck
scale MPl the masses of all composites appear very heavy that has nothing in
common with reality. It is rather clear that such a theory is meaningless unless
the L-R symmetry is somehow broken that seems to be in essence a basic point
in our model. One could expect that such breaking may somehow exclude the
right-handed submultiplet (5 + 10, 3)R in the composite spectrum (3.16), while
leaving there its left-handed counterpart, (5+ 10, 3)L, which can be then uniquely
associated with the observed three families of ordinary quarks and leptons.

3.5 Composites - partially broken L-R symmetry

We propose that there a partial breaking of the chiral symmetry (3.14) in the
right-handed preon sector of the type

K(8)→ SU(8)L × [SU(5)× SU(3)]R (3.20)

For convenience, we consider a supersymmetric model where this breaking may
be caused presumably due to the asymmetric preon condensation

εαβγ

〈
PαiLP

β
jLP

γ
kL

〉
= 0 , εα′β′γ′

〈
Pα
′

iRP
β′

jRP
γ′

kR

〉
= δai δ

b
j δ
c
kεabcΛ

4
MC (3.21)

emerging for preon superfields with their fermion and scalar field components
involved. Here antisymmetric third-rank tensors εαβγ and εα′β′γ′ belong to the
metacolor symmetries SO(3)LMC and SO(3)RMC, respectively, while εabc (a, b, c =
1, 2, 3) to the symmetry SU(3)R. Remarkably, the breaking (3.20) is only possible
when the number of metacolors n is equal 3 or 5, as is actually implied in our
model. For the minimal case, n = 3, the vacuum configurations (3.21) could
spontaneously appear in some L-R symmetric model with the properly arranged
high-dimensional preon interactions2

∞∑
n=1

{GLLn
[(
PLPLPL

)
(PLPLPL)

]n
+ GRRn

[(
PRPRPR

)
(PRPRPR)

]n
+GLRn

[(
PLPLPL

)
(PRPRPR)

]n
+ GRLn [

(
PRPRPL

)
(PLPLPL)]

n} (3.22)

with coupling constants satisfying the conditions GLLn = GRRn and GLRn = GRLn .
This model is evidently non-renormalizable and can be only considered as an
effective theory valid at sufficiently low energies. The dimensionful couplings Gn

2 This L-R symmetry breaking model looks somewhat similar to the well-known multi-
fermion interaction schemes used in the other contexts for chiral symmetry breaking [10]
or spontaneous Lorentz violation [11].
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are proportional to appropriate powers of some UV cutoff Λwhich in our case can
be ultimately related to the preon confinement energy scaleΛMC, Gn ∼ Λ4−8nMC . For
some natural choice of these coupling constants one may come to the asymmetric
solution (3.21).

A more conventional way of getting the L-R asymmetry may follow from the
symmetric scalar field potential [5]

U =M2(Φ2L +Φ
2
R) + h(Φ

2
L +Φ

2
R)
2 + h′Φ2LΦ

2
R + P(ΦL, ΦR) (3.23)

containing two elementary third-rank antisymmetric scalar fields,Φ[ijk]
L andΦ[ijk]

R ,
interacting with L- and R-preons, respectively. For some natural area of the param-
eters in the potential, M2 < 0 and h, h′ > 0, and properly chosen couplings for
scalars Φ[ijk]

L and Φ[ijk]
R in the polynomial P(ΦL, ΦR) they may readily develop

the totally asymmetric VEV configuration〈
Φ

[ijk]
L

〉
= 0 ,

〈
Φ

[ijk]
R

〉
= δiaδ

j
bδ
k
cε
abcMLR (a, b, c = 1, 2, 3) (3.24)

where the mass MLR corresponds to the L-R symmetry breaking scale and indices
a, b, c belong to the SU(3)R. Due to these VEVs, the higher dimension terms in the
effective superpotential induced generally by gravity

GL
MPl

(PiLPjLPkL)Φ
[ijk]
L +

GR
MPl

(PiRPjRPkR)Φ
[ijk]
R (3.25)

(GL,R are dimensionless coupling constants) will change the AM conditions for
right-handed states leaving those for the left-handed ones intact. This modification
is related to an appearance of a new Yukawa interaction for preons

G′Rε
abc(P

(f)
aRCP

(f)
bR)P

(s)
cR , G′R = GR

MLR

MPl
(3.26)

where P(f,s)iR are, respectively, the fermion and scalar field components of the
right-handed preon superfield PiR. This interaction will give some extra radiative
corrections to the triangle graphs with circulating ”family” preons P(f)aR (a =

1, 2, 3) and their composites. As a result, the triangle anomalies corresponding
to all generators of the SU(8)R, besides those of the [SU(5) × SU(3)]R, are left
uncompensated, that causes the proper decreasing of the chiral symmetry, just as
is indicated in (3.20).

Eventually, while there still remains the starting chiral symmetry for the left-
handed preons and their composites, for the right-handed states we only have
the broken symmetry given in (3.20). Therefore, whereas nothing changes for
the L-preon composites filling the total multiplet 216L in (3.16), the R-preons will
only compose some particular submultiplets in 216R (3.16) which in general may
not include the three right-handed quark-lepton families (5 + 10, 3)R. We can
simply postulate it as some possible ansatz being allowed by the different chiral
symmetries in the L-preon and R-preon sectors in the L-R symmetry broken phase.
Nonetheless, it would be interesting to argue it using the preon number matching
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condition (3.12) which we discussed in section 3.3. Note first that the U(1)R sym-
metry in the right-handed sector reduces after the L-R symmetry breaking (3.21,
3.24) to

U(1)R → U(1)
(5)
R × Z(3)

(3)
R (3.27)

while the U(1)L symmetry is left intact. Here, U(1)(5)R and Z(3)(3)R stand for the
survived continuous and discrete symmetries of quintet preons PsR (s = 1, ..., 5)
of SU(5)R and triplet preons PaR (a = 1, 2, 3) of SU(3)R, respectively, which are
thereby separated. Namely, the R-preon hypercharge group in the broken L-R
symmetry phase is given by the product (3.27) rather than the universal U(1)R
for all eight preons, as was in its unbroken phase. Now, if we require the preon
number matching for preons and composites the states collected in (5 + 10, 3)R
will never appear in physical spectrum. Indeed, as one can easily check, both
the U(1)(5)R hypercharge and discrete Z(3)(3)R symmetry values for these states
are quite different from those for the preons PsR and PaR, respectively. At the
same time, all other composite submultiplets in 216R (3.16) readily match the both
symmetry values for preons.

One way or another, the simplest combination of the 216R submultiplets
which may simultaneously satisfy the AM conditions for the [SU(5) × SU(3)]R
symmetry, as well as the above preon number matching condition is in fact given
by the collection

(45, 1)R + (5, 8+ 1)R + 3(1, 3)R (3.28)

where the submultiplet (1, 3)R has to appear three times in (3.28) in order to
appropriately restore the anomaly coefficient balance for the R-preon composites.
Of course, this collection of states can also appear by its own without any reference
to the preon number matching condition that we have used above as some merely
heuristic argument.

3.6 Physical sector - quarks and leptons

We can see that after chiral symmetry breaking in the sector of the right-handed
preon composites the starting metaflavor symmetry SU(8)MF at large distances is
reduced to the product of the standard SU(5) GUT and chiral family symmetry
SU(3)F

SU(8)MF → SU(5)× SU(3)F (3.29)

presumably with the equal gauge coupling constants g5 and g3F at the grand
unification scale. This is in essence the chiral remnant of the initially emerged
vectorlike SU(8)MF symmetry. The massless composite fermions, due to pairing
up of the similar L-preon and R-preon composites and decoupling them from
a low-energy spectrum, are given now by the collection of the SU(5) × SU(3)F
multiplets

(5+ 10, 3)L + (24, 3)L + 2(1, 3)R + (1, 6)R (3.30)

which automatically appear free from both the SU(5) and SU(3)F anomalies. They
contain just three conventional families of quarks and leptons plus massive multi-
plets located on the family symmetry scaleMF. In order to sufficiently suppress
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all flavor-changing transitions, which would induce the family gauge boson ex-
changes, this scale should be at least of the order 105÷6 GeV , though in principle
it could be as large as the SU(5) GUT scale. In the latter case, some of the heavy
states in (3.30) could be considered as candidates for the superheavy right-handed
neutrinos. One can argue that the physical composite multiplets (3.30) appear not
only for the triple metacolor, n = 3, but in general case as well. Indeed, using the
remark concerning the generalized AM condition (3.11) and properly extending
the left-handed multiplets in (3.16) and the right-handed multiplets in (3.28) by
the new n − 3 fundamental composite octets [(5, 1) + (1, 3)]L,R to have anomaly
matching for any number n of metacolors, one comes after pairing of the identical
multiplets to the same physical remnant (3.30) as in the triple metacolor case.

It is important to note that the tiny radius of compositeness for universal
preons composing both quarks and leptons makes it impossible to directly observe
their composite nature [12]. Indeed, one can readily see that the quark pair u+ d

contains the same preons as the antiquark-antilepton pair u+ e+ that will lead to
the process

u+ d→ u+ e+ (3.31)

and consequently to the proton decay p → π0 + e+ just due to a simple rear-
rangement of preons in a proton. To prevent this one should take the compos-
iteness scale ΛMC of the order of the scale of the SU(5) GUT or even larger,
ΛMC &MGUT ≈ 2 · 1016 GeV, and, respectively, RMC ≤ 5 · 10−31 sm.

This limit on the radius of compositeness may in turn cause limits on the
composite fermions masses appearing as a result of the quantum gravitational
transitions of the identical states in the left-handed multiplets (3.15) and right-
handed multiplets (3.28),

(45, 1)L,R + (5, 8+ 1)L,R + (1, 3)L,R , (3.32)

into each other. From dimensional arguments related to a general structure of the
composites proposed above (3.17), these masses could be of the order

(ΛMC/MPl)
5ΛMC

(that corresponds in fact to the 6-fermion interaction of the left-handed and right-
handed preons) and, in fact, are very sensitive to the confinement scale ΛMC.
Actually, for the metacolor scales, MGUT ≤ ΛMC ≤ MPl, the heavy fermion
masses may be located at the scales from O(1) TeV up to the Planck mass scale.
Therefore, the heavy composite states may be of direct observation interest if they
are located near the low limit, or otherwise they will populate the SU(5) GUT
desert. Interestingly, the screened preon states (3.19)

(5, 1)L,R + (1, 3)L,R (3.33)

acquire much heavier masses when being pairing with each other. Again, from the
dimensional arguments one may conclude that these masses has a natural order
(ΛMC/MPl)ΛMC that is significantly larger than masses of the 3-preon states (3.17,
3.18).
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Note that some of the heavy states (3.32) can mix with ordinary quarks and
leptons given by the multiplet (5 + 10, 3)L in (3.30). Particularly, there could be
the large mixing term of the part (5, 3)L containing the lepton doublet and down
antiquarks with the multiplet (5, 8+ 1)R in (3.32). This term has a form

(5, 3)L(5, 8+ 1)R(1, 3) (3.34)

where (1, 3) stands for some pure ”horizontal” scalar field being a triplet of the
family symmetry SU(3)F. Actually, this mixing is related again to the 6-fermion
gravitational interaction of the left-handed and right-handed preons, thus leading
to the nondiagonal masses of the order (ΛMC/MPl)

5MF. Thereby, in order not to
significantly disturb the masses of quarks and leptons in (3.30) one has to generally
propose MF � ΛMC. This in fact is readily satisfied even for high family scales,
namely, in the case when the scale MF is taken near the grand unification scale
MGUT , while the scaleΛMC near the Planck scaleMPl. The more liberal limitations
appears when that part (5, 3)L mixes with the screen preon states (5, 1)R in (3.33)
due to the same scalar triplet (1, 3) of the SU(3)F. Now, this mixing caused by the
4-fermion interaction leads to the nondiagonal mass of the order (ΛMC/MPl)

2MF

that may be naturally much lesser than diagonal mass (ΛMC/MPl)ΛMC derived
above for the screened preon state. Nevertheless, depending on real values of the
scales ΛMC and MF there could be expected some violation of unitarity in the
conventional 3× 3mass matrices of leptons and down quarks which may be of a
special interest for observations. Other mixings of quarks and leptons with heavy
states (3.32) and (3.33) will necessarily include an ordinary Higgs quintet of the
grand unified SU(5) (or a doublet of the SM) and, therefore, are negligibly small.

To conclude, our preon model predicts three types of states which are (1)
three families of ordinary quarks and leptons (5+ 10, 3)L in (3.30) with masses at
the electroweak scale, (2) the heavy chiral multiplets (24, 3)L + 2(1, 3)R + (1, 6)R
(3.30) with the Majorana type masses at the family scaleMF = 10

6÷16 GeV and (3)
the heavy paired multiplets (3.32) with masses in the interval 103÷19 GeV which
are related to the gravitational transition amplitudes of the L-preon composites
into the R-preon ones. However, the most important prediction of the left-right
preon model considered here is, indeed, an existence of the local chiral family
(or horizontal) symmetry SU(3)F for quark-lepton generations which is briefly
presented below.

3.7 The chiral family symmetry SU(3)F

The flavor mixing of quarks and leptons is certainly one of the major problems that
presently confront particle physics. Many attempts have been made to interpret
the pattern of this mixing in terms of various family symmetries - discrete or
continuous, global or local. Among them, the chiral family symmetry SU(3)F
derived first in the similar preon framework [4] and developed then by its own
by many authors [13-22] seems most promising. As was shown, the spontaneous
breaking of this symmetry gives some guidance to the observed hierarchy between
elements of the quark-lepton mass matrices, on the one hand, and to presence
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of texture zeros in them, on the other, that leads to relationships between the
mass and mixing parameters. In the framework of the supersymmetric Standard
Model, it leads, at the same time, to an almost uniform mass spectrum for the
superpartners, with a high degree of flavor conservation, that makes its existence
even more significant in the SUSY case.

Generically, the chiral family symmetry SU(3)F possesses four basically at-
tractive features:

(i) It provides a natural explanation of the number three of observed quark-
lepton families, correlated with three species of massless or light (mν < MZ/2)
neutrinos contributing to the invisible Z boson partial decay width;

(ii) Its local nature conforms with the other local symmetries of the Standard
Model, such as the weak isospin symmetry SU(2)w or color symmetry SU(3)c,
thus leading to the family-unified SM with a total symmetry SM× SU(3)F;

(iii) Its chiral nature, according to which both left-handed and right-handed
fermions are proposed to be fundamental triplets of the SU(3)F, provides the
hierarchical mass spectrum of quark-lepton families as a result of a spontaneous
symmetry breaking at some high scaleMF which could in principle located in the
area from 105÷6 GeV (to properly suppress the flavor-changing processes) up to
the grand unification scaleMGUT and even higher. Actually, any family symmetry
should be completely broken in order to conform with reality at lower energies.
This symmetry should be chiral, rather than a vectorlike, since a vectorlike sym-
metry would not forbid the invariant mass, thus leading in general to degenerate
rather than hierarchical mass spectra. Interestingly, both known examples of local
vectorlike symmetries, electromagnetic U(1)EM and color SU(3)C, appear to be
exact symmetries, while all chiral symmetries including conventional grand uni-
fications [5] SU(5), SO(10) and E(6) (where fermions and antifermions lie in the
same irreducible representations) appear broken;

(iv) Thereby, due to its chiral structure, the SU(3)F admits a natural unification
with all known GUTs in a direct product form, both in an ordinary and super-
symmetric framework, thus leading to the family-unified GUTs, GUT × SU(3)F,
beyond the Standard Model.

So, if one takes these naturality criteria seriously, all the candidates for flavor
symmetry can be excluded except for local chiral SU(3)F symmetry. Indeed, the
U(1) family symmetry does not satisfy the criterion (i) and is in fact applicable
to any number of quark-lepton families. Also, the SU(2) family symmetry can
contain, besides two light families treated as its doublets, any number of additional
(singlets or new doublets of SU(2)) families. All the global non-Abelian symmetries
are excluded by criterion (ii), while the vectorlike symmetries are excluded by the
last criteria (iii) and (iv).

Among applications of the SU(3)F symmetry, the most interesting ones are
the description of the quark and lepton masses and mixings in the Standard
Model and GUTs [13], neutrino masses and oscillations [15] and rare processes
[16] including their astrophysical consequences [22]. Remarkably, the SU(3)F
invariant Yukawa coupling are always accompanied by an accidental global chiral
U(1) symmetry, which can be identified with the Peccei-Quinn symmetry [18]
provided it is not explicitly broken in the Higgs sector, thus giving a solution to
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the strong CP problem [17]. In the SUSY context [19], the SU(3)F model leads to
a special relation between (s)fermion masses and the soft SUSY breaking terms
at the GUT scale in a way that all the dangerous flavor-changing processes are
naturally suppressed. The special sector of applications is related to a new type
of topological defects - flavored cosmic strings and monopoles appearing during
the spontaneous violation of the SU(3)F which may be considered as possible
candidates for the cold dark matter in the Universe [20].

Let us note in conclusion that if the family symmetry SU(3)F arises from the
preon model proposed above one can expect that in the emerged SU(5)× SU(3)F
GUT the gauge coupling constants g5 and g3F should be equal at the SU(8)MF
unification scale. The study of flavor changing processes µ → e + γ, D0 − D

0
,

B0−B
0

and others caused by the SU(3)F gauge boson exchanges could in principle
show whether the family symmetry has an origin in the preon model or it is,
rather, independently postulated. However, the most crucial difference between
these two cases is related to the existence in the preon model of some heavy
SU(5)× SU(3)F multiplets located at scales from O(1) TeV up to the Planck mass.
If they are relatively light, they may be of direct observational interest by them
own. If they are heavy, they still strongly affect the quark-lepton mass matrices
due to their large mixings with the down quarks and leptons, as was shown in
(3.34). Remarkably, even if the family symmetry SU(3)F is taken at the GUT scale
the difference between these cases is still left. Indeed, now all flavor-changing
transitions due to the family gauge boson exchange will be extremely suppressed,
while for the independently introduced family symmetry these transitions may
significantly contribute into rates of the nondiagonal processes. Moreover, for
the high scale family symmetry one has some natural candidates for massive
right-handed neutrinos in terms of the extra heavy states given in (3.30).

3.8 Conclusion and outlook

We have shown that, apart from somewhat inspirational religious and philosophi-
cal aspects ensured by the Eightfold Way, the SU(8) symmetry as a basic internal
symmetry of the physical world is indeed advocated by preon model for composite
quarks and leptons.

In fact, many preon models have been discussed and considered in the past
(some significant references can be found in [5,6]), though they were not turned
out to be too successful and attractive, especially compared with other theory
developments, like as supersymmetry and supergravity, appeared at almost the
same time. However, there is still left a serious problem in particle physics with
classification of all observed quark-lepton families. As in the hadron spectroscopy
case, this may motivate us to continue seeking a solution in some subparticle
or preon models for quarks and leptons, rather than in the less definitive extra
dimension or superstring theories.

Let us briefly outline the main results presented here. We have started with the
L-R symmetric preon model and found that an admissible metaflavor symmetry
SU(8)MF appears as a solution to the ’t Hooft’s anomaly matching condition
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providing preservation of the accompanying chiral symmetry SU(8)L × SU(8)R
at all scales involved. In contrast to a common point of view, we require that
states composed from the left-handed and right-handed preons with their own
metacolors, SO(3)LMC×SO(3)RMC, have to satisfy AM condition separately, though
their triangle anomalies may compensate each other. The point is, however, this
SU(8)MF theory emerges as the vectorlike theory with respect both to preons and
composites. As a consequence, while preons are left massless being protected by
their metacolors, all L-preon and R-preon composites being metacolor singlets will
pair up and, therefore, acquire superheavy Dirac masses. It is rather clear that such
a theory is meaningless unless the L-R symmetry is partially broken that seems
to be a crucial point in our model. In this connection, the natural mechanisms
for spontaneous L-R symmetry breaking have been proposed according to which
some R-preons, in contrast to L-preons, may be condensed or such asymmetry may
be caused by the properly arranged scalar field potential. As result, an initially
emerged vectorlike SU(8) theory reduces down to the conventional SU(5) GUT
with an extra local family symmetry SU(3)F and three standard generations of
quarks and leptons. Though the tiny radius of compositeness for universal preons
composing both quarks and leptons makes it impossible to immediately confirm
their composite nature, the theory necessarily predicts a few special SU(5)×SU(3)F
multiplets of composite fermions located at the scales from O(1) TeV up to the
Planck mass scale that may appear of actual experimental interest. Some of them
may be directly observed, the others populate the SU(5) GUT desert. Due to their
mixing with ordinary quark-lepton families there may be expected some violation
of unitarity in the mass matrices for leptons and down quarks depending on the
interplay between the compositeness scale ΛMC and scale of the family symmetry
SU(3)F.

For the reasons of simplicity, we have not considered here boson composites
which could appear as the effective scalar or vector fields in the theory. Generally,
they will become very heavy (with masses of the order of the compositeness scale
ΛMC) unless their masses are specially protected by the low-scale supersymmetry.
The point is, however, that some massless composite vector fields could nonethe-
less appear in a theory as the Goldstone bosons related to spontaneous violation
of Lorentz invariance through the multi-preon interactions similar to those given
in the section 3.5 (3.22). In principle, one could start with a global metaflavor
symmetry SU(N)MF which is then converted into the local one through the con-
tact multi-preon interactions [11] or some nonlinear constraint put on the preon
currents (see in this connection [23] and the later works [24]). If so, the quarks
and leptons, on the one hand, and the gauge fields (photons, weak bosons, gluons
etc.), on the other, could be composed at the same order distances determined
by the preon confinement scale ΛMC. In other words, there may be a lower limit
to the division of matter beyond which one can not go. Indeed, a conventional
division of matter from atoms to quarks is naturally related to the fact that mat-
ter is successively divided, whereas the mediator gauge fields (photons, gluons,
gravitons etc.) are left intact. However, situation may be drastically changed if
these spontaneously emerging gauge fields become composite as well. We will
address this and other related questions elsewhere.
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Abstract. The implications of the discovery of a Higgs boson at the LHC with a mass of
125 GeV are summarised in the context of the Standard Model of particle physics and
in new physics scenarios beyond it, taking the example of the minimal supersymmetric
Standard Model extension, the MSSM. The perspectives for Higgs and new physics searches
at the next LHC upgrades as well as at future hadron and lepton colliders are then briefly
summarized.

Povzetek. Avtor povzame posledice odkritja higgsovega bozona z maso 125 GeV na
pospeševalniku LHC v kontekstu standardnega modela osnovnih delcev in scenarijev
možne nove fizike onkraj tega modela. Kot primer vzame minimalno supersimetrično
razširitev standardnega modela znano kot MSSM. Pregleda obete za iskanje znakov nove
fizike v naslednji nadgradnji LHC in na bodočih leptonskih in hadronskih pospeševalnikih.

Keywords: Higgs boson, new physics scenarios, supersymmetry, MSSM

4.1 Introduction

The ATLAS and CMS historical discovery of a particle with a mass of 125 GeV [1]
and properties that are compatible with those of a scalar Higgs boson [2,3] has
far reaching consequences not only for the Standard Model (SM) but also for new
physics models beyond it. In the SM, electroweak symmetry breaking is achieved
spontaneously via the Brout–Englert–Higgs mechanism [2], wherein the neutral
component of an isodoublet scalar field acquires a non–zero vacuum expectation
value v. This gives rise to nonzero masses for the fermions and the electroweak
gauge bosons while preserving the SU(2)×U(1) gauge symmetry. One of the four
degrees of freedom of the original isodoublet field, corresponds to a physical
particle [3]: a scalar boson with JPC = 0++ quantum numbers under parity and
charge conjugation. The couplings of the Higgs boson to the fermions and gauge
bosons are related to the masses of these particles and are thus decided by the
symmetry breaking mechanism. In contrast, the Higgs mass itselfMH, although
expected to be in the vicinity of the weak scale v≈250 GeV, is undetermined. Let

? abdelhka.djouadi@th.u-psud.fr
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us summarise the known information on this parameter before the start of the
LHC.

A direct information was the lower limit MH
>
∼ 114 GeV at 95% confidence

level (CL) established at LEP2 [4]. Furthermore, a global fit of the electroweak
precision data to which the Higgs boson contributes, yields the valueMH = 92+34−26

GeV, corresponding to a 95% CL upper limit of MH
<
∼ 160 GeV [4]. From the

theoretical side, the presence of this new weakly coupled degree of freedom is
a crucial ingredient for a unitary electroweak theory. Indeed, the SM without
the Higgs particle leads to scattering amplitudes of the W/Z bosons that grow
with the square of the center of mass energy and perturbative unitarity would
be lost at energies above the TeV scale. In fact, even in the presence of a Higgs
boson, theW/Z bosons could interact very strongly with each other and, imposing
the unitarity requirement leads to the important mass boundMH

<
∼ 700 GeV [5],

implying that the particle is kinematically accessible at the LHC.
Another theoretical constraint emerges from the fact that the Higgs self–

coupling, λ ∝ M2
H, evolves with energy and at some stage, becomes very large

and even infinite and the theory completely looses its predictability. If the energy
scale up to which the couplings remains finite is of the order of MH itself, one
should have MH

<
∼ 650 GeV [6]. On the other hand, for small values of λ and

hence MH, the quantum corrections tend to drive the self–coupling to negative
values and completely destabilize the scalar Higgs potential to the point where the
minimum is not stable anymore [6]. Requiring λ ≥ 0, up to the TeV scale implies
thatMH

>
∼ 70 GeV. If the SM is to be extended to the Planck scale MP ∼ 1018 GeV,

the requirements on λ from finiteness and positivity constrain the Higgs mass to
lie in the range 130 GeV <∼ MH

<
∼ 180 GeV [6]. This narrow margin is close to the

one obtained from the direct and indirect experimental constraints.
The discovery of the Higgs particle with a mass of 125 GeV, a value that makes

the SM perturbative, unitary and extrapolable to the highest possible scales, is
therefore a consecration of the model and crowns its past success in describing all
experimental data available. In particular, the average mass value measured by
the ATLAS and CMS teams, MH=125.1± 0.24 GeV [7], is remarkably close to the
best–fit of the precision data which should be considered as a great achievement
and a triumph for the SM. In addition, a recent analysis that includes the state-of-
the-art quantum corrections [8] gives for the condition of absolute stability of the
electroweak vacuum, λ(MP) ≥ 0, the bound MH

>
∼ 129 GeV for the present value

of the top quark mass and the strong coupling constant,mexp
t = 173.2± 0.9 GeV

and αs(MZ) = 0.1184 ± 0.0007 [4]. Allowing for a 2σ variation of mexp
t , one

obtainsMH≥125.6 GeV that is close to the measuredMH value [7]. In fact, for an
unambiguous and well-defined determination of the top mass, one should rather
use the total cross section for top pair production at hadron colliders which can
unambiguously be defined theoretically; this mass has a larger error, ∆mt≈3 GeV,
which allows more easily absolute stability of the SM vacuum up toMP [9].

Nevertheless, the SM is far from being perfect in many respects. It does not
explain the proliferation of fermions and the large hierarchy in their mass spectra
and does not say much about the small neutrino masses. The SM does not unify
in a satisfactory way the electromagnetic, weak and strong forces, as one has
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three different symmetry groups with three coupling constants which shortly fail
to meet at a common value during their evolution with the energy scale; it also
ignores the fourth force, gravitation. Furthermore, it does not contain a particle
that could account for the cosmological dark matter and fails to explain the baryon
asymmetry in the Universe.

However, the main problem that calls for beyond the SM is related to the
special status of the Higgs boson which, contrary to fermions and gauge bosons
has a mass that cannot be protected against quantum corrections. Indeed, these
are quadratic in the new physics scale which serves as a cut–off and hence,
tend to drive MH to very large values, ultimately to MP, while we need MH =

O(100 GeV). Thus, the SM cannot be extrapolated beyond O(1 TeV) where some
new physics should emerge. This is the reason why we expect something new to
manifest itself at the LHC.

There are three avenues for the many new physics scenarios beyond the SM.
There are first theories with extra space–time dimensions that emerge at the TeV
scale (the cut–off is then not so high) and, second, composite models inspired from
strong interactions also at the TeV scale (and thus the Higgs is not a fundamental
spin–zero particle). Some versions of these scenarios do not incorporate any Higgs
particle in their spectrum and are thus ruled out by the Higgs discovery. However,
the option that emerges in the most natural way is Supersymmetry (SUSY) [10] as
it solves most of the SM problems discussed above. In particular, SUSY protects
MH as the quadratically divergent radiative corrections from standard particles
are exactly compensated by the contributions of their supersymmetric partners.
These new particles should not be much heavier than 1 TeV not to spoil this
compensation [11] and, thus, they should be produced at the LHC.

The Higgs discovery is very important for SUSY and, in particular, for its
simplest low energy manifestation, the minimal supersymmetric SM (MSSM) that
indeed predicts a light Higgs state. In the MSSM, two Higgs doublet fields Hu and
Hd are required, leading to an extended Higgs consisting of five Higgs bosons,
two CP–even h and H, a CP–odd A and two charged H± states [12]. Nevertheless,
only two parameters are needed to describe the Higgs sector at tree–level: one
Higgs mass, which is generally taken to be that of the pseudoscalar boson MA,
and the ratio of vacuum expectation values of the two Higgs fields, tanβ = vd/vu,
expected to lie in the range 1<∼ tanβ<∼ 60. The masses of the CP–even h,H and the
chargedH± states, as well as the mixing angle α in the CP–even sector are uniquely
defined in terms of these two inputs at tree-level, but this nice property is spoiled
at higher orders [13]. ForMA�MZ, one is in the so–called decoupling regime in
which the h state is light and has almost exactly the SM–Higgs couplings, while the
other CP–even H and the charged H± bosons become heavy, MH≈MH± ≈MA,
and decouple from the massive gauge bosons. In this regime, the MSSM Higgs
sector thus looks almost exactly as the one of the SM with its unique Higgs boson.

Nevertheless, contrary to the SM Higgs boson, the lightest MSSM CP–even h
mass is bounded from above and, depending on the SUSY parameters that enter
the important quantum corrections, is restricted to Mmax

h
<
∼ 130 GeV [13] if one

assumes a SUSY breaking scale that is not too high, MS
<
∼O (1 TeV), in order to

avoid too much fine-tuning in the model. Hence, the requirement that the MSSM
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h boson coincides with the one observed at the LHC, i.e. with Mh ≈ 125 GeV and
almost SM–like couplings as the LHC data seem to indicate, would place very
strong constraints on the MSSM parameters, in particular the SUSY–breaking scale
MS. This comes in addition to the LHC limits obtained from the search of the
heavier Higgs states and the superparticles.

In this talk, the implications of the discovery of the Higgs boson at the LHC
and the measurement of its properties will be summarised and the prospects for
the searches of new physics, in particular in the SUSY context, in the future will be
discussed.

4.2 Implications: Standard Model and beyond

In many respects, the Higgs particle was born under a very lucky star as the mass
value of ≈ 125 GeV allows to produce it at the LHC in many redundant channels
and to detect it in a variety of decay modes. This allows detailed studies of the
Higgs properties.

4.2.1 Higgs production and decay

We start by summarizing the production and decay at the LHC of a light SM–like
Higgs particle, which should correspond to the lightest MSSM h boson in the
decoupling regime. First, for MH ≈ 125 GeV, the Higgs mainly decays [14] into
bb̄ pairs but the decays into WW∗ and ZZ∗ final states, before allowing the gauge
bosons to decay leptonicallyW→`ν and Z→`` (`=e, µ), are also significant. The
H→τ+τ− channel (as well as the gg and cc̄ decays that are not detectable at the
LHC) is also of significance, while the clean loop induced H→ γγ mode can be
easily detected albeit its small rates. The very rare H→ Zγ and even H→ µ+µ−

channels should be accessible at the LHC but only with a much larger data sample.
On the other hand, many Higgs production processes have significant cross

sections [15–17]. While the by far dominant gluon fusion mechanism gg→ H (ggF)
has extremely large rates (≈20 pb at

√
s=7–8 TeV), the subleading channels, i.e.

the vector boson fusion (VBF) qq→ Hqq and the Higgs–strahlung (HV) qq̄→ HV

with V = W,Z mechanisms, have cross sections which should allow for Higgs
studies of the already at

√
s >∼ 7 TeV with the ≈ 25 fb−1 data collected by each

experiment. The associated process pp→ tt̄H (ttH) would require higher energy
and luminosity.

This pattern already allows the ATLAS and CMS experiments to observe
the Higgs boson in several channels and to measure some of its couplings in a
reasonably accurate way. The channels that have been searched are H→ZZ∗→
4`±, H→WW∗→2`2ν,H→γγ where the Higgs is mainly produced in ggF with
subleading contributions from Hjj in the VBF process, H→ ττ where the Higgs
is produced in association with one (in ggF) and two (in VBF) jets, and finally
H → bb̄ with the Higgs produced in the HV process. One can ignore for the
moment the low sensitivity H→µµ and H→Zγ channels.

A convenient way to scrutinize the couplings of the produced H boson is to
look at their deviation from the SM expectation. One then considers for a given
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search channel the signal strength modifier µwhich for the H→XX decay mode
measures the deviation compared to the SM expectation of the Higgs production
cross section times decay branching fraction µXX. ATLAS and CMS have provided
the signal strengths for the various final states with a luminosity of ≈ 5 fb−1 for
the 2011 run at

√
s = 7 TeV and ≈ 20 fb−1 for the 2012 run at

√
s = 8 TeV. The

constraints given by the two collaborations, when combined, lead to a global
signal strength µATLAS

tot = 1.18± 0.15 and µCMS
tot = 1.00± 0.14 [7]. The global value

being very close to unity implies that the observed Higgs is SM–like.
Hence, already with the rather limited statistics at hand, the accuracy of the

ATLAS and CMS measurements is reaching the 15% level. This is at the same
time impressive and worrisome. Indeed, the main Higgs production channel is
the top and bottom quark loop mediated gluon fusion mechanism and, at

√
s=7

or 8 TeV, the three other mechanisms contribute at a total level below 15%. The
majority of the signal events observed at LHC, in particular in the search channels
H→ γγ,H→ ZZ∗ → 4`,H→WW∗ → 2`2ν and to some extent H→ ττ, thus
come from the ggF mechanism which is known to be affected by large theoretical
uncertainties.

Indeed, although σ(gg → H) is known up next–to–next–to–leading order
(NNLO) in perturbative QCD (and at least at NLO for the electroweak interaction)
[15,16], there is a significant residual scale dependence which points to the possi-
bility that still higher order contributions cannot be totally excluded. In addition,
as the process is of O(α2s) at LO and is initiated by gluons, there are sizable uncer-
tainties due to the gluon parton distribution function (PDF) and the value of the
coupling αs. A third source of theoretical uncertainties, the use of an effective field
theory (EFT) approach to calculate the radiative corrections beyond NLO should
also be considered [15]. In addition, large uncertainties arise when σ(gg→H) is
broken into the jet categories H+0j,H+1j and H+2j [18]. In total, the combined
theoretical uncertainty is estimated to be ∆th ≈ ±15% [16] and would increase
to ∆th≈ ±20% if the EFT uncertainty is also included. The a priori cleaner VBF
process will be contaminated by the gg→H+2j mode making the total error in
the H+jj “VBF” sample also rather large [18].

Hence, the theoretical uncertainty is already at the level of the accuracy of the
cross section measured by the ATLAS and CMS collaborations. Another drawback
of the analyses is that they involve strong theoretical assumptions on the total
Higgs width since some contributing decay channels not accessible at the LHC are
assumed to be SM–like and possible invisible Higgs decays in scenarios beyond
the SM do not to occur.

In Ref. [17], following earlier work [19] it has been suggested to consider the
ratio Dp

XX = σp(pp → H → XX)/σp(pp → H → VV) for a specific production
process p and for a given decay channel H→ XXwhen the reference channel H→
VV is used. In these ratios, the cross sections and hence, their significant theoretical
uncertainties will cancel out, leaving out only the ratio of partial decay widths
which are better known. The total decay width which includes contributions from
channels not under control such as possible invisible Higgs decays, do not appear
in the ratios Dp

XX. Some common experimental systematical uncertainties such
as the one from the luminosity measurement and the small uncertainties in the
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Higgs decay branching ratios also cancel out. We are thus left with only with the
statistical and some (non common) systematical errors [17].

The ratiosDXX involve, up to kinematical factors and known radiative correc-
tions, only the ratios |cX|2/ |cV |2 of the Higgs reduced couplings to the particles
X and V compared to the SM expectation, cX ≡ gHXX/gSM

HXX. For the time being,
three independent ratios can be considered: Dγγ, Dττ and Dbb. In order to deter-
mine these ratios, the theoretical uncertainties have to be treated as a bias (and
not as if they were associated with a statistical distribution) and the fit has to be
performed for the two µ extremal values: µi|exp± δµi/µi|th with δµi/µi|th ≈ ±20%
[20].

A large number of analyses of the Higgs couplings from the LHC data have
been performed and in most cases, it is assumed that the couplings of the Higgs
boson to the massiveW,Z gauge bosons are equal to gHZZ = gHWW = cV and the
couplings to all fermions are also the same gHff = cf. However, as for instance
advocated in Ref. [21] to characterize the Higgs particle at the LHC, at least three
independent H couplings should be considered, namely ct, cb and cV . While the
couplings toW,Z, b, τ particles are derived by considering the decays of the Higgs
boson to these particles, the Htt̄ coupling is derived indirectly from σ(gg→H)
and BR(H→γγ), two processes that are generated by triangular loops involving
the top quarks in the SM. One can assume, in a first approximation, that cc = ct
and cτ = cb and possible invisible Higgs decays are absent. In Ref. [21], a three–
dimensional fit of the H couplings was performed in the space [ct, cb, cV ], when
the theory uncertainty is taken as a bias and not as a nuisance. The best-fit value
for the couplings, with the

√
s = 7+8 TeV ATLAS and CMS data turns out to be

ct = 0.89, cb = 1.01 and cV = 1.02, ie very close to the SM values.

4.2.2 Implications of the Higgs couplings measurement

The precise measurements of Higgs couplings allow to draw several important
conclusions.

i) A fourth generation fermions is excluded. Indeed, in addition to the direct LHC
searches that exclude heavier quarksmb ′ ,mt ′<∼ 600 GeV [23], strong constraints
can be also obtained from the loop induced Higgs–gluon and Higgs-photon
vertices in which any heavy particle coupling to the Higgs proportionally to
its mass will contribute. For instance the additional 4th generation t ′ and b ′

contributions increase σ(gg → H) by a factor of ≈ 9 at LO but large O(GFm2f ′)
electroweak corrections should be considered. It has been shown [23] that with a
fourth family, the Higgs signal would have not been observable and the obtained
Higgs results unambiguously rule out this possibility.

ii) The invisible Higgs decay width should be small. Invisible decays would affect
the properties of the observed Higgs boson and could be constrained if the total
decay width is determined. But for a 125 GeV Higgs, Γ tot

H = 4 MeV, is too small
to be resolved experimentally. Nevertheless, in pp → VV → 4f, a large fraction
of the Higgs cross section lies in the high–mass tail [24] allowing to to put loose
constrains Γ tot

H /Γ
SM
H ≈ 5–10 [25]. The invisible Higgs decay width Γ inv

H can be better
constrained indirectly by a fit of the Higgs couplings and in particular with the
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signal strength in the H→ZZ process: µZZ∝Γ(H→ZZ)/Γ tot
H with Γ tot

H =Γ inv
H +Γ SM

H ;
one obtains Γ inv

H /Γ SM
H
<
∼ 50% at 95% CL with the assumption cf = cV = 1 [20].

A more model independent approach would be to perform direct searches
for missing transverse energy. These have been conducted in pp → HV with
V→ jj, `` and in VBF, qq → qqET/. leading to BRinv <∼ 50% at 95%CL for SM–like
Higgs couplings [7]. A more promising search for invisible decays is the monojet
channel gg→Hj which has large rates [26]. While the most recent monojet ATLAS
and CMS searches are only sensitive to BRinv ∼ 1, more restrictive results can be
obtained in the future.

The Higgs invisible rate and the dark matter detection rate in direct astro-
physical searches are correlated in Higgs portal models and it turns out that LHC
constraints are competitive [27] with those derived from direct dark matter search
experiments [28].

iii) The spin–parity quantum numbers are those of a standard Higgs. One also needs
to establish that the observed Higgs state is indeed a CP even scalar and hence
with JPC = 0++ quantum numbers. For the spin, the observation of the H → γγ

decay rules out the spin–1 case [29]. The Higgs parity can be probed by studying
kinematical distributions in the H→ ZZ∗ → 4` decay channel and in the VH and
VBF production modes [30] and with the 25 fb−1 data collected so far, ATLAS
and CMS found that the observed Higgs is more compatible with a 0+ state and
the 0− possibility is excluded at the 98%CL [7]. Other useful diagnostics of the
Higgs CP nature that also rely on the tensorial structure of the HVV coupling can
be made in the VBF process [31]. Nevertheless, there is a caveat in the analyses
relying on the HVV couplings: a CP–odd state has no tree–level VV couplings [32].
In fact, a better way to measure the Higgs parity is to study the signal strength
in the H → VV channels and in Ref. [20] it was demonstrated that the observed
Higgs has indeed a large CP component, >∼ 50% at the 95%CL. In fact, the less
unambiguous way to probe the Higgs CP nature would be to look at final states in
which the particle decays hadronically, e.g. pp→ HZ→ bb̄`` [32]. These processes
are nevertheless extremely challenging even at the upgraded LHC.

4.2.3 Implications for Supersymmetry

We turn now to the implications of the LHC Higgs results for the MSSM Higgs
sector and first make a remark on the Higgs masses and couplings, which at tree–
level depend only onMA and tanβ, when the important radiative corrections are
included. In this case many parameters such as the masses of the third generation
squarksmt̃i ,mb̃i and their trilinear couplings At, Ab enterMh andMH through
quantum corrections. These are introduced by a general 2 × 2 matrix ∆M2

ij but
the leading one is controlled by the top Yukawa coupling and is proportional to
m4t , logMS with MS =

√
mt̃1mt̃2 the SUSY–breaking scale and the stop mixing

parameter Xt [13]. The maximal value Mmax
h is then obtained for a decoupling

regimeMA∼ O(TeV), large tanβ, largeMS that implies heavy stops and maximal
mixing Xt =

√
6MS [33]. If the parameters are optimized as above, the maximal

Mh value reaches the level of 130 GeV.
It was pointed out in Refs. [34,35,21] that when the measured valueMh=125

GeV is taken into account, the MSSM Higgs sector with only the largely dominant
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correction discussed above, can be again described with only the two parameters
tanβ andMA; in other words, the loop corrections are fixed by the value ofMh.
This observation leads to a rather simple but accurate parametrisation of the
MSSM Higgs sector, called hMSSM.

The reduced couplings of the CP–even h state (as is the case for the heavier
H) depend in principle only on the angles β and α (and hence tanβ and MA),
c0V =sin(β−α), c0t=cosα/ sinβ, c0b=−sinα/ cosβ, while the couplings of A and
H± (as well as H in the decoupling regime) to gauge boson are zero and those to
fermions depend only on β: for tanβ > 1, they are enhanced (∝ tanβ) for b, τ and
suppressed (∝ 1/ tanβ) for tops.

i) Implications from the Higgs mass value: In the so–called “phenomenological
MSSM” (pMSSM) [37] in which the model involves only 22 free parameters, a large
scan has been performed [36] using the RGE program Suspect [38] that calculates
the maximalMh value and the result confronted to the measured massMh ∼ 125

GeV. ForMS
<
∼ 1 TeV, only scenarios with Xt/MS values close to maximal mixing

Xt/MS ≈
√
6 survive. The no–mixing scenario Xt ≈ 0 is ruled out for MS

<
∼ 3

TeV, while the typical mixing scenario, Xt ≈MS, needs large MS and moderate
to large tanβ values. In constrained MSSM scenarios (cMSSM) such the minimal
supergravity (mSUGRA) model and the gauge and anomaly mediated SUSY–
breaking scenarios, GMSB and AMSB, only a few basic inputs are needed and
the mixing parameter cannot take arbitrary values. A scan in these models with
MS

<
∼ 3 TeV not to allow for too much fine-tuning [11] leadsMmax

h
<
∼ 122 GeV in

AMSB and GMSB thus disfavoring these scenarios while one has Mmax
h =128 GeV

in mSUGRA. In high–scale SUSY scenarios,MS � 1TeV, the radiative corrections
are very large and need to be resumed [39]. For low tanβ values, large scales, at
leastMS

>
∼ 10

4 GeV, are required to obtainMh = 125GeV and even higher in most
cases

ii) Implications from the production rates of the observed state. Besides the correc-
tions to the Higgs masses and couplings discussed above, there are also direct
corrections to the Higgs couplings and the most ones are those affecting the hbb̄
vertex [40] and the stop loop contributions to the gg→h production and h→γγ
decay rates [41]. A fit of the ct, cb and cV couplings shows that the latter are small
[20]. In turn, ignoring the direct corrections and using the input Mh≈ 125 GeV,
one can make a fit in the plane [tanβ,MA]. The best-fit point is tanβ = 1 and
MA=550 GeV which implies a large SUSY scale,MS = O(100) TeV. In all, cases
one also hasMA

>
∼ 200–350 GeV.

iii) Implications from heavy Higgs boson searches. At high tanβ values, the strong
enhancement of the b, τ couplings makes that the Φ = H/A states decay domi-
nantly into τ+τ− and bb̄ pairs and are mainly produced in gg→Φ fusion with
the b–loop included and associated production with b–quarks, gg/qq̄→bb̄+Φ
[42]. The most powerful LHC search channel is thus pp→gg+bb̄→Φ→ τ+τ−.
For the charged Higgs, the dominant mode is H±→τνwith the H± light enough
to be produced in top decays t→H+b→τνb. In the low tanβ regime, tanβ <∼ 3,
the phenomenology of the A,H,H± states is richer [34]. For the production, only
gg→ Φ process with the dominant t and sub-dominant b contributions provides
large rates. The H/A/H± decay pattern is in turn rather involved. Above the
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tt̄ (tb) threshold H/A→ tt̄ and H+ → tb̄ are by far dominant. Below threshold,
the H→WW,ZZ decays are significant. For 2Mh

<
∼ MH

<
∼ 2mt (MA

>
∼ Mh +MZ),

H → hh (A → hZ) is the dominant H(A) decay mode. But the A → ττ channel
is still important with rates >

∼ 5%. In the case of H±, the channel H+ →Wh is
important forMH±

<
∼ 250 GeV, similarly to the A→hZ case.

In Ref. [34] an analysis of these channels has been performed using current
information given by ATLAS and CMS in the context of the SM, MSSM [43] or
other scenarios. The outcome is impressive. The ATLAS and CMS H/A→ τ+τ−

constraint is extremely restrictive andMA
<
∼ 250 GeV, it excludes almost the entire

intermediate and high tanβ regimes. The constraint is less effective for a heavierA
but even forMA ≈ 400GeV the high tanβ >∼ 10 region is excluded and one is even
sensitive toMA ≈ 800 GeV for tanβ >∼ 50. For H±, almost the entireMH±

<
∼ 160

GeV region is excluded by the process t → H+b with the decay H+ → τν. The
other channels, in particular H→ VV and H/A→ tt̄, are very constraining as they
cover the entire low tanβ area that was previously excluded by the LEP2 bound
up toMA ≈ 500 GeV. Even A→ hZ and H→ hhwould be visible at the current
LHC in small portions of the parameter space.

4.3 Perspectives for Higgs and New Physics

The last few years were extremely rich and exciting for particle physics. With
the historical discovery of a Higgs boson by the LHC collaborations ATLAS
and CMS, crowned by a Nobel prize in fall 2013, and the first probe of its basic
properties, they witnessed a giant step in the unraveling of the mechanism that
breaks the electroweak symmetry and generates the fundamental particle masses.
They promoted the SM as the appropriate theory, up to at least the Fermi energy
scale, to describe three of Nature’s interactions, the electromagnetic, weak and
strong forces. However, it is clear that these few years have also led to some
frustration as no signal of physics beyond the SM has emerged from the LHC
data. The hope of observing some signs of the new physics models that were
put forward to address the hierarchy problem, that is deeply rooted in the Higgs
mechanism, with Supersymmetric theories being the most attractive ones, did not
materialize.

The Higgs discovery and the non–observation of new particles has neverthe-
less far reaching consequences for supersymmetric theories and, in particular, for
their simplest low energy formulation, the MSSM. The mass of approximately
125 GeV of the observed Higgs boson implies that the scale of SUSY–breaking
is rather high, at least O(TeV). This is backed up by the limits on the masses of
strongly interacting SUSY particles set by the ATLAS and CMS searches, which in
most cases exceed the TeV range. This implies that if SUSY is indeed behind the
stabilization of the Higgs mass against very high scales that enter via quantum
corrections, it is either fine–tuned at the permille level at least or its low energy
manifestation is more complicated than expected.

The production and decay rates of the observed Higgs particles, as well as
its spin and parity quantum numbers, as measured by ATLAS and CMS with the
≈ 25 fb−1 data collected at

√
s=7+8 TeV, indicate that its couplings to fermions
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and gauge bosons are almost SM–like. In the context of the MSSM, this implies
that we are close to the decoupling regime and this particle is the lightest h boson,
while the other H/A/H± states must be heavier than approximately the Fermi
scale. This last feature is also backed up by LHC direct searches of these heavier
Higgs states.

This drives up to the question that is now very often asked: what to do next?
The answer is, for me, obvious: we are only in the beginning of a new era. Indeed,
it was expected since a long time that the probing of the electroweak symmetry
breaking mechanism will be at least a two chapters story. The first one is the
search and the observation of a Higgs–like particle that will confirm the scenario
of the SM and most of its extensions, that is, a spontaneous symmetry breaking
by a scalar field that develops a non–zero vev. This long chapter has just been
closed by the ATLAS and CMS collaborations with the spectacular observation of a
Higgs boson. This observation opens a second and equally important chapter: the
precise determination of the Higgs profile and the unraveling of the electroweak
symmetry breaking mechanism itself.

A more accurate measurement of the Higgs couplings to fermions and gauge
bosons will be mandatory to establish the exact nature of the mechanism and,
eventually, to pin down effects of new physics if additional ingredients beyond
those of the SM are involved. This is particularly true in weakly interacting theo-
ries such as SUSY in which the quantum effects are expected to be small. These
measurements could be performed at the upgraded LHC with an energy close to√
s=14 TeV, in particular if a very high luminosity, a few ab−1, is achieved [43,44].

At this upgrade, besides improving the measurements performed so far, rare
but important channels such as associated Higgs production with top quarks,
pp→tt̄H, and Higgs decays into µ+µ− and Zγ states could be probed. Above all,
a determination of the self–Higgs coupling could be made by searching for double
Higgs production e.g. in the gluon fusion channel gg→ HH [45]; this would be a
first step towards the reconstruction of the scalar potential that is responsible of
electroweak symmetry breaking. This measurement would be difficult at the LHC
even with high–luminosity but a proton collider with

√
s=30 to 100 TeV could do

the job [44].
In a less near future, a high–energy lepton collider, which is nowadays dis-

cussed in various options (ILC, TLEP, CLIC, µ–collider) would lead to a more
accurate probing of the Higgs properties [46], promoting the scalar sector to
the very high–precision level of the gauge and fermion sectors achieved by the
LEP and SLC colliders in the 1990s [4]. At electron-positroncolliders, the process
e+e− → HZ, just looking at the recoiling Z boson allows to measure the Higgs
mass, the CP parity and the absolute HZZ coupling, allowing to derive the total
decay width Γ tot

H . One can then measure precisely, already at
√
s ≈ 250 GeV where

σ(e+e− → HZ) is maximal, the absolute Higgs couplings to gauge bosons and
light fermions from the decay branching ratios. The important couplings to top
quarks and the Higgs self–couplings can measured at the 10% level in the higher-
order processes e+e− → tt̄H and e+e− → HHZ at energies of at least 500 GeV
with a high–luminosity.
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Besides the high precision study of the already observed Higgs, one should
also continue to search for the heavy states that are predicted by SUSY, not only the
superparticles but also the heavier Higgs bosons. The energy upgrade to ≈14 TeV
(and eventually beyond) and the planed order of magnitude (or more) increase
in luminosity will allow to probe much higher mass scales than presently. In fact,
more generally, one should continue to search for any sign of new physics or
new particles, new gauge bosons and fermions, as predicted in most of the SM
extensions.

In conclusion, it is not yet time to give up on SUSY and more generally on
New Physics but, rather, to work harder to be fully prepared for the more precise
and larger data set that will be delivered by the upgraded LHC. It will be soon
enough to “philosophize” then as the physics landscape will become more clear.
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5 ∆F = 2 in Neutral Mesons From a Gauged SU(3)F
Family Symmetry
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U. P. ”Adolfo López Mateos”. C. P. 07738, Ciudad de México, México

Abstract. Within a broken local gauge vector-like SU(3)F family symmetry, we study some
∆F = 2 processes induced by the tree level exchange of the new massive horizontal gauge
bosons, which introduce flavor-changing couplings. We find out that some of the dangerous
FCNC processes, like for instance; Ko − K̄o , Do − D̄o mixing, may be properly suppressed
if the first stage of the Spontaneous Symmetry Breaking (SSB), SU(3)F → SU(2)F, occurs at
a high scale Λ ∼ 1011 GeV , with the SU(2)F gauge bosons acting on the light families. We
provide a parameter space region where this framework can accommodate the hierarchical
spectrum of quark masses and mixing and simultaneously suppress properly the contri-
bution to Ko − K̄o mixing as well as the OLL and ORR effective operators for the ∆C = 2

processes.

Povzetek. Avtor obravnava procese, pri katerih se družinsko kvantno število spremeni za
2. Uporabi model, v katerem opiše družinsko kvantno število kvarkov in leptonov z grupo
SU3, lokalna umeritvena polja grupe SU3 pa poskrbijo za interakcijo med fermioni, ki nosijo
ustrezna kvantna števila. Masivni umeritveni bozoni dopuščajo sicer nevtralne prehode
(FCNC) med fermioni iste družine, vendar so taki prehodi, kot primer navaja mešanje
Ko − K̄o ter Do − D̄o, dovolj malo verjetni, če le pride do spontane zlomitve družinske
simetrije SU(3)F → SU(2)F pri energijiΛ ∼ 1011GeV . Poišče območje parametrov, v katerem
imajo kvarki opazljive lastnosti.

Keywords: Quark and lepton masses and mixing, Flavor symmetry, ∆F = 2

Processes.
Pacs: 14.60.Pq, 12.15.Ff, 12.60.-i

5.1 Introduction

Flavor physics and rare processes play an important role to test any Beyond
Standard Model(BSM) physics proposal, and hence, it is crucial to explore the
possibility to suppress properly these type of flavor violating processes.

Within the framework of a vector-like gauged SU(3)F family symmetry
model[1,2], we study the contribution to ∆F = 2 processes[3]-[6] in neutral mesons

? E-mail: albino@esfm.ipn.mx
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at tree level exchange diagrams mediated by the gauge bosons with masses of
the order of some TeV’s, corresponding to the lower scale of the SU(3)F family
symmetry breaking.

The reported analysis is performed in a scenario where light fermions obtain
masses from radiative corrections mediated by the massive bosons associated to
the broken SU(3)F family symmetry, while the heavy fermions; top and bottom
quarks and tau lepton become massive from tree level See-saw mechanisms.
Previous theories addressing the problem of quark and lepton masses and mixing
with spontaneously broken SU(3) gauge symmetry of generations include the
ones with chiral local SU(3)H family symmetry as well as other SU(3) family
symmetries. See for instance [7]-[20] and references therein.

5.2 SU(3)F flavor symmetry model

The model is based on the gauge symmetry

G ≡ SU(3)F ⊗ SU(3)C ⊗ SU(2)L ⊗U(1)Y (5.1)

where SU(3)F is a completely vector-like and universal gauged family symme-
try. That is, the corresponding gauge bosons couple equally to Left and Right
Handed ordinary Quarks and Leptons, with gH, gs, g and g′ the corresponding
coupling constants. The content of fermions assumes the standard model quarks
and leptons:

Ψoq = (3, 3, 2,
1

3
)L , Ψol = (3, 1, 2,−1)L

Ψou = (3, 3, 1,
4

3
)R , Ψod(3, 3, 1,−

2

3
)R , Ψoe = (3, 1, 1,−2)R

where the last entry is the hypercharge Y, with the electric charge defined by
Q = T3L +

1
2
Y.

The model includes two types of extra fermions:

• Right Handed Neutrinos: ΨoνR = (3, 1, 1, 0)R ,
introduced to cancel anomalies [21],

• and a new family of SU(2)L weak singlet vector-like fermions:

UoL, U
o
R = (1, 3, 1,

4

3
) , DoL, D

o
R = (1, 3, 1,−

2

3
) (5.2)

Vector Like electrons: EoL, E
o
R = (1, 1, 1,−2)

and

New Sterile Neutrinos: NoL, N
o
R = (1, 1, 1, 0) ,
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The particle content and gauge symmetry assignments are summarized in
Table 5.1. Notice that all SU(3)F non-singlet fields transform as the fundamental
representation under the SU(3)F symmetry.

SU(3)F SU(3)C SU(2)L U(1)Y

ψoq 3 3 2 1
3

ψouR 3 3 1 4
3

ψodR 3 3 1 - 2
3

ψol 3 1 2 -1
ψoeR 3 1 1 -2
ψoνR 3 1 1 0

Φu 3 1 2 -1
Φd 3 1 2 +1
ηi 3 1 1 0

UoL,R 1 3 1 4
3

DoL,R 1 3 1 - 2
3

EoL,R 1 1 1 -2
NoL,R 1 1 1 0

Table 5.1. Particle content and charges under the gauge symmetry

5.3 SU(3)F family symmetry breaking

To implement the SSB of SU(3)F, we introduce the flavon scalar fields: ηi, i = 2, 3,

ηi = (3, 1, 1, 0) =

ηoi1ηoi2
ηoi3

 , i = 2, 3

with the ”Vacuum ExpectationValues” (VEV’s):

〈η2〉T = (0,Λ2, 0) , 〈η3〉T = (0, 0,Λ3) . (5.3)

It is worth to mention that these two scalars in the fundamental representation is
the minimal set of scalars to break down completely the SU(3)F family symme-
try. The interaction Lagrangian of the SU(3)F gauge bosons to the SM massless
fermions is

iLint,SU(3)F = gH
(
f̄o1 f̄

o
2 f̄
o
3

)
γµ



Zµ
1

2
+

Zµ
2

2
√
3

Y+µ
1√
2

Y+µ
2√
2

Y−µ
1√
2

−
Zµ
1

2
+

Zµ
2

2
√
3

Y+µ
3√
2

Y−µ
2√
2

Y−µ
3√
2

−
Zµ
2√
3




fo1

fo2

fo3
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where gH is the SU(3)F coupling constant, Z1, Z2 and Y±j =
Y1j ∓iY

2
j√

2
, j = 1, 2, 3 are

the eight gauge bosons.
Thus, the contribution to the horizontal gauge boson masses from the VEV’s

in Eq.(5.3) read

• 〈η2〉 :
g2H2

Λ22
2

(Y+1 Y
−
1 + Y+3 Y

−
3 ) +

g2H2
Λ22
4

(Z21 +
Z22
3

− 2Z1
Z2√
3
)

• 〈η3〉 :
g2H3

Λ23
2

(Y+2 Y
−
2 + Y+3 Y

−
3 ) + g

2
H3
Λ23

Z22
3

The ”Spontaneous Symmetry Breaking” (SSB) of SU(3)F occurs in two stages

SU(3)F ×GSM
〈η3〉
−−−→ SU(2)F ?×GSM

〈η2〉
−−−→ GSM

FCNC ?

Λ3: 5 very heavy boson masses (≥ 100 TeV ′s)

Λ2: 3 heavy boson masses (may be a few TeV ′s).

Notice that the hierarchy of scales Λ3 � Λ2 define an ”approximate SU(2) global
symmetry” in the spectrum of SU(2)F gauge boson masses. To suppress properly
the FCNC like, for instance: µ→ eγ , µ→ e e e , Ko− K̄o, andDo− D̄o, it is crucial
to choose properly the SU(2)F symmetry at the lower scale.

Therefore, neglecting tiny contributions from electroweak symmetry breaking, we
obtain the gauge boson mass terms.

M2
2 Y

+
1 Y

−
1 +M2

3 Y
+
2 Y

−
2 + (M2

2 +M
2
3) Y

+
3 Y

−
3 +

1

2
M2
2 Z

2
1

+
1

2

M2
2 + 4M

2
3

3
Z22 −

1

2
(M2

2)
2√
3
Z1 Z2 (5.4)

M2
2 =

g2HΛ
2
2

2
, M2

3 =
g2HΛ

2
3

2
, y ≡ M3

M2
=
Λ3

Λ2
(5.5)

Z1 Z2

Z1 M2
2 −

M22√
3

Z2 −
M22√
3

M22+4M
2
3

3

Table 5.2. Z1 − Z2 mixing mass matrix

Diagonalization of the Z1 − Z2 squared mass matrix yield the eigenvalues
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M2
− =

2

3

(
M2
2 +M

2
3 −

√
(M2

3 −M
2
2)
2 +M2

2M
2
3

)
(5.6)

M2
+ =

2

3

(
M2
2 +M

2
3 +

√
(M2

3 −M
2
2)
2 +M2

2M
2
3

)
(5.7)

and finally

M2
2 Y

+
1 Y

−
1 +M2

3 Y
+
2 Y

−
2 + (M2

2 +M
2
3) Y

+
3 Y

−
3 +M2

−

Z2−
2

+M2
+

Z2+
2
, (5.8)

where (
Z1
Z2

)
=

(
cosφ − sinφ
sinφ cosφ

)(
Z−

Z+

)
(5.9)

cosφ sinφ =

√
3

4

M2
2√

M4
2 +M

2
3(M

2
3 −M

2
2)

Z1 = cosφ Z− − sinφ Z+ , Z2 = sinφ Z− + cosφ Z+ (5.10)

5.4 Electroweak symmetry breaking

For electroweak symmetry breaking we introduction two triplets of SU(2)L Higgs
doublets, namely;

Φu = (3, 1, 2,−1) , Φd = (3, 1, 2,+1) ,

and the VEV?s

Φu〉 =

〈Φu1 〉〈Φu2 〉
〈Φu3 〉

 , 〈Φd〉 =

〈Φd1 〉〈Φd2 〉
〈Φd3 〉

 ,

where

Φui 〉 =
1√
2

(
vui
0

)
, 〈Φdi 〉 =

1√
2

(
0

vdi

)
.

The contributions from 〈Φu〉 and 〈Φd〉 yield theW and Zo gauge boson masses
and mixing with the SU(3)F gauge bosons

g2

4
(v2u + v2d)W

+W− +
(g2 + g′

2
)

8
(v2u + v2d)Z

2
o

+ tiny contribution to the SU(3)F gauge boson masses and mixing with

the gauge boson Zo ,



i
i

“proc17” — 2017/12/11 — 19:44 — page 61 — #75 i
i

i
i

i
i

5 ∆F = 2 in Neutral Mesons From a Gauged SU(3)F Family Symmetry 61

v2u = v21u + v22u + v23u , v2d = v21d + v
2
2d + v

2
3d. So, if we defineMW = 1

2
gv, we may

write v =
√
v2u + v2d ≈ 246 GeV.

5.5 Fermion masses

5.5.1 Dirac See-saw mechanisms

The scalars and fermion content allow the gauge invariant Yukawa couplings

Hu ψoq Φ
u UoR + hiu ψ

o
uR ηi U

o
L + MU U

o
L U

o
R + h.c (5.11)

Hd ψoq Φ
d DoR + hid ψ

o
dR ηi D

o
L + MD D

o
L D

o
R + h.c (5.12)

He ψ
o
l Φ

d EoR + hie ψ
o
eR ηi E

o
L + ME E

o
L E

o
R + h.c (5.13)

Hν ψ
o
l Φ

u NoR + hiν ψ
o
νR ηi N

o
L + MND N

o
L N

o
R + h.c (5.14)

hL ψ
o
l Φ

u (NoL)
c + mL N

o
L (N

o
L)
c + h.c (5.15)

hiR ψ
o
νR ηi (N

o
R)
c + mR N

o
R (NoR)

c + h.c (5.16)

MU ,MD ,ME ,MND ,mL ,mR are free mass parameters andHu,Hd,He,Hν, hiu,
hid, hie, hiν, hL, hiR are Yukawa coupling constants. When the involved scalar
fields acquire VEV’s, we get in the gauge basis ψoL,R

T = (eo, µo, τo, Eo)L,R, the
mass terms ψ̄oLMoψoR + h.c, where

Mo =


0 0 0 h v1
0 0 0 h v2
0 0 0 h v3
0 h2Λ2 h3Λ3 M

 ≡

0 0 0 a1
0 0 0 a2
0 0 0 a3
0 b2 b3 M

 . (5.17)

Mo is diagonalized by applying a biunitary transformation ψoL,R = VoL,R χL,R.
Using the possible parametrizations for the orthogonal matrices VoL and VoR are
written explicitly in the Appendix A, Using one obtains

VoL
TMo VoR = Diag(0, 0,−λ3, λ4) (5.18)

VoL
TMoMoT VoL = VoR

TMoTMo VoR = Diag(0, 0, λ23, λ
2
4) . (5.19)

where λ3 and λ4 are the nonzero eigenvalues defined in Eqs.(5.56-5.58), λ4 being
the fourth heavy fermion mass, and λ3 of the order of the top, bottom and tau



i
i

“proc17” — 2017/12/11 — 19:44 — page 62 — #76 i
i

i
i

i
i

62 A. Hernandez-Galeana

mass for u, d and e fermions, respectively. We see from Eqs.(5.18,5.19) that from
tree level the See-saw mechanism yields two massless eigenvalues associated to
the light fermions:

It is worth to mention that the Yukawa couplings in Eqs.5.11–5.16 are invariant
under the global symmetryU(1)B×U(1)Y×U(1)α×U(1)β, where B is the baryon
number, Y is the hypercharge, and U(1)α, U(1)β are two additional symmetries,
and one of them could play the role of a Peceei-Quinn symmetry to address the
strong CP problem[22].

5.6 One loop contribution to fermion masses

After tree level contributions the first two generations remain massless. Therefore,
in this scenario light fermion masses, including neutrinos, may get small masses
from radiative corrections mediated by the SU(3)F heavy gauge bosons.

The one loop diagram of Fig. 1 gives the generic contribution to the mass term
mij ē

o
iLe

o
jR, where

eojR eokR

Y

Eo
L Eo

R eofL eoiL

M

< ηk > < Φd >

Fig. 5.1. Generic one loop diagram contribution to the mass termmij ē
o
iLe

o
jR

mij = cY
αH

π

∑
k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) , αH ≡

g2H
4π
, (5.20)

MY being the mass of the gauge boson, cY is a factor coupling constant, Eq.(5.3),
mo3 = −λ3 and mo4 = λ4 are the See-saw mass eigenvalues, Eq.(5.18), f(x, y) =
x2

x2−y2
ln x2

y2
, and∑
k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) =

ai bjM

λ24 − λ
2
3

F(MY) , (5.21)

i = 1, 2, 3 , j = 2, 3, and F(MY) ≡ M2
Y

M2
Y
−λ2
4

ln M2
Y

λ2
4

−
M2
Y

M2
Y
−λ2
3

ln M2
Y

λ2
3

. Adding up all

possible the one loop contributions, we get the mass terms ψ̄oLMo
1 ψ

o
R + h.c.,
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Mo
1 =


D11 D12 D13 0

0 D22 D23 0

0 D32 D33 0

0 0 0 0

 αH

π
, (5.22)

D11 =
1

2
(µ22F1 + µ33F2) , D12 = µ12(−

FZ1
4

+
FZ2
12

) , D13 = −µ13(
FZ2
6

+ Fm) ,

D22 = µ22(
FZ1
4

+
FZ2
12

− Fm) +
1

2
µ33F3 , D23 = −µ23(

FZ2
6

− Fm) ,

D32 = −µ32(
FZ2
6

− Fm) , D33 = µ33
FZ2
3

+
1

2
µ22F3 ,

αH =
g2H
4 π

, F1 ≡ F(MY1) , F2 ≡ F(MY2) , F3 ≡ F(MY3)

FZ1 = cos2φF(M−) + sin2φF(M+) , FZ2 = sin2φF(M−) + cos2φF(M+)

Fm =
cosφ sinφ
2
√
3

[ F(M−) − F(M+) ] .

FZ1 , FZ2 are the contributions from the diagrams mediated by the Z1 , Z2 gauge
bosons, Fm comes from the Z1 − Z2 mixing diagrams, withM2,M3,M−,M+ the
horizontal boson masses, Eqs.(5.5-5.7),

µij =
ai bjM

λ24 − λ
2
3

=
ai bj

a b
λ3 cα cβ , (5.23)

with cα = cosα, cβ = cosβ, sα = sinα, sβ = sinβ the mixing angles coming
from the diagonalization ofMo. Therefore, up to one loop corrections the fermion
masses are

ψ̄oLMo ψoR + ψ̄oLM
o
1 ψ

o
R = χ̄LM χR , (5.24)

where ψoL,R = VoL,R χL,R, and M ≡
[
Diag(0, 0,−λ3, λ4) + V

o
L
TMo

1 V
o
R

]
can be

written as:

M =



m11 m12 cβm13 sβm13

m21 m22 cβm23 sβm23

cαm31 cαm32 (−λ3 + cαcβm33) cαsβm33

sαm31 sαm32 sαcβm33 (λ4 + sαsβm33)


, (5.25)
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The explicit expression for themij mass terms depends on the used parametriza-
tion for VoL , VoR .
The diagonalization ofM, Eq.(5.25) gives the physical masses for u and d quarks,
e charged leptons and ν Dirac neutrino masses.
Using a new biunitary transformation

χL,R = V
(1)
L,R ΨL,R; χ̄LM χR = Ψ̄L V

(1)
L

T
M V

(1)
R ΨR,

with ΨL,RT = (f1, f2, f3, F)L,R the mass eigenfields, that is

V
(1)
L

T
MMT V

(1)
L = V

(1)
R

T
MTM V

(1)
R = Diag(m21,m

2
2,m

2
3,M

2
F) , (5.26)

m21 = m2e, m22 = m2µ, m23 = m2τ and M2
F = M2

E for charged leptons. So, the
rotations from massless to mass fermions eigenfields in this scenario reads

ψoL = VoL V
(1)
L ΨL and ψoR = VoR V

(1)
R ΨR (5.27)

5.6.1 Quark Mixing Matrix VCKM

We recall that vector like quarks, Eq.(5.2), are SU(2)L weak singlets, and they
do not couple toW boson in the interaction basis. In this way, the interaction of
L-handed up and down quarks; fouL

T = (uo, co, to)L and fodL
T = (do, so, bo)L, to

theW charged gauge boson is

g√
2
f̄ouLγµf

o
dLW

+µ =

g√
2
Ψ̄uL [(VouL V

(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 γµΨdL W

+µ , (5.28)

Hence, in this scenario the non-unitary VCKM of dimension 4× 4 is identified as

(VCKM)4×4 = [(VouL V
(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 (5.29)

5.7 Numerical results for quark masses and mixing

As an example of the possible spectrum of quark masses and mixing from this
scenario, we consider the following set of parameters at theMZ scale [23]

Using the input values for the horizontal boson masses, Eq.(5.5), and the coupling
constant of the SU(3)F symmetry:

M2 = 6.0TeV , M3 = 1.5× 108 TeV ,
αH

π
= 0.2 , (5.30)

we show in the interaction basis the following tree levelMo
q, and one loopMo

q1

quark mass matrices, and the corresponding mass eigenvalues and mixing:
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u-quarks:

Tree level see-saw mass matrix:

Mo
u =


0 0 0 5573.43

0 0 0 23883.8

0 0 0 397346.

0 −1.931× 108 5.193× 106 2.470× 108

 MeV , (5.31)

the mass matrix up to one loop corrections:

Mo
u1 =


1.42 −220.786 34.6742 0

0 −944.713 148.589 0

0 −91921.3 11631.6 0

0 0 0 0

 MeV (5.32)

the u-quark mass eigenvalues

(mu , mc , mt , MU) = (1.382 , 633.289 , 172968 , 313.606× 106) MeV (5.33)

and the mixing matrices:

VuL = VouL V
(1)
uL:


0.973838 −0.226464 −0.0188217 0.0000144353

−0.227244 −0.970491 −0.080663 0.0000618569

9.34208× 10−7 0.0828299 −0.996563 0.0011792

−2.14837× 10−9 −0.0000343726 0.00118041 0.999999

 (5.34)

VuR = VouR V
(1)
uR:

1. 0.000507791 1.54519× 10−7 0

−7.6088× 10−6 0.0147444 0.787788 −0.61577

0.000507462 −0.999362 0.0316481 0.0165598

−0.0000166153 0.0325336 0.615132 0.787752

 (5.35)

d-quarks:

Mo
d =


0 0 0 0

0 0 0 3102.75

0 0 0 61977.5

0 −9.805× 107 2.837× 106 6.046× 108

 MeV (5.36)

Mo
d1 =


2.82 0 0 0

0 −130.851 10.43 0

0 −7200.83 664.801 0

0 0 0 0

 MeV (5.37)
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the d-quark mass eigenvalues

(md , ms , mb , MD ) = ( 2.82 , 52.087 , 2861.96 , 612.541× 106 ) MeV (5.38)

the mixing matrices:

VdL = VodL V
(1)
dL :

1. 0 0 0

0 0.991883 −0.127155 5.03428× 10−6
0 −0.127155 −0.991883 0.000101762

0 7.94612× 10−6 0.000101576 1.

 (5.39)

VdR = VodR V
(1)
dR: 

1. 0 0 0

0 −0.127762 0.9788 −0.160083

0 0.99148 0.130175 0.00463162

0 −0.0253722 0.158128 0.987093

 (5.40)

and the quark mixing matrix

VCKM =


0.97383 0.2254 0.02889 −1.14× 10−6
−0.22646 0.97314 0.04124 3.54× 10−6
−0.01882 −0.04670 0.99873 −0.00010

1.44× 10−5 8.85× 10−5 −0.00117 1.20× 10−7

 (5.41)

5.8 ∆F = 2 Processes in Neutral Mesons

Here we study the tree level FCNC interactions that contribute to Ko−K̄o,Do−D̄o

mixing via Z1 , Y±1 exchange from the depicted diagram in Fig. 2.

Y

s

d

d

s

K̄o Ko

Fig. 5.2. Generic tree level exchange contribution to Ko − K̄o from the SU(3) horizontal
gauge bosons.

The Z1 , Y±1 gauge bosons have flavor changing couplings in both left- and
right-handed fermions, and then contribute the ∆S = 2 effective operators
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OLL = (d̄LγµsL)(d̄Lγ
µsL) , ORR = (d̄RγµsR)(d̄Rγ

µsR) (5.42)

OLR = (d̄LγµsL)(d̄Rγ
µsR) (5.43)

The SU(3)F couplings to fermions, Eq.5.3, when written in the mass basis
yield the gauge couplings

Lint,Z1 =
gH

2

(
CLZ1 d̄LγµsL + CRZ1 d̄RγµsR

)
Zµ1 (5.44)

Lint,Y1
1
=
gH

2

(
CLY1

1
d̄LγµsL + CRY1

1
d̄RγµsR

)
Y1µ1 (5.45)

Lint,Y2
1
=
gH

2

(
CLY2

1
d̄LγµsL + CRY2

1
d̄RγµsR

)
i Y2µ1 (5.46)

with the coefficients

CLZ1 = L11 L12 − L21 L22 , CRZ1 = R11 R12 − R21 R22

CLY1
1
= L12 L21 + L11 L22 , CRY1

1
= R12 R21 + R11 R22

CLY2
1
= (L12 L21 − L11 L22) , CRY2

1
= (R12 R21 − R11 R22)

(5.47)

where Lij = VL ij and Rij = VR ij. For each gauge boson, the effective four-fermion
hamiltonian at the scale of the gauge boson mass is

HZ1 =
g2H
4M2

Z1

(
C2LZ1 OLL + 2CLZ1CRZ1OLR + C2RZ1 ORR

)
(5.48)

HY1
1
=

g2H
4M2

2

(
C2LY1

1
OLL + 2CLY1

1
CRY1

1
OLR + C2RY1

1
ORR

)
(5.49)

HY2
1
= −

g2H
4M2

2

(
C2LY2

1
OLL + 2CLY2

1
CRY1

1
OLR + C2RY2

1
ORR

)
(5.50)

with MY1 = MY2 = M2. Therefore, the total four-fermion hamiltonian HSU(2) =

HZ1 +HY11 +HY2
1

can be written as

HSU(2) =
g2H
4M2

2

[
(C2LZ1 + C

2
LY1

1
− C2LY2

1
)OLL + (C2RZ1 + C

2
RY1

1
+ C2RY2

1
)ORR

+2(CLZ1CRZ1 + CLY11CRY11 − CLY2
1
CRY2

1
)OLR

]

+
g2H
4

(
1

M2
Z1

−
1

M2
2

)
[
C2LZ1OLL + C

2
RZ1
ORR + 2CLZ1CRZ1OLR)

]
(5.51)
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From the coefficients in Eq.5.47 we get:

C2LZ1 + C
2
LY1

1
− C2LY2

1
= δ2L , C2RZ1 + C

2
RY1

1
− C2RY2

1
= δ2R , ,

CL,Z1 CR,Z1 + CL,Y11 CR,Y11 − CL,Y2
1
CR,Y2

1
= δL δR

+ 2(L11 R21 − L21 R11)(L22 R12 − L12 R22) ,

and finally we can write

HSU(2) =
g2H
4M2

1

[
δ2L OLL + δ2R ORR + δ2LR OLR

]
(5.52)

+
g2H
4

(
1

M2
Z1

−
1

M2
1

)
[
(L11L12 − L21L22)

2 OLL + (R11R12 − R21R22)
2 ORR

+2(L11L12 − L21L22)(R11R12 − R21R22) OLR)] (5.53)

with

δL = L11 L12 + L21 L22 , δR = R11 R12 + R21 R22

δLR =
√
2(δL δR + 2(L11 R21 − L21 R11)(L22 R12 − L12 R22))

5.8.1 Ko − K̄o meson mixing

The numerical fit of parameters provided in section 7 yield the mixing angles
Vd12 = Vd21 = 0 for left- and right-handed d-quarks, and then all the contribu-
tions to the effective operators, Eqs.5.42–5.43, for ∆S = 2 vanish.

5.8.2 Do − D̄o meson mixing

The reported parameter space region in section 7 generateMZ1 =M2 with very
good approximation, and then only the four-fermion Hamiltonian in Eq.5.52
contribute. For this case we compute the numerical values

δL = −7.73804× 10−8 , M2
gH
2
δL

= −5.51894× 107 TeV

δR = 5.07679× 10−4 , M2
gH
2
δR

= 8411.97 TeV

δLR = 0.0508636 , M2
gH
2
δLR

= 83.9614 TeV

(5.54)

Accordingly to the Review ”The CKM quark - mixing matrix” in PDG2016[24],
the ∆C = 2 effective operators OLL and ORR are within suppression limits.
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5.9 Conclusions

Horizontal gauge bosons from the local SU(3)F introduce flavor changing cou-
plings, and in particular mediate ∆F = 2 processes at tree level. We reported
the analytic contribution to Ko − K̄o and Do − D̄o meson mixing from tree level
exchange diagrams mediated by the SU(2)F gauge bosons Z1 , Y±1 with masses
in the TeV region. We provide a particular parameter space region in in section 7
where this scenario can accommodate the hierarchy spectrum of quark masses and
simultaneously suppress properly the Ko − K̄o meson mixing, and the effective
operators OLL and ORR for the ∆C = 2 processes.
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5.10 APPENDIX: Diagonalization of the generic Dirac See-saw
mass matrix

Mo =


0 0 0 a1
0 0 0 a2
0 0 0 a3
0 b2 b3 c

 (5.55)

The tree levelMo 4× 4 See-saw mass matrix is diagonalized by a biunitary
transformation ψoL = VoL χL and ψoR = VoR χR. The diagonalization of MoMoT

(MoTMo) yield the nonzero eigenvalues

λ23 =
1

2

(
B−

√
B2 − 4D

)
, λ24 =

1

2

(
B+

√
B2 − 4D

)
(5.56)

and rotation mixing angles

cosα =

√
λ24 − a

2

λ24 − λ
2
3

, sinα =

√
a2 − λ23
λ24 − λ

2
3

,

(5.57)

cosβ =

√
λ24 − b

2

λ24 − λ
2
3

, sinβ =

√
b2 − λ23
λ24 − λ

2
3

.
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B = a2 + b2 + c2 = λ23 + λ
2
4 , D = a2b2 = λ23λ

2
4 , (5.58)

a2 = a21 + a
2
2 + a

2
3 , b2 = b21 + b

2
2 + b

2
3

The rotation matrices VoL , V
o
R admit several parametrizations related to the two

zero mass eigenstates.

5.10.1 Parametrization P12

VoL =


c1 c2 s1 s1 s2 cα s1 s2 sα
−s1 c1 c2 c1 s2 cα c1 s2 sα
0 −s2 c2 cα c2 sα
0 0 −sα cα

 , VoR =


1 0 0 0

0 cr sr cβ sr sβ
0 −sr cr cβ cr sβ
0 0 −sβ cβ



ap =
√
a21 + a

2
2 , bp =

√
b21 + b

2
2 , a =

√
ap2 + a23 , b =

√
bp
2 + b23 ,

s1 =
a1

ap
, c1 =

a2

ap
, s2 =

ap

a
, c2 =

a3

a
, sr =

b2

b
, cr =

b3

b

5.10.2 Parametrization P13

VoL =


c1 −s1 s2 s1 c2 cα s1 c2 sα
0 c2 s2 cα s2 sα

−s1 −c1 s2 c1 c2 cα c1 c2 sα
0 0 −sα cα

 , VoR =


1 0 0 0

0 cr sr cβ sr sβ
0 −sr cr cβ cr sβ
0 0 −sβ cβ



an =
√
a21 + a

2
3 , bn =

√
b21 + b

2
3 , a =

√
a2n + a22 , b =

√
b2n + b22 ,

s1 =
a1

an
, c1 =

a3

an
, s2 =

a2

a
, c2 =

an

a
, sr =

b2

b
, cr =

b3

b
(5.59)

5.10.3 Parametrization P23

VoL =


c1 0 s1 cα s1 sα

−s1 s2 c2 c1 s2 cα c1 s2 sα
−s1 c2 −s2 c1 c2 cα c1 c2 sα
0 0 −sα cα

 , VoR =


1 0 0 0

0 cr sr cβ sr sβ
0 −sr cr cβ cr sβ
0 0 −sβ cβ



an =
√
a22 + a

2
3 , bn =

√
b22 + b

2
3 , a =

√
a2n + a21 , b =

√
b2n + b21 ,

s1 =
a1

a
, c1 =

an

a
, s2 =

a2

an
, c2 =

a3

an
, sr =

b2

b
, cr =

b3

b
(5.60)
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6 Phenomenological Mass Matrices With a
Democratic Texture

A. Kleppe ?

SACT, Oslo

Abstract. Taking into account all available data on the mass sector, we obtain unitary
rotation matrices that diagonalize the quark matrices by using a specific parametrization of
the Cabibbo-Kobayashi-Maskawa mixing matrix. The form of the resulting mass matrices
is consistent with a democratic scheme with a well-defined, stepwise breaking of the initial
flavour symmetry.

Povzetek. Avtorica izbere parametrizacijo mešalne matrike Cabibba, Kobayashija in Mas-
kawe, poišče zanjo unitarne rotacijske matrike, ki pri tej parametrizaciji diagonalizirajo
masne matrike kvarkov. Izmerjene mase kvarkov zavrti v startni masni matriki, ki sta
skladni z demokratično shemo matrik z dobro definirano in postopno zlomljeno začetno
simetrije.

Keywords: Mass matrices, CKM matrix, Democratic texture

6.1 Mass states and flavour states

In this work, we take a very phenomenological approach on the fermion mass
matrices, by assuming that the quark mass matrices can be derived from a (naive)
factorization of the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix V [1],
which appears in the charged current Lagrangian

Lcc = −
g

2
√
2
ϕ̄Lγ

µVϕ ′LWµ + h.c. (6.1)

where ϕ and ϕ ′ are quark fields with charges Q and Q− 1, correspondingly.
From the perspective of weak interactions, Lcc describes an interaction be-

tween left-handed flavour states. From the point of view of all other interactions,
the interaction takes place between mixed physical particle states - where “physi-
cal particles” refer to mass eigenstates of the mass matricesM andM ′ appearing
in the mass Lagrangian

Lmass = f̄Mf+ f̄ ′M ′f ′

where f, f ′ are fermion flavour states of charge 2/3 and -1/3, respectively, with the
corresponing mass matrices denoted as M =M(2/3) and M ′ =M ′(−1/3). Our

? E-mail: kleppe@nbi.dk
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dilemma is in a way how to understand the relation between physical particles
and flavour states.

We imagine that all the flavour states live in the same “weak basis” in flavour
space, while the mass states of the 2/3-sector and the -1/3-sector live in their
separate “mass bases”. We go between the weak basis and the mass bases of the
two charge sectors by rotating with the unitary matrices U and U ′, which are
factors of the CKM-matrix, V = UU ′†.

M→ UMU† = D = diag(mu,mc,mt) (6.2)

M ′ → U ′M ′U ′† = D ′ = diag(md,ms,mb)

Since V 6= 1, the up-sector mass basis is different from the down-sector mass basis,
the CKM matrix thus bridges the two mass bases.

The mass Lagagrangian reads

Lmass = f̄Mf+ f̄ ′M ′f ′ = ψ̄Dψ+ ψ̄ ′D ′ψ ′ (6.3)

where f, f ′ are the flavour states and ψ,ψ ′ are the mass states. We of course know
the diagonal mass matricesD(2/3) andD ′(−1/3), it isM(2/3) andM ′(−1/3) that
we are looking for, in the hope that their form can shed light on (the mechanism
behind) the mysterious, hierarchical fermion mass spectra.

Whereas the quark mass eigenstates are perceived as “physical”, and the
weakly interacting flavour states are percieved as mixings of physical particles, in
the lepton sector the situation is somewhat different, due to the fact that neutrino
mass eigenstates don’t ever appear in interactions - they merely propagate in free
space. In the realm of neutral leptons it is actually the flavour states νe, νµ, ντ
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that we perceive as “physical”, since they are the only neutrinos that we “see”,
as they appear together with the charged leptons. As the charged leptons e, µ, τ
are assumed to be both weak eigenstates and mass eigenstates, the only mixing
matrix that appears in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix Uwhich only operates on neutrino states,νeνµ

ντ

 = U(PMNS)

ν1ν2
ν3


where (ν1, ν2, ν3) are mass eigenstates, and (νe, νµ, ντ) are the weakly interacting
“flavour states”. In the lepton sector, the charged currents are thus interpreted
as charged lepton flavours (e, µ, τ) interacting with the neutrino flavour states
(νe, νµ, ντ).

6.2 Factorizing the weak mixing matrix

The usual procedure in establishing an ansatz for the quark mass matrices is
based on some argument or model. Here we follow a rather phenomenaological
approach, looking for a factorization of the Cabbibo-Kobayashi-Maskawa mixing
matrix, which would give the ’right’ mass matrices. The CKM matrix can of course
be parametrized and factorized in many different ways, and different factoriza-
tions correspond to different rotation matrices U and U ′, and correspondingly to
different mass matricesM andM ′.

We choose what we perceive as the most obvious and “symmetric” factoriza-
tion of the CKM mixing matrix is, following the standard parametrization [2] with
three Euler angles α, β, 2θ,

V =

 cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θe
iδ − sβcα −sβsαs2θe

iδ + cβcα sαc2θ
−cβcαs2θe

iδ + sβsα −sβcαs2θe
iδ − cβsα cαc2θ

 = UU
′† (6.4)

with the diagonalizing rotation matrices for the up- and down-sectors

U =

1 0 0

0 cosα sinα
0 − sinα cosα

e−iγ 1
eiγ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

W(ρ) =

=

 cθe
−iγ 0 sθe

−iγ

−sαsθe
iγ cα sαcθe

iγ

−cαsθe
iγ −sα cαcθe

iγ

W(ρ) (6.5)

and

U ′ =

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

e−iγ 1
eiγ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

W(ρ) =

=

cβcθe−iγ −sβ −cβsθe
−iγ

sβcθe
−iγ cβ −sβsθe

−iγ

sθe
iγ 0 cθe

iγ

W(ρ) (6.6)



i
i

“proc17” — 2017/12/11 — 19:44 — page 75 — #89 i
i

i
i

i
i

6 Phenomenological Mass Matrices With a Democratic Texture 75

respectively, whereW(ρ) is a unitary matrix which is chosen is such a way that γ
is the only phase in either of the mass matrices,0 cos ρ ± sin ρ

1 0 0

0 ∓ sin ρ cos ρ

 ,
 cos ρ 0 ± sin ρ

0 1 0

∓ sin ρ 0 cos ρ

 ,
 cos ρ ± sin ρ 0

0 0 1

∓ sin ρ cos ρ 0


Here ρ is unknown, whereas α, β, θ and γ correspond to the parameters in the
standard parametrization, with γ = δ/2, δ = 1.2±0.08 rad, and 2θ = 0.201±0.011◦,
while α = 2.38± 0.06◦ and β = 13.04± 0.05◦. In this factorization scheme, α and
β are rotation angles operating in the up-sector and the down-sector, respectively.

With the rotation matrices U(α, θ, γ, ρ) and U ′(β, θ, γ, ρ), we obtain the the
up- and down-sector mass matrices

M = U†diag(mu,mc,mt)U and M ′ = U ′†diag(md,ms,mb)U
′,

such that

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 =

=W†(ρ)

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W(ρ) (6.7)

where X = mu, Z = (mt −mc) sinα cosα and Y = mc sin2 α+mt cos2 α; and

M ′ =

M ′11 M ′12 M ′13M ′21 M
′
22 M

′
23

M ′31 M
′
32 M

′
33

 =

=W†(ρ)

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) (6.8)

where X ′ = mb, Z ′ = (ms −md) sinβ cosβ and Y ′ = md cos2 β+ms sin2 β. The
two mass matrices thus have similar textures.

From Y = mc sin2 α+mt cos2 α, Z = (mt−mc) sinα cosα, Y ′ = md cos2 β+
ms sin2 β and Z ′ = (ms −md) sinβ cosβ, we moreover have

mu = X, mc = Y − Z cotα, mt = Y + Z tanα
md = Y ′ − Z ′ tanβ, ms = Y

′ + Z ′ cotβ, mb = X ′
(6.9)

6.3 The matrix W

We choose the matrixW(ρ) as

W(ρ) =

cos ρ − sin ρ 0
0 0 1

sin ρ cos ρ 0

 , (6.10)



i
i

“proc17” — 2017/12/11 — 19:44 — page 76 — #90 i
i

i
i

i
i

76 A. Kleppe

which gives the up-sector mass matrix

M =W†

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W =

=W†

 A Zsθ e
−iγ H

Zsθ e
iγ F −Zcθ e

iγ

H −Zcθ e
−iγ K

W =

=

 Ac2ρ + Ks
2
ρ +H sin 2ρ 1

2
(K−A) sin 2ρ+H cos 2ρ −Ze−iγ sin(ρ− θ)

1
2
(K−A) sin 2ρ+H cos 2ρ As2ρ + Kc

2
ρ −H sin 2ρ −Ze−iγ cos(ρ− θ)

−Zeiγ sin(ρ− θ) −Zeiγ cos(ρ− θ) F

 ,
(6.11)

With

A = Xc2θ + Ys
2
θ, H = (X− Y)cθsθ and K = Xs2θ + Yc

2
θ,

we get

M =

X cos2 µ+ Y sin2 µ (Y − X) sinµ cosµ −Z sinµ e−iγ

(Y − X) sinµ cosµ X sin2 µ+ Y cos2 µ −Z cosµ e−iγ

−Z sinµ eiγ −Z cosµ eiγ F

 (6.12)

where µ = ρ−θ, and as before, X = mu, Z = (mt−mc) sinα cosα, Y = mc sin2 α+
mt cos2 α, and F = Xs2θ + Yc

2
θ = Y − 2Z cot 2α = trace(M) − X− Y.

Now, depending on the value of µ = ρ− θ, we get different matrix textures,
e.g.

µ = ρ− θ 0 or π π/4 π/2

M11 = Xc
2
µ + Ys2µ X (X+ Y)/2 Y

M12 =
1
2
(Y − X)s2µ 0 (Y − X)/2 0

M13 = −Zsµ e
−iγ 0 −Ze−iγ/

√
2 −Ze−iγ

M22 = Xs
2
µ + Yc2µ Y (X+ Y)/2 X

M23 = −Zcµ e
−iγ −Ze−iγ −Ze−iγ/

√
2 0

M33 = F Y − 2Z cot 2α Y − 2Z cot 2α Y − 2Z cot 2α

So for ρ− θ = 0 or π, we get the simple form

M(0, π) =

X 0 0

0 Y −Ze−iγ

0 −Zeiγ F

 , (6.13)

and for ρ− θ = π/2, equally simple

M(π/2) =

 Y 0 −Ze−iγ

0 X 0

−Zeiγ 0 F

 (6.14)
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Applying the same procedure on the down-sector, we get the down-sector mass
matrix

M ′ =W(ρ)†

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) =

=

X ′ sin2 µ ′ + Y ′ cos2 µ ′ (X ′ − Y ′) sinµ ′ cosµ ′ Z ′ cosµ ′ eiγ

(X ′ − Y ′) sinµ ′ cosµ ′ X ′ cos2 µ ′ + Y ′ sin2 µ ′ −Z ′ sinµ ′ eiγ

Z ′ cosµ ′ e−iγ −Z ′ sinµ ′ e−iγ F ′

 (6.15)

where µ ′ = ρ + θ, and as before, X ′ = mb, Z ′ = (ms − md) sinβ cosβ, Y ′ =
md cos2 β+ms sin2 β, and F ′ = Y ′ + 2Z ′ cot 2β = trace(M ′) − X ′ − Y ′.

Depending on the value of µ ′ = ρ+ θ, we get different matrix textures.

µ ′ = ρ+ θ 0 or π π/4 π/2

M ′11 = X
′s2µ ′ + Y

′c2µ ′ Y ′ (X ′ + Y ′)/2 X ′

M ′12 =
1
2
(X ′ − Y ′)s2µ ′ 0 (X ′ − Y ′)/2 0

M ′13 = Z
′cµ ′ e

iγ Z ′eiγ Z ′eiγ/
√
2 0

M ′22 = X
′c2µ ′ + Y

′s2µ ′ X ′ (X ′ + Y ′)/2 Y ′

M ′23 = −Z ′sµ ′ e
iγ 0 −Z ′eiγ/

√
2 −Z ′eiγ

M ′33 = F
′ Y ′ + 2Z ′ cot 2β Y ′ + 2Z ′ cot 2β Y ′ + 2Z ′ cot 2β

So for µ ′ = ρ+ θ = 0 or π, we get

M ′(0, π) =

 Y ′ 0 Z ′eiγ

0 X ′ 0

Z ′e−iγ 0 F ′

 (6.16)

and for µ ′ = ρ+ θ = π/2, we get

M ′(π/2) =

X ′ 0 0

0 Y ′ −Z ′eiγ

0 −Z ′e−iγ F ′

 (6.17)

6.4 Texture Zero Mass Matrices

The textures (6.13) and (6.14), as well as (6.16) and (6.17), make us wonder if our
scheme implies quark mass matrices of texture zero.

Texture zero matrices can be said to have come about because of the need to
reduce the number of free parameters, since the fermion mass matrices are 3x3
complex matrices, which without any constraints contain 36 real free parameters.
It is however always possible to perform a unitary transformation that renders
an arbitrary mass matrix Hermitian [5], so there is no loss of generality to assume
that the mass matrices be Hermitian, reducing the number of free parameters to 18.
This is still a very big number, which in the end of the 1970-ies prompted Fritzsch
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[4], [6] to introduce “texture zero matrices”, mass matrices where a certain number
of the entries are zero.

Since then, a huge amount of articles have appeared, with analyses of the very
large number of (different types of) texture zero matrices and their phenomenology.
In the course of this work, a number of of texture zero matrices has been ruled out,
singling out a smaller subset of matrices as viable [7]. Among the texture 4 zero
matrices the only matrices that are found to be viable are:A B 0

B∗ D C

0 C∗ 0

 ,
A B C

B∗ D 0

C∗ 0 0

 ,
A 0 B

0 0 C

B∗ C∗ D

 ,
 0 C 0

C∗ A B

0 B∗ D

 ,
 0 0 C

0 A B

C∗ B∗ D

 ,
D C B

C∗ 0 0

B∗ 0 A


while A 0 0

0 C B

0 B∗ D

 and

A 0 B

0 C 0

B∗ 0 D


are among the matrices that are ruled out. In our scheme this precisely corresponds
to the matrices (6.13), (6.14), (6.16) and (6.17), which means that our mass matrices
M and M ′ are not of texture zero. This can be expressed as a constraint on the
values of the angle ρ,

ρ 6= 1

2
Nπ± θ (6.18)

whereN ∈ Z , ruling out the matricesM(1
2
Nπ− θ) andM ′(1

2
Nπ+ θ), so our mass

matrices M and M ′ are not of texture zero. Instead, they display a democratic
texture.

6.5 Democratic mass matrices

Initially, we were looking for mass matrices with a democratic structure [3], where
the assumption is that both the up- and down-sector mass matrices start out from
a form of the typeM0 = kN andM ′0 = k

′N where

N =

1 1 11 1 1

1 1 1


The underlying philosophy is that in the Standard Model, where the fermions
get their masses from the Yukawa couplings by the Higgs mechanism, there is no
reason why there should be a different Yukawa coupling for each fermion. The
couplings to the gauge bosons of the strong, weak and electromagnetic interactions
are identical for all the fermions in a given charge sector, it thus seems like a natural
assumption that they should also have identical Yukawa couplings. The difference
is that the weak interactions take place in a specific flavour space basis, while the
other interactions are flavour independent.

A matrix of the form M = kN moreover has the mass spectrum (0, 0, 3k),
reflecting the phenomenology of the fermion mass spectra with one very big, and
two much smaller mass values. In the weak basis M = kN is however totally
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flavour symmetric, which means that the (weak) flavours fi are indistinguishible
(“absolute democracy”).

In the assumed initial stage, since the up-sector mass matrix and the down
sector mass matrix are identical except for the dimensional coefficients k and k ′,
the mixing matrix is equal to unity, so there is no CP-violation. In order to obtain
the final mass spectra with the three hierarchical non-zero values, the initial flavour
symmetry displayed by the matricesM0 andM ′0 must be broken, in such a way
that the mixing matrix becomes the observed CKM matrix (with a CP-violating
phase).

An “ansatz” within the democratic scenario then consists of a specific choice
of a flavour symmetry breaking scheme. And it is precisely what we are looking
for: a credible flavour symmetry breaking scheme that gives the observed mass
spectra.

Our initial assumption is that the rotation matrices (6.5), (6.6) which diagonal-
ize the up-sector and down-sector mass matrices, are given by the factorization
of the Cabibbi-Koabayashi-Maskawa matrix (6.4), with well-known angles. The
only “steering-parameter parameter” is then ρ, in the sense that different values
of ρ correspond to mass matrices of different form.

6.5.1 A democratic substructure

We now reparametrize the mass matrices (6.12) and (6.15),

M =

 Xc2µ + Ys2µ (Y − X)sµcµ −Zsµ e
−iγ

(Y − X)sµcµ Xs2µ + Yc2µ −Zcµ e
−iγ

−Zsµ e
iγ −Zcµ e

iγ F


and

M ′ =

 X ′s2µ ′ + Y
′c2µ ′ (X ′ − Y ′)sµ ′cµ ′ Z

′cµ ′ e
iγ

(X ′ − Y ′)sµ ′cµ ′ X
′c2µ ′ + Y

′s2µ ′ −Z ′sµ ′ e
iγ

Z ′cµ ′ e
−iγ −Z ′sµ ′ e

−iγ F ′

 ,
in a way that reveals their “democratic substructure”:

M =

P R
Seiγ

1 1 11 1 1

1 1 1

P R
Se−iγ

+

X X
Q

 (6.19)

and

M ′ =

P ′ R ′
S ′e−iγ

1 1 11 1 1

1 1 1

P ′ R ′
S ′eiγ

+

X ′ X ′
Q ′

 (6.20)

where

P =
√
|Y − X| sin(ρ− θ), R =

√
|Y − X| cos(ρ− θ), S = −Z√

|Y−X|
, Q = F− S2,

and
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P ′ =
√
|Y ′ − X ′| cos(ρ+ θ), R ′ = −

√
|Y ′ − X ′| sin(ρ+ θ), S ′ = Z ′√

|Y ′−X ′|
, Q ′ =

F ′ − S ′2.

These matrices can in their turn be rewritten as

M = B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

+

X X
Q

 (6.21)

where

µ = ρ− θ, B = Y − X, G = −Z/(Y − X), Q = F− BG2.

Likewise,

M ′ = B ′

cosµ ′

− sinµ ′

G ′e−iγ

1 1 11 1 1

1 1 1

cosµ ′

− sinµ ′

G ′eiγ

+

X ′ X ′
Q ′


(6.22)

where

µ ′ = ρ+ θ, B ′ = Y ′ − X ′, G ′ = Z ′/(Y ′ − X ′), Q ′ = F ′ − B ′G ′2.

So without any assumptions about an initial democratic texture, we get a mass
matrix structure that can be interpreted as originating from a democratic mass
matrix, where the flavour symmetry has subsequently been broken in a very
specific manner.

6.6 Flavour symmetry breaking mechanisms

The goal of our investigation is to get some hint about the form that the quark
mass matrices take in the weak basis - and the hint we get from the matrices (6.21)
and (6.22) is that the mass matrices come about from a kind of democratic scenario
where the initial flavour symmetry is broken in a stepwise fashion.

Flavour symmetries relate the different flavours fj, and in the democratic
scenario, where the initial form of the mass matrices is taken to be

M0 = kN = k

1 1 11 1 1

1 1 1

 , (6.23)

the mass Lagrangian reads

Lmass = kf̄Nf =
3∑

i=1,j=1

k f̄ifj

This means that in the democratic scheme, all the flavours fj are initially indistin-
guishible, with the same Yukawa coupling for all the flavours: a totally flavour
symmetric situation.
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Following the hint given by our approach, we now postulate that the mass
matrices originate from a democratic form (6.23), and that the initial overall flavour
symmetries have subsequently undergone a stepwise breaking. To show how this
works, we start with a generic matrixM0, and take the first symmetry breaking
step to be

M0 = kN→M1 =

E E
J

1 1 11 1 1

1 1 1

E E
J

 (6.24)

Here the mass spectrum is basically unchanged even though the flavour symmetry
is partially broken, with the mass Lagrangian

Lmass = kf̄M1f = E
2χ̄χ+ EJ(χ̄f3 + f̄3χ) + J

2f̄3f3

where χ = f1+ f2; thus the flavour symmetry f1 ⇔ f2 is still unbroken. In the next
step, we lift the remaining flavour symmetry by rotating the two equal terms,

(E, E)→ (L sinη, L cosη),

which gives

M1 = kN→M2 = L
2

sinη
cosη

T

1 1 11 1 1

1 1 1

sinη
cosη

T

 , (6.25)

where L2 is the only dimensional parameter, and T = J/L. In order to account
for CP-violation, we moreover introduce a phase γ, in a way that reflects that
CP-violation is connected to the presence of three families (with only two families
there is no CP-violation):

M2 →M3 = L
2

sinη
cosη

Teiγ

1 1 11 1 1

1 1 1

sinη
cosη

Te−iγ

 , (6.26)

where the CP-breaking phase is connected to the third family, as it should. We
know nothing about the values of L, η, T , but by the assumption that the trace of
the mass matrix is constant through all the flavour symmetry breaking steps, we
get

L2 + T2 = 3k

But the matrix M3 still has determinant zero, and a mass spectrum with two
vanishing and one non-zero mass value. We therefore add an extra term to M3,
which like in (6.21) and (6.22), is of diagonal form. This gives us the final mass
matrix

M3 →M4 = L
2

sinη
cosη

Teiγ

1 1 11 1 1

1 1 1

sinη
cosη

Te−iγ

+Λ (6.27)

where Λ is a diagonal matrix.
Our scheme thus reads:
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• We start with the democratic matrix M0 = kN, k = Trace(M)/3, with total
flavour symmetry f1 ⇔ f2 ⇔ f3 in the weak basis.

• Assumption: the trace of the matrixM is constant throughout every flavour
symmetry breaking step.

• First flavour breaking step (6.24):M0 →M1. The flavour symmetry f1 ⇔ f2
still remains, and there is still only one non-zero mass value, but f3 is singled
out.

• Next flavour breaking step (6.25): M1 → M2, lifting the flavour symmetry
f1 ⇔ f2.

• Introducing a CP-violating phase (6.26):M2 →M3.
• Last step (6.27): adding a diagonal matrix to M3, M3 → M4 = M3 + Λ,

whereby we get the three observed non-zero mass values.

6.7 Conclusion

Without introducing any new assumptions, by just factorizing the “standard
parametrization” of the CKM weak mixing matrix in a specific way, we obtain
mass matrices with a specific type of democratic texture and a well-defined scheme
for breaking the initial flavour symmetry. Our approach thus hints at a democratic
scenario, which comes from the formalism without any other assumptions than a
very natural and straightforward way of factorizing the weak mixing matrix.
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Abstract. The spin-charge-family theory, which is a kind of the Kaluza-Klein theories in
d = (13 + 1) — but with the two kinds of the spin connection fields, the gauge fields
of the two Clifford algebra objects, Sab and S̃ab — explains all the assumptions of the
standard model: The origin of the charges of fermions appearing in one family, the origin
and properties of the vector gauge fields of these charges, the origin and properties of
the families of fermions, the origin of the scalar fields observed as the Higgs’s scalar and
the Yukawa couplings. The theory explains several other phenomena like: The origin of
the dark matter, of the matter-antimatter asymmetry, the ”miraculous” triangle anomaly
cancellation in the standard model and others. Since the theory starts at d = (13 + 1) the
question arises how and at which d had our universe started and how it came down to
d = (13 + 1) and further to d = (3 + 1). In this short contribution some answers to these
questions are presented.

Povzetek. Avtorica obravnava teorijo spinov-nabojev-družin, ki sodi v družino Kaluza-
Kleinovih teorij v d = (13 + 1) — vendar z dvema vrstama polj spinskih povezav, ki so
umeritvena polja dveh vrst objektov v Cliffordovih algebrah — in pojasni predpostavke
standardnega modela: izvor nabojev fermionov v posamezni družini, izvor in lastnosti vek-
torskih umeritvenih polj teh nabojev, izvor in lastnosti družin fermionov in izvor skalarnih
polj, ki se kažejo kot Higgsov skalar in Yukavine sklopitve. Teorija pojasni tudi druge
pojave: izvor temne snovi, izvor asimetrije snov-antisnov, “čudezno” izginotje trikotniške
anomalije v standardnem modelu. Ker teorija izhaja iz d = (13 + 1), se pojavi vprašanje, kao
in pri katerem d se je vesolje začelo in kako je prišlo so d = (13 + 1) in nato še naprej do
d = (3 + 1). Avtorica predlaga nekaj odgovorov na ta vprašanja.
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7.1 Introduction

Both standard models, the standard model of elementary fermion and boson fields
and the standard cosmological model, have quite a lot of assumptions, guessed from
the properties of observables. Although in the history physics was and still is
(in particular when many degrees of freedom are concerned) relying on small
theoretical steps, confirmed by experiments, there are also a few decisive steps,
without which no real further progress would be possible. Among such steps there
are certainly the general theory of relativity and the standard model of elementary
fermion and boson fields. Both theories enabled much better understanding of our
universe and its elementary fields — fermions and bosons.

With more and more accurate experiments is becoming increasingly clear that
a new decisive step is again needed in the theory of elementary fields as well as in
cosmology.

Both theories rely on observed facts built into innovative mathematical mod-
els. However, the assumptions remain unexplained.

Among the non understood assumptions of the standard model of the elemen-
tary fields of fermions and bosons are: i. The origin of massless family members
with their charges related to spins. ii. The origin of families of fermions. iii. The
origin of the massless vector gauge fields of the observed charges. iv. The origin
of masses of family members and heavy bosons. v. The origin of the Higgs’s scalar
and the Yukawa couplings. vi. The origin of matter-antimatter asymmetry. vii.
The origin of the dark matter. viii. The origin of the electroweak phase transition
scale. ix. The origin of the colour phase transition scale. And others.

Among the non understood assumptions of the cosmological model are: a. The
differences in the origin of the gravity, of the vector gauge fields and the (Higgs’s)
scalars. b. The origin of the dark matter, of the matter-antimatter asymmetry of
the (ordinary) matter. c. The appearance of fermions. d. The origin of the inflation
of the universe. e. While it is known how to quantize vector gauge fields, the
quantization of gravity is still an open problem.

The L(arge) H(adron) C(collider) and other accelerators and measuring appa-
ratus produce a huge amount of data, the analyzes of which should help to explain
the assumptions of both standard models. But it looks like so far that the proposed
models, relying more or less on small extensions of the standard models, can not
offer much help. The situation in elementary particle physics is reminiscent of the
situation in the nuclear physics before the standard model of the elementary fields
was proposed, opening new insight into physics of elementary fermion and boson
fields.

The deeper into the history of our universe we are succeeding to look by
the observations and experiments the more both standard models are becoming
entangled, dependent on each other, calling for the next step which would offer
the explanation for most of the above mentioned non understood assumptions of
both standard models.

The spin-charge-family theory [1,2,4,3,5–8] does answer open questions of the
standard model of the elementary fields and also several of cosmology.
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The spin-charge-family theory [1,2,4,3] is promising to be the right next step
beyond the standard model of elementary fermion and boson fields by offering the
explanation for all the assumptions of this model. By offering the explanation
also for the dark matter and matter-antimatter asymmetry the theory makes a
new step also in cosmology, in particular since it starts at d ≥ 5 with spinors
and gravitational fields only — like the Kaluza-Klein theories (but with the two
kinds of the spin connection fields, which are the gauge fields of the two kinds
of the Clifford algebra objects). Although there are still several open problems
waiting to be solved, common to most of proposed theories — like how do the
boundary conditions influence the breaking of the starting symmetry of space-time
and how to quantize gravity in any d, while we know how to quantize at least
the vector gauge fields in d = (3 + 1) — the spin-charge-family theory is making
several predictions (not just stimulated by the current experiments what most of
predictions do).

The spin-charge-family theory (Refs. [1,2,4,3,5–11,13,15,12] and the references
therein) starts in d = (13+ 1): i. with the simple action for spinors, Eq. (7.1), which
carry two kinds of spins, i.a. the Dirac one described by γa and manifesting at
low energies in d = (3+ 1) as spins and all the charges of the observed fermions
of one family, Table 7.1, i.b. the second one named [15] (by the author of this
paper) γ̃a ({γ̃a, γb}+ = 0, Eq. (7.2)), and manifesting at low energies the family
quantum numbers of the observed fermions. ii. Spinors interact in d = (13+1) with
the gravitational field only, ii.a. the vielbeins and ii.b. the two kinds of the spin
connection fields (Refs. [1,4] and the references therein). Spin connection fields —
ωstm ((s, t) ≥ 5,m = (0, 1, 2, 3, 4)), Eq. (7.1) — are the gauge fields of Sst, Eq. (7.7),
and manifest at low energies in d = (3+ 1) as the vector gauge fields (the colour,
weak and hyper vector gauge fields are directly or indirectly observed vector gauge
fields). Spin connections ωsts ′ ((s, t) ≥ 5, s ′ = (7, 8)) manifest as scalar gauge
fields, contributing to the Higgs’s scalar and the Yukawa couplings together with
the scalar spin connection gauge fields — ω̃abs ′ ((a, b) = (m, s, t), s ′ = (7, 8)),
Eq. (7.1) — which are the gauge fields of S̃ab, Eq. (7.7) [4,3,1,2]. Correspondingly
these (several) scalar gauge fields determine after the electroweak break masses of
the families of all the family members and of the heavy bosons (Refs. [2,4,3,1], and
the references therein).

Scalar fields ωsts ′ ((s, t) ≥ 5, s ′ = (9, · · · , 14)), Ref. [4] (and the references
therein), cause transitions from anti-leptons to quarks and anti-quarks into quarks
and back. In the presence of the condensate of two right handed neutrinos [2,4]
the matter-antimatter symmetry breaks.

7.2 Short presentation of the spin-charge-family theory

The spin-charge-family theory [3,2,4,7–10] assumes a simple action, Eq. (7.1), in an
even dimensional space (d = 2n, d > 5). d is chosen to be (13 + 1), what makes
the simple starting action in d to manifest in d = (3+ 1) in the low energy regime
all the observed degrees of freedom, explaining all the assumptions of the standard
model as well as other observed phenomena. Fermions interact with the vielbeins
fαa and the two kinds of the spin-connection fields — ωabα and ω̃abα — the
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gauge fields of Sab = i
4
(γa γb−γb γa) and S̃ab = i

4
(γ̃a γ̃b− γ̃b γ̃a), respectively,

where:

A =
∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (7.1)

here p0a = fαa p0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃ab ω̃abα

1,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c.,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c..

The action introduces two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ . (7.2)

fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote flat indices, Greek
letters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) denote the correspond-
ing indices in (0, 1, 2, 3), (s, t, ..) and (σ, τ, ..) denote the corresponding indices in
d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (7.3)

E = det(eaα) 2.
The action A offers the explanation for the origin and all the properties of the

observed fermions (of the family members and families), of the observed vector
gauge fields, of the Higgs’s scalar and of the Yukawa couplings, explaining the
origin of the matter-antimatter asymmetry, the appearance of the dark matter and
predicts the new scalars and the new (fourth) family coupled to the observed three
to be measured at the LHC ([2,4] and the references therein).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with Sab — for spins

~N±(= ~N(L,R)) : =
1
2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (7.4)

— for the weak charge, SU(2)I, and the second SU(2)II, these two groups are the
invariant subgroups of SO(4)

~τ1 : = 1
2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : = 1
2
(S58 + S67, S57 − S68, S56 + S78) , (7.5)

1 Whenever two indexes are equal the summation over these two is meant.
2 This definition of the vielbein and the inverted vielbein is general, no specification about

the curled space is assumed yet, but is valid also in the low energies regions, when the
starting symmetry is broken [1].
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— for the colour charge SU(3) and for the ”fermion charge” U(1)II, these two
groups are subgroups of SO(6)

~τ3 : =
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 : = −
1

3
(S9 10 + S11 12 + S13 14) , (7.6)

— while the hyper charge Y is Y = τ23 + τ4. The breaks of the symmetries, man-
ifesting in Eqs. (7.4, 7.5, 7.6), are in the spin-charge-family theory caused by the
condensate and the constant values of the scalar fields carrying the space index
(7, 8) (Refs. [3,4] and the references therein). The space breaks first to SO(7, 1)
×SU(3) × U(1)II and then further to SO(3, 1) × SU(2)I × U(1)I ×SU(3), what
explains the connections between the weak and the hyper charges and the hand-
edness of spinors.

The equivalent expressions for the family charges, expressed by S̃ab, follow if
in Eqs. (7.4 - 7.6) Sab are replaced by S̃ab.

7.2.1 A short inside into the spinor states of the spin-charge-family theory

I demonstrate in this subsection on two examples how transparently can properties
of spinor and anti-spinor states be read from these states [13,15,3], when the states
are expressed with d

2
nilpotents and projectors, formed as odd and even objects

of γa’s (Eq. (7.10)) and chosen to be the eigenstates of the Cartan subalgebra
(Eq. (7.8)) of the algebra of the two groups, as in Table 7.1.

Recognizing that the two Clifford algebra objects (Sab, Scd), or (S̃ab, S̃cd),
fulfilling the algebra,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) ,

{Sab, S̃cd}− = 0 , (7.7)

commute, if all the indexes (a, b, c, d) are different, the Cartan subalgebra is in
d = 2n selected as follows

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , if d = 2n ≥ 4 . (7.8)

Let us define as well one of the Casimirs of the Lorentz group — the handedness
Γ ({Γ, Sab}− = 0) in d = 2n 3

Γ (d) : = (i)d/2
∏
a(
√
ηaaγa), if d = 2n , (7.9)

3 The reader can find the definition of handedness for d odd in Refs. [13,4] and the refer-
ences therein.
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which can be written also as Γ (d) = id−1 · 2d2 S03 · S12 · · ·S(d−1)d. The product of
γa’s must be taken in the ascending order with respect to the index a: γ0γ1 · · ·γd.
It follows from the Hermiticity properties of γa for any choice of the signature ηaa

that Γ (d)† = Γ (d), (Γ (d))2 = I. One proceeds equivalently for Γ̃ (d), substituting
γa’s by γ̃a’s. We also find that for d even the handedness anticommutes with the
Clifford algebra objects γa ({γa, Γ }+ = 0).

Spinor states can be, as in Table 7.1, represented as products of nilpotents and
projectors defined by γa’s

ab

(k): = 1
2
(γa + ηaa

ik
γb) ,

ab

[k]:= 1
2
(1+ i

k
γaγb) , (7.10)

where k2 = ηaaηbb.

It is easy to check that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigenstates”
of Sab and S̃ab

Sab
ab

(k)= 1
2
k
ab

(k) , Sab
ab

[k]= 1
2
k
ab

[k] ,

S̃ab
ab

(k)= 1
2
k
ab

(k) , S̃ab
ab

[k]= −1
2
k
ab

[k] , (7.11)

where in Eq. (7.11) the vacuum state |ψ0〉 is meant to stay on the right hand sides
of projectors and nilpotents. This means that one gets when multiplying nilpotents
ab

(k) and projectors
ab

[k] by Sab the same objects back multiplied by the constant 1
2
k,

while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than k.
One can namely see, taking into account Eq. (7.2), that

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(7.12)

One recognizes also that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a trans-

form
ab

(k) into
ab

[k], never to
ab

[−k].
In Table 7.1 [2,5,3] the left handed (Γ (13,1) = −1, Eq. (7.9)) massless multiplet

of one family (Table 7.3) of spinors — the members of the fundamental representa-
tion of the SO(13, 1) group — is presented as products of nilpotents and projectors,
Eq. (7.10). All these states are eigenstates of the Cartan sub-algebra (Eq. (7.8)).
Table 7.1 manifests the subgroup SO(7, 1) of the colour charged quarks and anti-
quarks and the colourless leptons and anti-leptons [13,15]. The multiplet contains
the left handed (Γ (3,1) = −1) weak (SU(2)I) charged (τ13 = ±1

2
, Eq. (7.5)), and

SU(2)II chargeless (τ23 = 0, Eq. (7.5)) quarks and leptons and the right handed
(Γ (3,1) = 1) weak (SU(2)I) chargeless and SU(2)II charged (τ23 = ±1

2
) quarks

and leptons, both with the spin S12 up and down (±1
2

, respectively). Quarks and
leptons (and separately anti-quarks and anti-leptons) have the same SO(7, 1) part.
They distinguish only in the SU(3)×U(1) part: Quarks are triplets of three colours
(ci = (τ33, τ38) = [(1

2
, 1

2
√
3
), (−1

2
, 1

2
√
3
), (0,− 1√

3
)], Eq. (7.6)) carrying the ”fermion
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charge” (τ4 = 1
6

, Eq. (7.6)). The colourless leptons carry the ”fermion charge”
(τ4 = −1

2
).

The same multiplet contains also the left handed weak (SU(2)I) chargeless and
SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I)
charged and SU(2)II chargeless anti-quarks and anti-leptons. Anti-quarks are
anti-triplets, carrying the ”fermion charge” (τ4 = −1

6
). The anti-colourless anti-

leptons carry the ”fermion charge” (τ4 = 1
2

). S12 defines the ordinary spin ±1
2

.
Y = (τ23 + τ4) is the hyper charge, the electromagnetic charge is Q = (τ13 + Y).
The vacuum state, on which the nilpotents and projectors operate, is not shown.

All these properties of states can be read directly from the table. Example 1.
and 2. demonstrate how this can be done.

The states of opposite charges (anti-particle states) are reachable from the
particle states (besides by Sab) also by the application of the discrete symmetry
operator CN PN , presented in Refs. [12] and in the footnote of this subsection.

In Table 7.1 the starting state is chosen to be
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) . We could make any other choice of products of nilpotents and projectors, let

say the state
03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) , which is the state in the seventh
line of Table 7.1. All the states of one representation can be obtained from the
starting state by applying on the starting state the generators Sab. From the first
state, for example, we obtain the seventh one by the application of S0 7 (or of S0 8,
S3 7, S3 8).

Let us make a few examples to get inside how can one read the quantum
numbers of states from 7 products of nilpotents and projectors. All nilpotents and
projectors are eigen states, Eq. (7.11), of Cartan sub-algebra, Eq. (7.8).

Example 1.: Let us calculate properties of the two states: The first state —
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉— and the seventh state —
03

[−i]
12

(+) |
56

(+)
78

[−]

||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉— of Table 7.1.
The handedness of the whole one Weyl representation (64 states) follows from

Eqs. (7.9,7.8): Γ (14) = i1327S03S12 · · ·S13 14. This operator gives, when applied
on the first state of Table 7.1, the eigenvalue = i1327 i

2
(1
2
)4(−1

2
)2 = −1 (since the

operator S03 applied on the nilpotent
03

(+i) gives the eigenvalue k
2
= i
2

, the rest
four operators have the eigenvalues 1

2
, and the last two −1

2
, Eq. (7.11)).

In an equivalent way we calculate the handedness Γ (3,1) of these two states
in d = (3 + 1): The operator Γ (3,1) = i322S03S12, applied on the first state, gives
1 — the right handedness, while Γ (3,1) is for the seventh state −1 — the left
handedness.

The weak charge operator τ13(= 1
2
(S56 − S78)), Eq. (7.5), applied on the first

state, gives the eigenvalue 0: 1
2
(1
2
− 1
2
), The eigenvalue of τ13 is for the seventh

state 1
2

: 1
2
(1
2
− (−1

2
)), τ23 (= 1

2
(S56 + S78)), applied on the first state, gives as its

eigenvalue 1
2

, while when τ23 applies on the seventh state gives 0. The ”fermion
charge” operator τ4 (= −1

3
(S9 10 + S11 12 + S13 14), Eq. (7.6)), gives when applied

on any of these two states, the eigenvalues −1
3
(1
2
− 1
2
− 1
2
) = 1

6
. Correspondingly is
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i |aψi >, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1 Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet
of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

11 dc2
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

12 dc2
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

13 dc2
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) -1 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

14 dc2
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) -1 − 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

15 uc2
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) -1 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

16 uc2
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) -1 − 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 dc3
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 dc3
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 dc3
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 uc3
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] -1 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

24 uc3
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] -1 − 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
1
2

0 0 0 − 1
2

− 1
2

0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
1
2

0 0 0 − 1
2

− 1
2

0

Table 7.1. The left handed (Γ (13,1) = −1, Eq. (7.9)) multiplet of spinors — the members of
(one family of) the fundamental representation of the SO(13, 1) group of the colour charged
quarks and anti-quarks and the colourless leptons and anti-leptons, with the charges, spin
and handedness manifesting in the low energy regime — is presented in the massless basis
using the technique [2,5,3], explained in the text and in Examples 1.,2..
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i |aψi >, Γ
(7,1) = (−1) 1 , Γ(6) = (1) − 1 Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet
of (anti)quarks and (anti)leptons

33 d̄c̄1
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

40 ūc̄1
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

42 d̄c̄2
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 − 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

43 ūc̄2
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

44 ūc̄2
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] -1 − 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

45 d̄c̄2
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] 1 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

46 d̄c̄2
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] 1 − 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

47 ūc̄2
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] 1 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

48 ūc̄2
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] 1 − 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

49 d̄c̄3
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

50 d̄c̄3
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 − 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

51 ūc̄3
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

52 ūc̄3
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) -1 − 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

53 d̄c̄3
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) 1 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

54 d̄c̄3
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) 1 − 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

55 ūc̄3
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) 1 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

56 ūc̄3
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) 1 − 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

57 ēL

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
− 1
2

0 0 0 1
2

1
2

0

62 ν̄R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
− 1
2

0 0 0 1
2

1
2

0

63 ēR

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
1
2

0 0 0 1
2

1
2

1

64 ēR

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 7.2. Table 7.1 continued.

the hyper charge Y (= τ23 + τ4) of these two states Y = (2
3
, 1
6
), respectively, what

the standard model assumes for uR and uL, respectively.
One finds for the colour charge of these two states, (τ33, τ38) (= (1

2
(S9 10 −

S11 12), 1√
3
(S9 10 + S11 12 − 2S13 14)) the eigenvalues (1/2, 1/(2

√
3)).

The first and the seventh states differ in the handedness Γ (3,1) = (1,−1), in
the weak charge τ13 =(0, 1

2
) and the hyper charge Y = (2

3
, 1
6

), respectively. All
the states of this octet — SO(7, 1) — have the same colour charge and the same
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”fermion charge” (the difference in the hyper charge Y is caused by the difference
in τ23 = (1

2
, 0)).

The states for the dR-quark and dL-quark of the same octet follow from the
state uR and uL, respectively, by the application of S57 (or S58, S67, S68).

All the SO(7, 1) (Γ (7,1) = 1) part of the SO(13, 1) spinor representation are the
same for either quarks of all the three colours (quarks states appear in Table 7.1
from the first to the 24th line) or for the colourless leptons (leptons appear in
Table 7.1 from the 25th line to the 32nd line).

Leptons distinguish from quarks in the part represented by nilpotents and
projectors, which is determined by the eigenstates of the Cartan subalgebra of
(S9 10, S11 12, S13 14). Taking into account Eq. (7.11) one calculates that (τ33, τ38) is

for the colourless part of the lepton states (νR,L, eR,L) — (· · · ||
9 10

(+)
11 12

[+]
13 14

[+] ) —
equal to = (0, 0), while the ”fermion charge” τ4 is for these states equal to −1

2
(just

as assumed by the standard model).
Let us point out that the octet SO(7, 1) manifests how the spin and the weak

and hyper charges are related.

Example 2.: Let us look at the properties of the anti-quark and anti-lepton
states of one fundamental representation of the SO(13, 1) group. These states are
presented in Table 7.1 from the 33rd line to the 64th line, representing anti-quarks
(the first three octets) and anti-leptons (the last octet).

Again, all the anti-octets, the SO(7, 1) (Γ (7,1) = −1) part of the SO(13, 1)
representation, are the same either for anti-quarks or for anti-leptons. The last
three products of nilpotents and projectors (the part appearing in Table 7.1 after
”||”) determine anti-colours for the anti-quarks states and the anti-colourless state
for anti-leptons.

Let us add that all the anti-spinor states are reachable from the spinor states
(and opposite) by the application of the operator [12] CNPN 4. The part of this
operator, which operates on only the spinor part of the state (presented in Table 7.1),
is CNPN |spinor = γ0

∏d
=γs,s=5 γ

s. Taking into account Eq. (7.12) and this operator
one finds that CNPN |spinor transforms uc1R from the first line of Table 7.1 into
ūc̄1L from the 35th line of the same table. When the operator CNPN |spinor applies
on νR (the 25th line of the same table, with the colour chargeless part equal to

· · · ||
9 10

(+)
11 12

[+]
13 14

[+] ), transforms νR into ν̄L (the 59th line of the table, with the

colour anti-chargeless part equal to (· · · ||
9 10

[−]
11 12

(−)
13 14

(−) ).

4 Discrete symmetries in d = (3 + 1) follow from the corresponding defini-
tion of these symmetries in d- dimensional space [12]. This operator is de-
fined as: CNPN = γ0

∏d
=γs,s=5 γ

s I~x3 Ix6,x8,...,xd , where γ0 and γ1 are real,
γ2 imaginary, γ3 real, γ5 imaginary, γ6 real, alternating imaginary and real
up to γd, which is in even dimensional spaces real. γa’s appear in the as-
cending order. Operators I operate as follows: Ix0x

0 = −x0 ; Ixxa = −xa ;
Ix0x

a = (−x0,~x) ; I~x~x = −~x ; I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) ;

Ix5,x7,...,xd−1 (x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd); Ix6,x8,...,xd (x0, x1, x2, x3, x5, x6, x7, x8, . . . ,

xd−1, xd) = (x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd), d = 2n.
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7.2.2 A short inside into families in the spin-charge-family theory

The operators S̃ab, commuting with Sab (Eq. (7.7)), transform any spinor state,
presented in Table 7.1, to the same state of another family, orthogonal to the
starting state and correspondingly to all the states of the starting family.

Applying the opeartor S̃03 (= i
2
γ0γ3), for example, on νR (the 25th line of

Table 7.1 and the last line on Table 7.3), one obtains, taking into account Eq. (7.12),
the νR7 state belonging to another family, presented in the seventh line of Table 7.3.

Operators Sab transform νR (the 25th line of Table 7.1, presented in Table 7.3
in the eighth line, carrying the name νR8) into all the rest of the 64 states of this
eighth family, presented in Table 7.1. The operator S11 13, for example, transforms
νR8 into uR8 (presented in the first line of Table 7.1), while it transforms νR7 into
uR7.

Table 7.3 represents eight families of neutrinos, which distinguish among
themselves in the family quantum numbers: (τ̃13, ÑL, τ̃23, ÑR, τ̃4). These family
quantum numbers can be expressed by S̃ab as presented in Eqs. (7.4, 7.5, 7.6), if
Sab are replaced by S̃ab.

Eight families decouples into two groups of four families, one (II) is a doublet
with respect to ( ~̃NL and ~̃τ1) and a singlet with respect to ( ~̃NR and ~̃τ2), the other (I)
is a singlet with respect to ( ~̃NL and ~̃τ1) and a doublet with with respect to ( ~̃NR and
~̃τ2).

All the families follow from the starting one by the application of the operators
(Ñ±R,L, τ̃(2,1)±), Eq. (7.18). The generators (N±R,L, τ(2,1)±), Eq. (7.18), transform νR1
to all the members belonging to the SO(7, 1) group of one family, Ss,t, (s, t) =

(9 · · · , 14) transform quarks of one colour to quarks of other colours or to leptons.

τ̃13 τ̃23 Ñ3L Ñ
3
R τ̃4

I νR 1
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] − 1
2

0 − 1
2

0 − 1
2

I νR 2
03

[+i]
12

(+) |
56

[+]
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] − 1
2

0 1
2

0 − 1
2

I νR 3
03

(+i)
12

[+] |
56

(+)
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 1
2

0 − 1
2

0 − 1
2

I νR 4
03

[+i]
12

(+) |
56

(+)
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 1
2

0 1
2

0 − 1
2

II νR 5
03

[+i]
12

[+] |
56

[+]
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 0 − 1
2

0 − 1
2
− 1
2

II νR 6
03

(+i)
12

(+) |
56

[+]
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 0 − 1
2

0 1
2
− 1
2

II νR 7
03

[+i]
12

[+] |
56

(+)
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] 0 1
2

0 − 1
2
− 1
2

II νR 8
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] 0 1
2

0 1
2
− 1
3

Table 7.3. Eight families of the right handed neutrino νR (appearing in the 25th line of
Table 7.1), with spin 1

2
. νRi, i = (1, · · · , 8), carries the family quantum numbers τ̃13, Ñ3L,

τ̃23, Ñ3R and τ̃4. Eight families decouple into two groups of four families.

All the families of Table 7.3 and the family members of the eighth family in
Table 7.1 are in the massless basis.
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The scalar fields, which are the gauge scalar fields of ~̃NR and ~̃τ2, couple only
to the four families which are doublets with respect to these two groups. The scalar
fields which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families
which are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8) [5,11,3,4], the two groups of four families become massive. The
lowest of the two groups of four families contains the observed three, while the
fourth family remains to be measured. The lowest of the upper four families is the
candidate to form the dark matter [4,10].

7.2.3 Vector gauge fields and scalar gauge fields in the spin-charge-family
theory

In the spin-charge-family theory [4,2,3], like in all the Kaluza-Klein like theories,
either vielbeins or spin connections can be used to represent the vector gauge
fields in d = (3 + 1) space, when space with d ≥ 5 has large enough symmetry
and no strong spinor source is present. This is proven in Ref. [1] and the references
therein. There are the superposition ofωstm,m = (0, 1, 2, 3), (s, t) ≥ 5, which are
used in the spin-charge-family theory to represent vector gauge fields — AAim (=∑
s,t c

Ai
stω

st
m) — in d = (3+1) in the low energy regime. HereAi represent the

quantum numbers of the corresponding subgroups, expressed by the operators
Sst in Eqs. (7.5, 7.6). Coefficients cAist can be read from Eqs. (7.5,7.6). These vector
gauge fields manifest the properties of all the directly and indirectly observed
gauge fields 5.

In the spin-charge-family theory also the scalar fields [2,4,3,9,11,1] have the
origin in the spin connection field, in ωsts ′ and ω̃sts ′ , (s, t, s ′) ≥ 5. These scalar
fields offer the explanation for the Higgs’s scalar and the Yukawa couplings of the
standard model [9,4].

Both, scalar and vector gauge fields, follow from the simple starting action of
the spin-charge-family presented in Eq. (7.1).

The Lagrange function for the vector gauge fields follows from the action for
the curvature R in Eq. (7.1) and manifests in the case of the flat d = (3+ 1) space
as assumed by the standard model: Lv = −1

4

∑
A,i,m,n

FAimnF
Aimn, FAimn =

∂mA
Ai
n − ∂nA

Ai
m − ifAijkAAjm AAkn , with

AAim =
∑
s,t

cAistω
st
m ,

τAi =
∑
s,t

cAistMst , Mst = Sst + Lst . (7.13)

5 In the spin-charge-family theory there are, besides the vector gauge fields of (~τ1, ~τ3),
Eqs. (7.5,7.6), also the vector gauge fields of ~τ2, Eq. (7.5), and τ4, Eq. (7.6). The vector
gauge fields of τ21, τ22 and Y ′ = τ23 − tan θ2 gain masses when interacting with the
condensate [4] (and the references therein) at around 1016 GeV, while the vector gauge
field of the hyper charge Y = τ23 + τ4 remains massless, together with the gauge fields of
~τ1 and ~τ3, manifesting at low energies properties, postulated by the standard model.
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In the low energy regime only Sst manifest. These expressions can be found in
Ref. [1], Eq. (25), for example, and the references therein.

From Eq. (7.1) we read the interaction between fermions, presented in Ta-
ble 7.1, and the corresponding vector gauge fields in flat d = (3+ 1) space.

Lfv = ψ̄γm(pm −
∑
A,i

τAiAAim )ψ . (7.14)

Particular superposition of spin connection fields, either ωsts ′ or ω̃abs ′ ,
(s, t, s ′) ≥ 5, (a, b) = (0, · · · , 8), with the scalar space index s ′ = (7, 8), mani-
fest at low energies as the scalar fields, which contribute to the masses of the
family members. The superposition of the scalar fieldsωstt" with the space index
t ′′ = (9, · · · , 14) contribute to the transformation of matter into antimatter and
back, causing in the presence of the condensate [2,4] the matter-antimatter asym-
metry of our universe. The interactions of all these scalar fields with fermions
follow from Eq. (7.1)

Lfs = {
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (7.15)

where p0s = ps − 1
2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, p0t = pt − 1

2
St
′t"ωt ′t"t −

1
2
S̃abω̃abt,

with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers of all the 2

7+1
2

−1 = 8 families presented in Table 7.3.
There are the superposition of the scalar fieldsωs ′s"s — (AQ± , AQ

′

± , AY
′

± ) 6 —

and the superposition of ω̃s ′s ′′s — (~̃AÑL± , ~̃A1̃±, ~̃AÑR± , ~̃A2̃±) 7 — which determine mass
terms of family members of spinors after the electroweak break. I shall use AAi±
to represent all the scalar fields, which determine masses of family members, the
Yukawa couplings and the weak boson vector fields,AAi± = (

∑
A,i,a,b c

Aist(ωst7±
iωst8) as well as =

∑
A,i,a,b c

Aist(ω̃ab7 ± iωab8).
The part of the second term of Eq. (7.15), in which summation runs over the

space index s = (7,8) —
∑
s=7,8 ψ̄γ

sp0sψ — determines after the electroweak
break masses of the two groups of four families. The highest of the lower four
families is predicted to be observed at the L(arge)H(adron)C(ollider) [11], the
lowest of the higher four families is explaining the origin of the dark matter [10].

The scalar fields in the part of the second term of Eq. (7.15), in which sum-
mation runs over the space index t = (9, · · · , 14) —

∑
t=9,··· ,14 ψ̄γ

tp0tψ— cause

6 Q := τ13 + Y, Q ′ := −Y tan2 ϑ1 + τ13, Q ′ := − tan2 ϑ1Y + τ13, Y := τ4 + τ23, Y ′ :=
− tan2 ϑ2τ4+τ23,Q := τ13+Y, and correspondinglyAQs = sin ϑ1A13s +cos ϑ1AYs ,AQ

′
s =

cos ϑ1A13s − sin ϑ1AYs ,AY
′
s = cos ϑ2A23s − sin ϑ2A4s ,A4s = −(ω9 10 s+ω11 12 s+ω13 14 s),

A13s = (ω56s −ω78s), A23s = (ω56s +ω78s), with (s ∈ (7, 8)) (Re. [3], Eq. (A9)).
7 ~̃A1̃s = (ω̃5̃8̃s − ω̃6̃7̃s, ω̃5̃7̃s + ω̃6̃8̃s, ω̃5̃6̃s − ω̃7̃8̃s),

~̃A
ÑL̃
s = (ω̃2̃3̃s + i ω̃0̃1̃s, ω̃3̃1̃s +

i ω̃0̃2̃s, ω̃1̃2̃s + i ω̃0̃3̃s),
~̃A2̃s = (ω̃5̃8̃s + ω̃6̃7̃s, ω̃5̃7̃s − ω̃6̃8̃s, ω̃5̃6̃s + ω̃7̃8̃s) and ~̃A

ÑR̃
s =

(ω̃2̃3̃s − i ω̃0̃1̃s, ω̃3̃1̃s − i ω̃0̃2̃s, ω̃1̃2̃s − i ω̃0̃3̃s) , where (s ∈ (7, 8)) (Ref. [3], Eq. (A8)).
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transitions from anti-leptons into quarks and anti-quarks into quarks and back,
transforming antimatter into matter and back. In the expanding universe the con-
densate of two right handed neutrinos breaks this matter-antimatter symmetry,
explaining the matter-antimatter asymmetry of our universe [2].

Spin connection fieldsωsts ′ and ω̃sts ′ interact also with vector gauge fields
and among themselves [1]. These interactions can be red from Eq. (7.1).

7.3 Discussions and open problems

The spin-charge-family theory is offering the next step beyond both standard models,
by explaining:
i. The origin of charges of the (massless) family members and the relation between
their charges and spins. The theory, namely, starts in d = (13 + 1) with the sim-
ple action for spinors, which interact with the gravity only (Eq.7.1) (through the
vielbeins and the two kinds of the spin connection fields), while one fundamental
representation of SO(13, 1) contains, if analyzed with respect to the subgroups
SO(3, 1), SU(3), SU(2)I, SU(2)II and U(1)II of the group SO(13, 1), all the quarks
and anti-quarks and all the leptons and anti-leptons with the properties assumed
by the standard model, relating handedness and charges of spinors as well as of
anti-spinors (Table 7.1).
ii. The origin of families of fermions, since spinors carry two kinds of spins
(Eq. (7.2)) — the Dirac γa and γ̃a. In d = (3+ 1) γa take care of the observed spins
and charges, γ̃a take care of families (Table 7.3).
iii. The origin of the massless vector gauge fields of the observed charges, repre-
sented by the superposition of the spin connection fields ωstm, (s, t) ≥ 5,m ≤
3 [1,4,3].
iv. The origin of masses of family members and of heavy bosons. The superpo-
sition of ωsts ′ , (s, t) ≥ 5, s ′ = (7, 8) and the superposition of ω̃abs ′ , (a, b) =

(0, · · · , 8), s ′ = (7, 8) namely gain at the electroweak break constant values, deter-
mining correspondingly masses of the spinors (fermions) and of the heavy bosons,
explaining [4,3,11] the origin of the Higgs’s scalar and the Yukawa couplings of
the standard model.
v. The origin of the matter-antimatter asymmetry [2], since the superposition of
ωsts ′ , s

′ ≥ 9, cause transitions from anti-leptons into quarks and anti-quarks into
quarks and back, while the appearance of the scalar condensate in the expanding
universe breaks the CP symmetry, enabling the existence of matter-antimatter
asymmetry.
vi. The origin of the dark matter, since there are two groups of decoupled four
families in the low energy regime. The neutron made of quarks of the stable of the
upper four families explains the appearance of the dark matter [10] 8.
vii. The origin of the triangle anomaly cancellation in the standard model. All
the quarks and anti-quarks and leptons and anti-leptons, left and right handed,

8 We followed in Ref. [10] freezing out of the fifth family quarks and anti-quarks in the
expanding universe to see whether baryons of the fifth family quarks are the candidates
for the dark matter.
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appear within one fundamental representation of SO(13, 1) [4,3].
viii. The origin of all the gauge fields. The spin-charge-family theory unifies the
gravity with all the vector and scalar gauge fields, since in the starting action there
is only gravity (Eq. (7.1)), represented by the vielbeins and the two kinds of the
spin connection fields, which in the low energy regime manifests in d = (3 + 1)

as the ordinary gravity and all the directly and indirectly observed vector and
scalar gauge fields [1]. If there is no spinor condensate present, only one of the
three fields is the propagating field (both spin connections are expressible with the
vielbeins). In the presence of the spinor fields the two spin connection fields differ
among themselves (Ref. [1], Eq. (4), and the references therein).

The more work is done on the spin-charge-family theory, the more answers to
the open questions of both standard models is the theory offering.

There are, of course, still open questions (mostly common to all the models)
like:

a. How has our universe really started? The spin-charge-family theory assumes
d = (13 + 1), but how ”has the universe decided” to start with d = (13 + 1)?
If starting at d = ∞, how can it come to (13 + 1) with the massless Weyl repre-
sentation of only one handedness? We have studied in a toy model the break of
symmetry from d = (5 + 1) into (3 + 1) [14], finding that there is the possibility
that spinors of one handedness remain massless after this break. This study gives
a hope that breaking the symmetry from (d− 1)+ 1, where d is even and∞, could
go, if the jump of (d− 1) + 1 to ((d− 4) − 1) + 1would be repeated as twice the
break suggested in Ref. [14]. These jumps should then be repeated all the way
from d =∞ to d = (13+ 1).
b. What did ”force” the expanding universe to break the symmetry of SO(13, 1)
to SO(7, 1) ×SU(3)×U(1)II and then further to SO(3, 1) ×SU(2)× SU(3)×U(1)I
and finally to SO(3, 1)× SU(3)×U(1)?
From phase transitions of ordinary matter we know that changes of temperature
and pressure lead a particular matter into a phase transition, causing that con-
stituents of the matter (nuclei and electrons) rearrange, changing the symmetry of
space.
In expanding universe the temperature and pressure change, forcing spinors
to make condensates (like it is the condensate of the two right handed neutri-
nos in the spin-charge-family theory [3,2,4], which gives masses to vector gauge
fields of SU(2)II, breaking SU(2)II × U(1)II into U(1)I). There might be also
vector gauge fields causing a change of the symmetry (like does the colour
vector gauge fields, which ”dress” quarks and anti-quarks and bind them to
massive colourless baryons and mesons of the ordinary, mostly the first fam-
ily, matter). Also scalar gauge fields might cause the break of the symmetry of
the space (as this do the superposition of ωs ′t ′s and the superposition of ω̃abs,
s = (7, 8), (s ′, t") ≥ 5, (a, b) = (0, · · · , 8) in the spin-charge-family theory [4,3] by
gaining constant values in d = (3 + 1) and breaking correspondingly also the
symmetry of the coordinate space in d ≥ 5).
All these remain to be studied.
c. What is the scale of the electroweak phase transition? How higher is this scale in



i
i

“proc17” — 2017/12/11 — 19:44 — page 98 — #112 i
i

i
i

i
i

98 N.S. Mankoč Borštnik

comparison with the colour phase transition scale? If the colour phase transition
scale is at around 1 GeV (since the first family quarks contribute to baryons masses
around 1 GeV), is the electroweak scale at around 1 TeV (of the order of the mass
of Higgs’s scalar) or this scale is much higher, possibly at the unification scale
(since the spin-charge-family theory predicts two decoupled groups of four families
and several scalar fields — twice two triplets and three singlets [3,11,4])?

d. There are several more open questions. Among them are the origin of the
dark energy, the appearance of fermions, the origin of inflation of the universe,
quantization of gravity, and several others. Can the spin-charge-family theory be
— while predicting the fourth family to the observed three, several scalar fields,
the fifth family as the origin of the dark matter, the scalar fields transforming
anti-leptons into quarks and anti-quarks into quarks and back and the condensate
which break this symmetry — the first step, which can hopefully show the way to
next steps?

7.4 APPENDIX: Some useful formulas and relations are
presented [4,5]

Sac
ab

(k)
cd

(k) = − i
2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)= i
2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] = i
2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= − i
2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = − i
2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= − i
2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) = i
2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)= i
2
ηcc

ab

(k)
cd

[k] . (7.16)

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .(7.17)

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (7.18)
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Abstract. This is a discussion on fields, the internal degrees of freedom of which are
expressed by either the Grassmann or the Clifford ”coordinates”. Since both ”coordinates”
fulfill anticommutation relations, both fields can be second quantized so that their creation
and annihilation operators fulfill the requirements of the commutation relations for fermion
fields. However, while the internal spin, determined by the generators of the Lorentz group
of the Clifford objects Sab and S̃ab (in the spin-charge-family theory Sab determine the spin
degrees of freedom and S̃ab the family degrees of freedom) have half integer spin, have Sab

(expressible with Sab + S̃ab) integer spin. Nature made obviously a choice of the Clifford
algebra.

We discuss here the quantization — first and second — of the fields, the internal
degrees of freedom of which are functions of the Grassmann coordinates θ and their
conjugate momentum, as well as of the fields, the internal degrees of freedom of which are
functions of the Clifford γa. Inspiration comes from the spin-charge-family theory [[1,2,9,3],
and the references therein], in which the action for fermions in d-dimensional space is
equal to

∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c., with p0a = fαap0α + 1

2E
{pα, Ef

α
a}−, p0α = pα −

1
2
Sabωabα − 1

2
S̃abω̃abα. We write the basic states of the Grassmann fields and the Clifford

fields as a function of products of either Grassmann or Clifford objects, trying to understand
the choice of nature. We look for the action for free fields which are functions of either the
Grassmann coordinates or of the Clifford coordinates in order to understand why Clifford
algebra ”win” in the competition for the physical degrees of freedom (at least in our
observable world).

Povzetek. Avtorja obravnavata polja, pri katerih so notranje prostostne stopnje izražene
ali z Grassmannovimi ali pa s Cliffordovimi “koordinatami”. Ker obe vrsti “koordinat”
zadoščata antikomutacijskim relacijam, lahko za obe vrsti polj naredimo drugo kvanti-
zacijo tako, da kreacijski in anihilacijski operatorji zadoščajo komutacijskim relacijam za
fermionska polja. Za razliko od internih spinov, ki jih določajo generatorji Lorentzove
grupe Cliffordovih objektov Sab in S̃ab (v teoriji spinov-nabojev-družin Sab določajo spinske
prostostne stopnje, S̃ab pa družinske prostostne stopnje) in imajo polštevilčni spin), imajo
Sab (ki jih lahko izrazimo z Sab + S̃ab) celoštevilski spin. “Narava se je očitno odločila” za
Cliffordovo algebro.

? This is the part of the talk presented by N.S. Mankoč Borštnik at the 20th Workshop
”What Comes Beyond the Standard Models”, Bled, 09-17 of July, 2017, and published in
the Proceedings to this workshop.



i
i

“proc17” — 2017/12/11 — 19:44 — page 101 — #115 i
i

i
i

i
i

8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 101

Avtorja obravnavata kvantizacijo — prvo in drugo — za polja, pri katerih so notranje
prostostne stopnje funkcije Grassmannovih koordinat θ in ustreznih konjugiranih momen-
tov, pa tudi za polja, kjer so interne prostostne stopnje funkcije Cliffordovih koordinat
γa. Navdih najdeta v teoriji spinov-nabojev-družin [[1,2,9,3], in reference v teh člankih], v
kateri je akcija za fermione v d razsežnem prostoru enaka

∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c.,

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα. Da bi razumela

“izbiro narave”, zapišeta osnovna stanja Grassmannovih in Cliffordovih polj kot produkte
Grassmannovih ali Cliffordovih objektov. Iščeta akcijo za prosta polja, ki so funkcije Grass-
mannovih ali pa Cliffordovih koordinat, da bi bolje razumela, zakaj Cliffordova algebra
“zmaga” v tekmi za fizikalne prostostne stopnje (vsaj v opazljivem svetu).

Keywords: Spinor representations, Kaluza-Klein theories, Discrete symmetries,
Higher dimensional spaces, Beyond the standard model
PACS: 11.30.Er,11.10.Kk,12.60.-i, 04.50.-h

8.1 Introduction

This paper is to look for the answers to the questions like: Why our universe
”uses” the Clifford rather than the Grassmann coordinates, although both lead
in the second quantization procedure to the anticommutation relations required
for fermion degrees of freedom? Does the answer lay on the fact that the Clifford
degrees of freedom offers the appearance of the families, the half integer spin and
the charges as observed so far for fermions, while the Grassmann coordinates
offer the groups of (isolated) integer spin states and to charges in the adjoint
representations? Can this explain why the simple starting action of the spin-charge-
family theory of one of us (N.S.M.B.) [9,3,5,8,4,6,7] is doing so far extremely well
in manifesting the observed properties of the fermion and boson fields in the low
energy regime?

The working hypothesis is that ”Nature knows” all the mathematics, accord-
ingly therefore ”she knows” for the Grassmann and the Clifford coordinates. To
understand why Grassmann space ”was not chosen” – we see that the use of the
Dirac γa’s enabled to understand the fermions in the first and second quntized
theory of fields – or better, to understand why the Clifford algebra (in the spin-
charge-family theory of two kinds – γa’s and γ̃a’s) is succesfully applicable at least
in the low enery regime, we work in this paper with both types of spaces.

This work is a part of the project of both authors, which includes the fermion-
ization procedure of boson fields or the bosonization procedure of fermion fields,
discussed in Refs. [10] and in this proceedings for any dimension d (by the authors
of this contribution, while one of them, H.B.F.N. [11], has succeeded with another
author to do the fermionization for d = (1+ 1))), and which would hopefully help
to better understand the content and dynamics of our universe.

In the spin-charge-family theory [9,3,5,8,4,6,7] — which offers the explanation
of all the assumptions of the standard model, with the appearance of families, the
scalar higgs and the Yukawa couplings included, offering also the explanation for
the matter-antimatter asymmetry in our universe and for the appearance of the
dark matter — a very simple starting action for massless fermions and bosons in
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102 N.S. Mankoč Borštnik and H.B.F. Nielsen

d = (1+ 13) is assumed, in which massless fermions interact with only gravity, the
vielbeins fαa (the gauge fields of momentums pa) and the two kinds of the spin
connections (ωabα and ω̃abα, the gauge fields of the two kinds of the Clifford
algebra objects γa and γ̃a, respectively).

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (8.1)

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα and

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c.. The two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 . (8.2)

anticommute, {γa, γ̃b}+ = 0 (γa and γ̃b are connected with the left and the right
multiplication of the Clifford objects, there is no third kind of operators). One of
the objects, the generators Sab = i

4
(γa γb − γb γa) , determine spins and charges

of spinors of any families, another, S̃ab = i
4
(γ̃a γ̃b − γ̃b γ̃a) , determine the family

quantum numbers. Here 1 fα[afβb] = fαafβb− fαbfβa. There are correspondingly
two kinds of infinitesimal generators of the Lorentz transformations in the internal
degrees of freedom - Sab for SO(13, 1) and S̃ab for S̃O(13, 1), arranging states into
representations.

The curvature R and R̃ determine dynamics of the gauge fields — the spin
connections and the vielbeins, which manifest in d = (1+ 3) all the known vector
gauge fields as well as the scalar fields [5] which explain the appearance of higgs
and the Yukawa couplings, provided that the symmetry breaks from the starting
one to SO(3, 1)× SU(3)×U(1).

The infinitesimal generators of the Lorentz transformations for the gauge
fields – the two kinds of the Clifford operators and the Grassmann operators –
operate as follows

{Sab, γe}− = −i (ηae γb − ηbe γa) ,

{S̃ab, γ̃e}− = −i (ηae γ̃b − ηbe γ̃a) ,

{Sab, θe}− = −i (ηae θb − ηbe θa) ,

{Mab, Ad...e...g}− = −i (ηaeAd...b...g − ηbeAd...a...g) , (8.3)

where Mab are defined by a sum of Lab plus any of Sab or S̃ab, in the Grassmann
case Mab is Lab + Sab, which appear to be Mab= Lab + Sab + S̃ab, as presented
later in Eq. (8.22).

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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We discuss in what follows the first and the second quantization of the fields
which depend on the Grassmann coordinates θa, as well as of the fields which
depend on the Clifford coordinates γa (or γ̃a) in order to try to understand why
”nature has made a choice” of fermions of spins and charges (describable in the
spin-charge-family theory by subgroups of the Lorentz group expressible with the
generators Sab) in the fundamental representations of the groups, which interact
in the spin-charge-family theory through the boson gauge fields (the vielbeins and
the spin connections of two kinds). We choose correspondingly either θa’s or γa’s
(or γ̃a’s, either γa’s or γ̃a’s [6,7,9]) to describe the internal degrees of freedom of
fields to clarify the ”choice of nature” and correspondingly also the meaning of
fermionization of bosons (or bosonization of fermions) discussed in Refs. [10] and in
this proceedings for any dimension d.

In all these cases we treat free massless boson and fermion fields; masses of
the fields which manifest in d = (1 + 3) are in the spin-charge-family theory due
to their interactions with the gravitational fields in d > 4, described by the scalar
vielbeins or spin connection fields

8.2 Observations which might be of some help when
fermionizing boson fields or bosonizing fermion fields

We present in this section properties of fields with the integer spin in d-dimensional
space, expressed in terms of the Grassmann algebra objects, and the fermion fields,
expressed in terms of the Clifford algebra objects. Since the Clifford algebra objects
are expressible with the Grassmann algebra objects (Eqs. (8.14, 8.15)), the norms of
both are determined by the integral in the Grassmann space, Eqs. (8.24, 8.27).

a. Fields with the integer spin in the Grassmann space

A point in d-dimensional Grassmann space of real anticommuting coordinates
θa, (a = 0, 1, 2, 3, 5, . . . , d), is determined by a vector {θa} = (θ1, θ2, θ3, θ5, . . . , θd).
A linear vector space over the coordinate Grassmann space has correspondingly
the dimension 2d, due to the fact that (θai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

Correspondingly are fields in the Grassmann space expressed in terms of the
Grassmann algebra objects

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog > , ai ≤ ai+1 , (8.4)

where |φog > is the vacuum state, here assumed to be |φog >= |1 >, so that
∂
∂θa

|φog >= 0 for any θa. The Kalb-Ramond boson fields aa1a2...ak are antisym-
metric with respect to the permutation of indexes, since the Grassmann coordinates
anticommute

{θa, θb}+ = 0 . (8.5)
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The left derivative ∂
∂θa

on vectors of the space of monomials B(θ) is defined as
follows

∂

∂θa
B(θ) =

∂B(θ)
∂θa

,{
∂

∂θa
,
∂

∂θb

}
+

B = 0 , for all B . (8.6)

Defining pθ
a

= i ∂
∂θa

it correspondingly follows

{pθa, pθb}+ = 0 , {pθa, θb}+ = i ηab , (8.7)

The metric tensor ηab (= diag(1,−1,−1, . . . ,−1)) lowers the indexes of a vector
{θa}: θa = ηab θ

b, the same metric tensor lowers the indexes of the ordinary vector
xa of commuting coordinates.

Defining 2

(θa)† =
∂

∂θa
ηaa = −i pθaηaa , (8.8)

it follows

(
∂

∂θa
)† = ηaa θa , (pθa)† = −iηaaθa . (8.9)

By introducing [2] the generators of the infinitesimal Lorentz transformations in
the Grassmann space as

Sab = θapθb − θbpθa ,

(8.10)

one finds

{Sab,Scd}− = i{Sadηbc + Sbcηad − Sacηbd − Sbdηac} ,

Sab† = ηaaηbbSab . (8.11)

The basic states in Grassmann space can be arrange into representations [2] with
respect to the Cartan subalgebra of the Lorentz algebra, as presented in App. 8.4.
The state in d-dimensional space with all the eigenvalues of the Cartan subalgebra
of the Lorentz group of Eq. (8.67) equal to either i or 1 is (θ0 − θ3)(θ1 + iθ2)(θ5 +
iθ6) · · · (θd−1 + iθd)|φog >, with |φog >= |1 >.

b. Fermion fields and the Clifford objects

Let us present as well the properties of the fermion fields with the half integer
spin, expressed by the Clifford algebra objects

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc > , ai ≤ ai+1 , (8.12)

2 In Ref. [2] the definition of θa† was differently chosen. Correspondingly also the scalar
product needed different weight function in Eq. (8.24) is different.
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where |ψoc > is the vacuum state. The Kalb-Ramond fields aa1a2...ak are again in
general boson fields, which are antisymmetric with respect to the permutation of
indexes, since the Clifford objects have the anticommutation relations

{γa, γb}+ = 2ηab . (8.13)

A linear vector space over the Clifford coordinate space has again the dimension
2d, due to the fact that (γai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

One can see that γa are expressible in terms of the Grassmann coordinates
and their conjugate momenta as

γa = (θa − i pθa) . (8.14)

We also find γ̃a

γ̃a = i (θa + i pθa) , (8.15)

with the anticommutation relation of Eq. (8.13) and

{γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (8.16)

Taking into account Eqs. (8.8, 8.14, 8.15) one finds

(γa)† = γaηaa , (γ̃a)† = γ̃aηaa ,

γaγa = ηaa , γa(γa)† = 1 , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = 1 . (8.17)

All three choices for the linear vector space – spanned over either the coordinate
Grassmann space, over the vector space of γa, as well as over the vector space of
γ̃a – have the dimension 2d.

We can express Grassmann coordinates θa and momenta pθa in terms of γa

and γ̃a as well

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) . (8.18)

It then follows as it should ∂
∂θb

θa = 1
2
ηbc(γ

c + iγ̃c) 1
2
(γc − iγ̃c) = δab.

Correspondingly we can use either γa as well as γ̃a instead of θa to span the
vector space. In this case we change the vacuum from the one with the property
∂
∂θa

|φog >= 0 to |ψoc >with the property [2,7,9]

< ψoc|γ
a|ψoc > = 0 , γ̃a|ψoc >= iγ

a|ψoc > , γ̃aγb|ψoc >= −iγbγa|ψoc > ,

γ̃aγ̃b|ψoc > |a 6=b = −γaγb|ψoc > , γ̃aγ̃b|ψoc > |a=b = ηab|ψoc > . (8.19)

This is in agreement with the requirement

γa B(γ) |ψoc >: = (a0 γ
a + aa1 γ

a γa1 + aa1a2 γ
a γa1γa2 + · · ·+

aa1···ad γ
a γa1 · · ·γad ) |ψoc > ,

γ̃a B(γ) |ψoc >: = ( i a0γ
a − i aa1γ

a1 γa + i aa1a2γ
a1γa2 γa + · · ·+

i (−1)d aa1···adγ
a1 · · ·γad γa ) |ψoc > . (8.20)
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We find the infinitesimal generators of the Lorentz transformations in the
Clifford algebra space

Sab =
i

4
(γaγb − γbγa) , Sab† = ηaaηbbSab ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) , S̃ab† = ηaaηbbS̃ab , (8.21)

with the commutation relations for either Sab or S̃ab of Eq. (8.11), if Sab is replaced
by either Sab or S̃ab, respectively, while

Sab = Sab + S̃ab ,

{Sab, S̃cd}− = 0 . (8.22)

The basic states in the Clifford space can be arranged in representations, in which
any state is the eigenstate of the Cartan subalgebra operators of Eq. (8.67). The state
in d-dimensional space with the eigenvalues of either S03, S12, S56, . . . , Sd−1d

or S̃03, S̃12, S̃56, . . . , S̃d−1d equal to 1
2
(i, 1, 1, . . . , 1) is (γ0 − γ3)(γ1 + iγ2)(γ5 +

iγ6) · · · (γd−1 + iγd), where the states are expresses in terms of γa. The states of
one representation follow from the starting state obtained by Sab, which do not
belong to the Cartan subalgebra operators, while S̃ab, which define family, jumps
from the starting family to the new one.

8.2.1 Norms of vectors in Grassmann and Clifford space

Let us look for the norm of vectors in Grassmann space

B =

d∑
k

aa1a2...ak θ
a1θa2 . . . θak |φog >

and in Clifford space

F =

d∑
k

aa1a2...ak γ
a1γa2 . . . γak |ψoc >,

where |φog > and |φoc > are the vacuum states in the Grassmann and Clifford
case, respectively. In what follows we refer to the Ref. [2].

a. Norms of the Grassmann vectors

Let us define the integral over the Grassmann space [2] of two functions of
the Grassmann coordinates < B|C >, < B|θ >=< θ|B >†, by requiring

{dθa, θb}+ = 0,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · θd = 1 ,

ddθ = dθd . . . dθ0 , ω = Πdk=0(
∂

∂θk
+ θk) , (8.23)
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with ∂
∂θa

θc = ηac. The scalar product is defined by the weight function ω =

Πdk=0(
∂
∂θk

+ θk). It then follows for a scalar product < B|C >

< B|C > =

∫
ddxddθa ω < B|θ >< θ|C >=

d∑
k=0

∫
ddxb∗b1...bkcb1...bk ,(8.24)

where according to Eq. (8.8) follows:

< B|θ >=< φog|
d∑
p=0

(−i)p a∗a1...app
θap ηapap · · ·pθa1 ηa1a1 .

The vacuum state is chosen to be |φog >= |1 >, Eq. (8.4).
The norm < B|B > is correspondingly always nonnegative.

b. Norms of the Clifford vectors

Let us look for the norm ofvectors, expressed with the Clifford objects F =∑d
k aa1a2...ak γ

a1γa2 . . . γak |ψoc >, where |φog > and |ψoc > are the two vac-
uum states when the Grassmann and the Clifford objects are concerned, respec-
tively. By taking into account Eq. (8.17) it follows that

(γa1γa2 . . . γak)† = γakηakak . . . γa2ηa2a2γa1ηa1a1 , (8.25)

while γa γa = ηaa.
We can use Eqs. (8.23, 8.24) to evaluate the scalar product of two Clifford

algebra objects < γa|F >=< (θa − ipθa)|F > and < (θb − ipθb)|G >. These
expressions follow from Eqs. (8.14, 8.15, 8.17)). We must then choose for the
vacuum state the one from the Grassmann case – |ψoc >= |φog >= |1 >. We
obtain

< F|G > =

∫
ddxddθa ω < F|γ >< γ|G >=

d∑
k=0

∫
ddxa∗a1...akbb1...bk .

(8.26)

{Similarly we obtain, if we express F̃ =
∑d
k=0 aa1a2...ak γ̃

a1 γ̃a2 . . . γ̃ak |φoc >

and G̃ =
∑d
k=0 bb1b2...bk γ̃

b1 γ̃b2 . . . γ̃bk |φoc > and take |ψoc >= |φog >= |1 >,
the scalar product

< F̃|G̃ > =

∫
ddxddθa ω < F̃|γ̃ >< γ̃|G̃ >=

d∑
k=0

∫
ddxa∗a1...akab1...bk .}

(8.27)

Correspondingly we can write

(aa1a2...ak γ
a1γa2 . . . γak)†(aa1a2...ak γ

a1γa2 . . . γak)

= a∗a1a2...ak aa1a2...ak . (8.28)
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The norm of each scalar term in the sum of F is nonnegative.
c. We have learned that in both spaces – Grassmann and Clifford – the norms

of basic states can be defined so that the states, which are eigenvectors of the Cartan
subalgebra, are orthogonal and normalized using the same integral. Studying the
second quantization procedure in Subsect. 8.2.3 we learn that not all 2d states can
be generated by the creation and annihilation operators fullfilling the requirements
for the second quantized operators, either for states with integer spins or for states
with half integer spin. We also learn that the vacuum state must in the Clifford
algebra case be different the one assumed in the first quantization case.

8.2.2 Actions in Grassmann and Clifford space

Let us construct actions for states in the Grassmann space, as well as in the Clifford
space. While the action in the Clifford space is well known since long [17], the
action in the Grassmann space must be found. In both cases we look for actions
for free massless states only.

States in Grassmann space as well as states in Clifford space are organized to
be – within each of the two spaces – orthogonal and normalized with respect to
Eq. (8.23). We choose the states in each of two spaces to be the eigenstates of the
Cartan subalgebra – with respect to Sab in Grassmann space and with respect to
Sab and S̃ab in Clifford space, Eq. (8.67).

In both spaces the requirement that states are obtained by the application of
creation operators on vacuum states – b̂θi obeying the commutation relations of
Eq. (8.40) on the vacuum state |φog > for Grassmann space, and b̂αi obeying the
commutation relation of Eq. (8.52) on the vacuum states |ψoc >, Eq. (8.59), for
Clifford space – reduces the number of states, in the Clifford space more than in
the Grassmann space. But while in the Clifford space all physically applicable
states are reachable by either Sab or by S̃ab, the states in the Grassmann space,
belonging to different representations with respect to the Lorentz generators, seem
not to be connected.

a. Action in Clifford space

In Clifford space we expect that the action for a free massless object

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (8.29)

is Lorentz invariant, and that it leads to the equations of motion

γapa|ψ
α
i > = 0 , (8.30)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ

α
i > = papa|ψ

α
i >= 0 .

(8.31)
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Correspondingly γ0 appears in the action since we pay attantion that

Sab† γ0 = γ0 Sab ,

S†γ0 = γ0S−1 ,

S = e−
i
2
ωab(S

ab+Lab) . (8.32)

We choose the basic states to be the eigenstates of all the members of the
Cartan subalgebra, Eq. (8.67). Correspondingly all the states, belonging to different
values of the Cartan subalgebra – at least they differ in one value of either the
set of Sab or the set of S̃ab, Eq. (8.67) – are orthogonal with respect to the scalar
product for a chosen vacuum state, defined as the integral over the Grassmann
coordinates, Eq. (8.23). Correspondingly the states generated by the creation oper-
ators, Eq. (8.57), on the vacuum state, Eq. (8.59), are orthogonal as well (both last
equations will appear later).

b. Action in Grassmann space

In Grassmann space we require – similarly as in the Clifford case – that the
action for a free massless object

A =
1

2
{

∫
ddx ddθ ω (φ†(1− 2θ0

∂

∂θ0
) θapaφ)}+ h.c. , (8.33)

is Lorentz invariant. pa = i ∂
∂xa

. We use the integral also over θa coordinates, with
the weight functionω from Eq. (8.23). Requiring the Lorentz invariance we add
after φ† the operator (1 − 2θ0 ∂

∂θ0
), which takes care of the Lorentz invariance.

Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) . (8.34)

We also require that the action leads to the equations of motion

θapa|φ
θ
i > = 0 ,

∂

∂θa
pa |φ

θ
i > = 0 , (8.35)

both equations leading to the same solution, and also to the Klein-Gordon equation

{θapa,
∂

∂θb
pb}+|φ

θ
i > = papa|φ

θ
i >= 0 . (8.36)

c. We learned:
In both spaces – in the Clifford and in the Grassmann space – there exists the action,
which leads to the equationsof motion and to the corresponding Klein-Gordon
equation.

We shall see that creation and annihilation operators in both spaces fulfill the
anticommutation relations, required for fermions. But while the Clifford algebra
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defines spinors with the half integer eigenvalues of the Cartan subalgebra opera-
tors of the Lorentz algebra, the Grassmann algebra defines states with the integer
eigenvalues of the Cartan subalgebra.

8.2.3 Second quantization of Grassmann vectors and Clifford vectors

States in the Grassmann space as well as states in the Clifford space are organized
to be – within each of the two spaces – orthogonal and normalized with respect to
Eq. (8.23). All the states in each of spaces are chosen to be eigenstates of the Cartan
subalgebra – with respect to Sab in the Grassmann space, and with respect to Sab

and S̃ab in the Clifford space, Eq. (8.67).
In both spaces the requirement that states are obtained by the application

of creation operators on vacuum states – b̂θi obeying the commutation relations
of Eq. (8.40) on the vacuum state |φog >= |1 > for the Grassmann space, and
b̂αi obeying the commutation relation of Eq. (8.52) on the vacuum states |ψoc >,
Eq. (8.59), for the Clifford space – reduces the number of states, in the Clifford space
more than in the Grassmann space. But while in the Clifford space all physically
applicable states are reachable either by Sab or by S̃ab, the states, belonging to
different groups with respect to the Lorentz generators, seems not to be connected
by the Lorentz operators in the Grassmann space.

Let us construct the creation and annihilation operators for the cases that we
use a. the Grassmann vector space, or b. the Clifford vector space. We shall see that
from 2d states in either the Grassmann or the Clifford space (all are orthogonal
among themselves with respect to the integral, Eq. (8.23)) – separately in each of
the two spaces – there are reduced number of sates generated by the corresponding
creation and annihilation operators, when products of Grassmann coordinates θa’s
and momenta ∂

∂θa
are required to represent creation and annihilation operators,

and only 2
d
2
−1 · 2d2−1, Eq.(8.60), when products of nilpotents and projectors,

Eq. (8.46), are chosen to generate creation and annihilation operators.

a. Quantization in Grassmann space

There are 2d states in Grassmann space, orthogonal to each other with respect
to Eq. (8.23). To any coordinate there exists the conjugate momentum. We pay
attention in this paper to 2

d
2
−1(2

d
2
−1 + 1) states, Eq. (8.43), when products of

the superposition of the Grassmann coordinates, which are eigenstates of the
Cartan subalgebra operators, are used to represent creation and their Hermitian
conjugatde objects the annihilation operators. Let us see how it goes.

If b̂θ†i is a creation operator, which creates a state in the Grassmann space,
when operating on a vacuum state |ψog > and b̂θi = (b̂θ†i )† is the corresponding an-
nihilation operator, then for a set of creation operators b̂θ†i and the corresponding
annihilation operators b̂θi it must be

b̂θi |φog > = 0 ,

b̂θ†i |φog > 6= 0 . (8.37)

We first pay attention on only the internal degrees of freedom - the spin.



i
i

“proc17” — 2017/12/11 — 19:44 — page 111 — #125 i
i

i
i

i
i

8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 111

Choosing b̂θa = ∂
∂θa

it follows

b̂θ†a = θa ,

b̂θa =
∂

∂θa
,

{b̂θa, b̂
θ†
b }+ = δab ,

{b̂θa, b̂
θ
b}+ = 0 ,

{b̂θ†a , b̂
†
b}+ = 0 ,

b̂†θa |φog > = θa|φog > ,

b̂θa |φog > = 0 . (8.38)

The vacuum state |φog > is in this case |1 >.
The identity I can not be taken as an creation operator, since its annihilation

partner does not fulfill Eq. (8.37).
We can use the products of superposition of θa’s as creation and products

of superposition of ∂
∂θa

’s as annihilation operators provided that they fulfill
the requirements for the creation and annihilation operators, Eq. (8.40), with the
vacuum state |φog >= |1 >.

It is convenient to take products of superposition of vectors θa and θb to
construct creation operators so that each factor is the eigenstate of one of the
Cartan subalgebra member of the Lorentz algebra (8.67). We can start with the
creation operators as products of d

2
states b̂θ†aibi = 1√

2
(θai ± εθbi). Then the

corresponding annihilation operators are d
2

factors of b̂θaibi =
1√
2
( ∂
∂θai

±ε∗ ∂
∂θbi

),

ε = i, if ηaiai = ηbibi and ε = −1, if ηaiai 6= ηbibi . Starting with the state b̂θ†i =

( 1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) the rest of states belonging to

the same Lorentz representation follows from the starting state by the aplication
of the operators Scf, which do not belong to the Cartan subalgebra operators. It
follows

b̂θ†i = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θi = (
1√
2
)
d
2 (

∂

∂θd−1
+ i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) , ,

b̂θ†j = (
1√
2
)
d
2
−1 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θj = (
1√
2
)
d
2
−1 (

∂

∂θd−1
+ i

∂

∂θd
) · · · ( ∂

∂θ3
∂

∂θ0
− i(

∂

∂θ2
∂

∂θ1
) .

· · · (8.39)

It is taking into account that S01 transforms ( 1√
2
)2(θ0−θ3)(θ1+iθ2) into 1√

2
(θ0θ3+

iθ1θ2) or any Sac, which does not belong to Cartan subalgebra, Eq.(8.65), trans-
forms ( 1√

2
)2(θa + iθb)(θc + iθd) into i 1√

2
(θaθb + θcθd).

One finds that Sab(θa ± εθb) = ∓ ηaa

ε
(θa + εθb), while Sab applied on

(θaθb ± εθcθd) gives zero.
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Although all the states, generated by creation operators, which include one
(I±εθaθb) or several (I±εθa1θb1) · · · (I±εθakθak), are orthogonal with respect
to the scalar product, Eq.(8.24), such creation operators do not have appropriate
annihilation operators since (I ± εθaθb) and (I ± ε∗ ∂

∂θb
∂
∂θa

) (or several (I ±
εθa1θb1) · · · (I ± εθakθbk) and (I ± ε∗ ∂

∂θbk
∂
∂θak

) · · · (I ± ε∗ ∂
∂θb1

∂
∂θa1

)) do not
fulfill Eqs. (8.37, 8.38), since I has no annihilation partner. However, creation
operators which are products of one or several, let say n, of the kind θaiθbi (at
most d

2
, each factor of them is the ”eigenstate” of one of the Cartan subalgebra

operators – Sabθaθb|1 >= 0), while the rest, d
2
− n, have the ”eigenvalues” either

(+1 or −1) or (+i or −i), fulfill relations

{b̂θi , b̂
θ†
j }+|φog > = δij |φog > ,

{b̂θi , b̂
θ
j }+|φog > = 0 |φog > ,

{b̂θ†i , b̂
†
j }+|φog > = 0|φog > ,

b̂θ†j |φog > = |φj >

b̂θj |φog > = 0 |φog > . (8.40)

There are in (d = 2) two creation ((θ0 ∓ θ1, for ηab = diag(1,−1)) and corre-
spondingly two annihilation operators ( ∂

∂θ0
∓ ∂

∂θ1
), and one creation operator

θ0θ1 and the corresponding annihilation operator ∂
∂θ1

∂
∂θ0

, each belonging to its
own group with respect to the Lorentz transformation operators, which fulfill
Eq. (8.40), in (d = 4) there are two triplets of the kind presented in Eq. (8.39)
of creation and correspondingly two triplets of annihilation operators, and four
creation operators with one product of θaiθbi multiplied by (θci ± θdi ) and four
corresponding annihilation operators as well as the creation operator θ0θ3θ1θ2

with the corresponding annihilation operator, they all fulfill Eq. (8.40).
Let us count the number of creation operators, when one starts with the

creator, which is the product of d
2

factors, each with the ”eigenvalue” of the Cartan
subalgebra operators, Eq. (8.67), equal to either +i or +1, Eq. (8.39):

b̂θ†0 = (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) . (8.41)

There are 2
d
2
−1 creation operators of this type {(θ0−θ3)(θ1+iθ2)(θ5+iθ6) · · · (θd−3+

iθd−2)(θd−1 + iθd), (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθ5),
(θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd), · · · , (θ0 − θ3)(θ1 +
iθ2)(θ5−iθ6) · · · (θd−1−iθ5)} with the eigenvalues of the Cartan subalgebra equal
to {(+i,+1,+1, . . . ,+1,+1), (−i,−1,+1, . . . ,+1+ 1), (−i,+1,−1, . . . ,+1,+1),· · · ,
(+i,+1,+1 . . . ,−1,−1)}, each of the operators distinguishing from the others in
one pair of factors with the opposite eigenvalues of the Cartan subalgebra opera-
tors.

There are in addition 2
d
2
−1(2

d
2
−1 − 1)/2 Grassmann odd operators obtained

when Sef apply on (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd),
(θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) and on the rest of
2
d
2
−1 − 1 operators. S01 applied on (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 +

iθd−2)(θd−1 + iθd), (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd)
gives ∝ (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd), (θ0 + θ3)(θ1 −
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iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθ5)). Each of these operators have two
”eigenvalues” of the Cartan subalgebra equal to zero and all the rest equal to either
±i (if one of the two summands has ηaa = 1) or ±1 (otherwise). All these creation
operators are connected by Seg.

There are correspondingly all together 2
d
2
−1(2

d
2
−1 + 1)/2 creation operators

and the same number of annihilation operators (they follow from the creation
operators by Hermitian conjugation, Eq. (8.8)), belonging to one group, so that all
the operators follow from the starting one by the application of Saf.

There is additional group of creation and annihilation operators, which follow
from the starting one

b̂θ†0 = (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) . (8.42)

(one can chose in the starting creation operator with changed sign in any of
factors in the product, in each case the same group will follow). All the rest
2
d
2
−1(2

d
2
−1 + 1)/2 creation operators can be obtained from the starting one as in

the case of the first group.
There is therefore

2
d
2
−1(2

d
2
−1 + 1) (8.43)

creation and the same number of annihilation operators, which are built on two
starting states, presented in Eqs. (8.41, 8.42), divided in two groups, each gener-
ating or annihilating states belonging to the same representation of the Lorentz
algebra.

The rest of creators (and the corresponding annihilators) have opposite Grass-
mann character than the ones studied so far – like θ0θ1 ( ∂

∂θ1
∂
∂θ0

) in d = (1+1) and
in d = (1+3) θ0θ3(θ1±iθ2) ( ∂

∂θ1
∓i ∂

∂θ2
) ∂
∂θ3

∂
∂θ0

), θ1θ2(θ0∓iθ3) (( ∂
∂θ0
±i ∂

∂θ3
) ∂
∂θ1

∂
∂θ2

) and θ0θ3θ1θ2 ( ∂
∂θ2

∂
∂θ1

∂
∂θ3

∂
∂θ0

), which also fulfill the relations of Eq. (8.40).
All the states |φθi >, generated by the creation operators (presented in Eq. (8.40))

on the vacuum state |φog > are the eigenstates of the Cartan subalgebra operators
and are orthogonal and normalized with respect to the norm of Eq. (8.23)

< φθi |φ
θ
j > = δij . (8.44)

If we now extend the creation and annihilation operators to the ordinary
coordinate space, the relation among creation and annihilation operators at one
time read

{b̂θi (~x), b̂
θ†
j (~x ′)}+|φog > = δij δ(~x− ~x ′)|φog > ,

{b̂θi (~x), b̂
θ
j (~x
′)}+|φog > = 0 |φog > ,

{b̂θ†i (~x), b̂θ†j (~x ′)}+|φog > = 0 |φog > ,

b̂θ†j (~x)|φog > = 0 |φog >

|φog > = |1 > . (8.45)

b. Quantization in Clifford space
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In Grassmann space the requirement that products of eigenstates of the Cartan
subalgebra operators represent the creation and annihilation operators, obeying
the relation Eq. (8.40), reduces the number of states. Let us study what happens,
when, let say, γa’s are used to create the basis and correspondingly also to create
the creation and annihilation operators.

Let us point out that γa is expressible with θa and its its deriative (γa =

(θa + ∂
∂θa

)), Eq. (8.14), and that we again require that creation (annihilation)
operators create (annihilate) states, which are eigenstates of the Cartan subalgebra,
Eq. (8.67). We could as well make a choice of γ̃a = i(θa − ∂

∂θa
) 3. We shall follow

here to some extend Ref. [15].
Making a choice of the Cartan subalgebra eigenstates of Sab, Eq. (8.67),

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]: =
1

2
(1+

i

k
γaγb) , (8.46)

where k2 = ηaaηbb, recognizing that the Hermitian conjugate values of
ab

(k) and
ab

[k] are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] , (8.47)

while the corresponding eigenvalues of Sab, Eq. (8.48), and S̃ab, Eq. (8.85), are

Sab
ab

(k) =
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k]

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −
k

2

ab

[k] . (8.48)

We find in d = 2(2n+ 1) that from the starting state with products of odd number
of only nilpotents

|ψ11 > |2(2n+1) =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > , (8.49)

having correspondingly an odd Clifford character 4, all the other states of the same
Lorentz representation, there are 2

d
2
−1 members, follow by the application of Scd 5,

which do not belong to the Cartan subalgebra, Eq. (8.67): Scd |ψ11 > |2(2n+1) =

|ψ1i > |2(2n+1). The operators S̃cd, which do not belong to the Cartan subalgebra of

3 We choose γa’s, Eq.(8.14) to create the basic states. We could instead make a choice of
γ̃a’s, Eq.(8.15) to create the basic states. In the case of this latter choice the role of γ̃a and
γa should be correspondingly exchanged in Eq. (8.74).

4 We call the starting state in d = 2(2n + 1) |ψ11 > |2(2n+1), and the starting state in d = 4n

|ψ11 > |4n.
5 The smallest number of all the generators Sac, which do not belong to the Cartan subal-

gebra, needed to create from the starting state all the other members is 2
d
2
−1 − 1. This is

true for both even dimensional spaces – 2(2n + 1) and 4n.
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S̃ab, Eq. (8.67), generate states with different eigenstates of the Cartan subalgebra
(S̃03, S̃12, S̃56, · · · , S̃d−1d), we call the eigenvalues of their eigenstates the ”family”
quantum numbers. There are 2

d
2
−1 families. From the starting new member with

a different ”family” quantum number the whole Lorentz representation with
this ”family” quantum number follows by the application of Sef: Sef S̃cd|ψ11 >
|2(2n+1) = |ψji > |2(2n+1). All the states of one Lorentz representation of any
particular ”family” quantum number have an odd Clifford character, since neither
Scd nor S̃cd, both with an even Clifford character, can change this character. We
shall comment our limitation of states to only those with an odd Clifford character
after defining the creation and annihilation operators.

For d = 4n the starting state must be the product of one projector and 4n− 1

nilpotents, since we again limit states to those with an odd Clifford character. Let
us start with the state

|ψ11 > |4n =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] |ψoc > , (8.50)

All the other states belonging to the same Lorentz representation follow again by
the application of Scd on this state |ψ11 > |4n, while a new family starts by the
application of S̃cd|ψ11 > |4n and from this state all the other members with the
same ”family” quantum number can be generated by SefS̃cd on |ψ11 > |4n: SefS̃cd

|ψ11 > |4n = |ψji > |4n.
All these states in either d = 2(2n+ 1) space or d = 4n space are orthogonal

with respect to Eq. (8.23).
However, let us point out that (γa)† = γaηaa. Correspondingly it follows,

Eq. (8.47), that
ab

(k)

†

= ηaa
ab

(−k), and
ab

[k]

†

=
ab

[k].
Since any projector is Hermitian conjugate to itself, while to any nilpotent

ab

(k) the Hermitian conjugated one has an opposite k, it is obvious that Hermitian
conjugated product to a product of nilpotents and projectors can not be accepted
as a new state 6.

The vacuum state |ψoc > ought to be chosen so that < ψoc|ψoc >= 1,

while all the states belonging to the physically acceptable states, like
03

[+i]
12

[+]
56

[−]
78

[−]

· · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc >, must not give zero for either d = 2(2n+ 1) or for d = 4n.
We also want that the states, obtained by the application of ether Scd or S̃cd or
both, are orthogonal. To make a choice of the vacuum it is needed to know the

6 We could as well start with the state |ψ11 > |2(2n+1) =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc >

for d = 2(2n + 1) and with |ψ11 > |4n =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] |ψoc > in the case of
d = 4n. Then creation and annihilation operators will exchange their roles.
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relations of Eq. (8.71). It must be

< ψoc| · · ·
ab

(k)

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

[k ′] · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = 0 . (8.51)

Our experiences in the case, when states with the integer values of the Cartan
subalgebra operators were expressed by Grassmann coordinates, teach us that the
requirements, which creation and annihilation operators must fulfill, influence the
choice of the number of states, as well as of the vacuum state.

Let us first repeat therefore the requirements which the creation and annihila-
tion operators must fulfill

{b̂αγi , b̂βγ†k }+|ψoc > = δαβ δ
i
k|ψoc > ,

{b̂αγi , b̂βγk }+|ψoc > = 0|ψoc > ,

{b̂αγ†i , b̂βγ†k }+|ψoc > = 0|ψoc > ,

b̂αγ†i |ψoc > = 0|ψoc > , (8.52)

paying attention at this stage only at the internal degrees of freedom of the states,
that is on their spins. Here (α,β, . . . ) represent the family quantum number de-
termined by S̃ac and (i, j, . . . ) the quantum number of one representation, deter-
mined by Sac. From Eqs. (8.49, 8.50) is not difficult to extract the creation operators
which, when applied on the two vacuum states, generate the starting states.

i. One Weyl representation
We define the creation b̂1†1 – and the corresponding annihilation operator b̂11,

(b̂1†1 )† = b̂11 – which when applied on the vacuum state |ψoc > create a vector of
one of the two equations (8.49, 8.50), as follows

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) ,

b̂11 : =
d−1 d

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 2(2n+ 1) ,

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] ,

b̂11 : =
d−1,d

[+]
d−2 d−3

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 4n . (8.53)

We shall call this vector the starting vector of the starting ”family”.



i
i

“proc17” — 2017/12/11 — 19:44 — page 117 — #131 i
i

i
i

i
i

8 Why Nature Made a Choice of Clifford and not Grassmann Coordinates 117

Now we can make a choice of the vacuum state for this particular ”family”
taking into account Eq. (8.71)

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] |0 > ,

for d = 2(2n+ 1) ,

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] |0 > ,

for d = 4n , (8.54)

n is a positive integer, so that the requirements of Eq. (8.52) are fulfilled. We
see: The creation and annihilation operators of Eq. (8.53) (both are nilpotents,
(b̂1†1 )2 = 0 and (b̂11)

2 = 0), b̂1†1 (generating the vector |ψ11 >when operating on the
vacuum state) gives b̂1†1 |ψoc > 6= 0, while the annihilation operator annihilates the
vacuum state b̂11|ψ0 >= 0, giving {b̂11, b̂

1†
1 }+|ψoc >= |ψoc >, since we choose the

appropriate normalization, Eq. (8.46).
All the other creation and annihilation operators, belonging to the same

Lorentz representation with the same family quantum number, follow from the
starting ones by the application of particular Sac, which do not belong to the
Cartan subalgebra (8.65).

We call b̂1†2 the one obtained from b̂1†1 by the application of one of the four
generators (S01, S02, S31, S32). This creation operator is for d = 2(2n+ 1) equal to

b̂1†2 =
03

[−i]
12

[−]
35

(+) · · ·
d−1 d

(+) , while it is for d = 4n equal to b̂1†2 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] .
All the other family members follow from the starting one by the application of
different Sef, or by the product of several Sgh.

We accordingly have

b̂1†i ∝ S
ab..Sefb̂1†1 ,

b̂1i ∝ b̂11Sef..Sab , (8.55)

with Sab† = ηaaηbbSab. We shall make a choice of the proportionality factors so
that the corresponding states |ψ11 >= b̂

1†
i |ψoc >will be normalized.

We recognize that [15]:
i.a. (b̂1†i )2 = 0 and (b̂1i )

2 = 0, for all i.

To see this one must recognize that Sac (or Sbc, Sad, Sbd) transforms
ab

(+)
cd

(+) to
ab

[−]
cd

[−], that is an even number of nilpotents (+) in the starting state is transformed
into projectors [−] in the case of d = 2(2n+ 1). For d = 4n, Sac (or Sbc, Sad, Sbd)

transforms
ab

(+)
cd

[+] into
ab

[−]
cd

(−). Therefore for either d = 2(2n + 1) or d = 4n at
least one of factors, defining a particular creation operator, will be a nilpotent. For
d = 2(2n+ 1) there is an odd number of nilpotents, at least one, leading from the

starting factor (
dg

(+)) in the creator. For d = 4n a nilpotent factor can also be
d−1 d

(−)

(since
d−1d

[+] can be transformed by Sed−1, for example into
d−1 d

(−) ). A square of
at least one nilpotent factor (we started with an odd number of nilpotents, and
oddness can not be changed by Sab), is enough to guarantee that the square of
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the corresponding (b̂1†i )2 is zero. Since b̂1i = (b̂1†i )†, the proof is valid also for
annihilation operators.
i.b. b̂1†i |ψoc > 6= 0 and b̂1i |ψoc >= 0, for all i.
To see this in the case d = 2(2n+1) one must recognize that b̂1†i distinguishes from
b̂1†1 in (an even number of) those nilpotents (+), which have been transformed

into [−]. When
ab

[−] from b̂1†i meets
ab

[−] from |ψoc >, the product gives
ab

[−] back,

and correspondingly a nonzero contribution. For d = 4n also the factor
d−1 d

[+] can

be transformed. It is transformed into
d−1 d

(−) which, when applied to a vacuum

state, gives again a nonzero contribution (
d−1 d

(−)
d−1 d

[+] =
d−1 d

(−) , Eq.(8.71)).
In the case of b̂1i we recognize that in b̂1†i at least one factor is nilpotent; that of the

same type as in the starting b̂†1 – (+) – or in the case of d = 4n it can be also
d−1 d

(−) .

Performing the Hermitian conjugation (b̂1†i )†, (+) transforms into (−), while
d−1 d

(−)

transforms into
d−1 d

(+) in b̂1i . Since (−)[−] gives zero and
d−1 d

(+)
d−1 d

[+] also gives zero,
b̂1i |ψoc >= 0.
i.c. {b̂1†i , b̂

1†
j }+ = 0, for each pair (i, j).

There are several possibilities, which we have to discuss. A trivial one is, if both
b̂1†i and b̂1†j have a nilpotent factor (or more than one) for the same pair of indexes,

say
kl

(+). Then the product of such two
kl

(+)
kl

(+) gives zero. It also happens, that b̂1†i

has a nilpotent at the place (kl) (
03

[−] · · ·
kl

(+) · · ·
mn

[−] · · · ) while b̂1†j has a nilpotent

at the place (mn) (
03

[−] · · ·
kl

[−] · · ·
mn

(+) · · · ). Then in the term b̂1†i b̂
1†
j the product

mn

[−]
mn

(+) makes the term equal to zero, while in the term b̂1†j b̂
1†
i the product

kl

[−]
kl

(+)

makes the term equal to zero. There is no other possibility in d = 2(2n + 1). In

the case that d = 4n, it might appear also that b̂1†i =
03

[−] · · ·
ij

(+) · · ·
d−1 d

[+] and

b̂1†j =
03

[−] · · ·
ij

[−] · · ·
d−1 d

(−) . Then in the term b̂1†i b̂
1†
j the factor

d−1 d

[+]
d−1 d

(−) makes

it zero, while in b̂1†j b̂
1†
i the factor

ij

[−]
ij

(+) makes it zero. Since there are no further
possibilities, the proof is complete.
i.d. {b̂1i , b̂

1
j }+ = 0, for each pair (i, j).

The proof goes similarly as in the case with creation operators. Again we treat
several possibilities. b̂1i and b̂1j have a nilpotent factor (or more than one) with the

same indexes, say
kl

(−). Then the product of such two
kl

(−)
kl

(−) gives zero. It also

happens, that b̂1i has a nilpotent at the place (kl) (· · ·
mn

[−] · · ·
kl

(−) · · ·
03

[−]) while b̂1j

has a nilpotent at the place (mn) (· · ·
mn

(−) · · ·
kl

[−] · · ·
03

[−]). Then in the term b̂1i b̂
1
j the

product
kl

(−)
kl

[−] makes the term equal to zero, while in the term b̂1j b̂
1
i the product

mn

(−)
mn

[−] makes the term equal to zero. In the case that d = 4n, it appears also that
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b̂1i =
d−1 d

[+] · · ·
ij

(−) · · ·
03

[−] and b̂1j =
d−1 d

(+) · · ·
ij

[−] · · ·
03

[−]. Then in the term b̂1i b̂
1
j the

factor
ij

(−)
ij

[−] makes it zero, while in b̂1j b̂
1
i the factor

d−1 d

(+)
d−1 d

[+] makes it zero.
i.e. {b̂1i , b̂

1†
j }+|ψoc >= δij|ψoc > .

To prove this we must recognize that b̂1i = b̂1S
ef..Sab and b̂1†i = Sab..Sefb̂1.

Since any b̂1i |ψoc >= 0, we only have to treat the term b̂1i b̂
1†
j . We find b̂1i b̂

1†
j ∝

· · ·
lm

(−) · · ·
03

(−)Sef · · ·SabSlm · · ·Spr
03

(+) · · ·
lm

(+) · · · . If we treat the term b̂1i b̂
1†
i ,

generators Sef · · ·SabSlm · · ·Spr are proportional to a number and we normalize
< ψ0|b̂

1
i b̂
1†
i |ψoc > to one. When Sef · · ·SabSlm · · ·Spr are proportional to several

products of Scd, these generators change b̂1†1 into
03

(+) · · ·
kl

[−] · · ·
np

[−] · · · , making

the product b̂1i b̂
1†
j equal to zero, due to factors of the type

kl

(−)
kl

[−]. In the case of

d = 4n also a factor
d−1 d

[+]
d−1 d

(−) might occur, which also gives zero.
We saw and proved that for the definition of the creation and annihilation operators

in Eqs.(8.49,8.50) all the requirements of Eq. (8.52) are fulfilled, provided that creation
and correspondingly also the annihilation operators have an odd Clifford character, that is
that the number of nilpotents in the product is odd.

For an even number of factors of the nilpotent type in the starting state and accord-
ingly in the starting b̂1†1 , an annihilation operator b̂1i would appear with all factors of the
type [−], which on the vacuum state (Eq.(8.54)) would not give zero.

ii. Families of Weyl representations
Let b̂α†i be a creation operator, fulfilling Eq. (8.52), which creates one of the

(2d/2−1) Weyl basic states of an α−th ”family”, when operating on a vacuum state
|ψoc > and let b̂αi = (b̂α†i )† be the corresponding annihilation operator. We shall
now proceed to define b̂α†i and b̂αi from a chosen starting state (8.49, 8.50), which
b̂1†1 creates on the vacuum state |ψoc >.

When treating more than one Weyl representation, that is, more than one
”family”, we must take into account that: i. The vacuum state chosen to fulfill
requirements for second quantization of the starting family might not and it will
not be the correct one when all the families are taken into account. ii. The products
of S̃ab, which do not belong to the Cartan subalgebra set of the generators S̃ab

(2d/2−1 − 1 of them), when being applied on the starting family ψ11, generate the
starting members ψα1 of all the rest of the families. There are correspondingly
the same number of ”families” as there is the number of vectors of one Weyl
representation, namely 2d/2−1. Then the whole Weyl representations of a particular
family ψα1 follows again with the application of Sef, which do not belong to the
Cartan subalgebra of Sab on this starting family.

Any vector |ψαi > follows from the starting vector (Eqs.8.49, 8.50) by the
application of either S̃ef, which change the family quantum number, or Sgh, which
change the member of a particular family (as it can be seen from Eqs. (8.73, 8.86))
or with the corresponding product of Sef and S̃ef

|ψαi > ∝ S̃ab · · · S̃ef|ψ1i >∝ S̃ab · · · S̃efSmn · · ·Spr|ψ11 > . (8.56)
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Correspondingly we define b̂α†i (up to a constant) to be

b̂α†i ∝ S̃
ab · · · S̃efSmn · · ·Sprb̂1†1

∝ Smn · · ·Sprb̂1†1 S
ab · · ·Sef . (8.57)

This last expression follows due to the property of the Clifford object γ̃a and
correspondingly of S̃ab, presented in Eqs. (8.74, 8.75).

For b̂αi = (b̂α†i )† we accordingly have

b̂αi = (b̂α†i )† ∝ Sef · · ·Sabb̂11Spr · · ·Smn . (8.58)

The proportionality factor will be chosen so that the corresponding states |ψαi >=
b̂α†i |ψoc >will be normalized.

We ought to generalize the vacuum state from Eq. (8.54) so that b̂α†i |ψoc > 6= 0

and b̂αi |ψoc >= 0 for all the members i of any family α. Since any S̃eg changes
ef

(+)
gh

(+) into
ef

[+]
gh

[+] and (
ab

[+])† =
ab

[+], while (
ab

(+))†
ab

(+)=
ab

[−], the vacuum state |ψoc >

from Eq. (8.54) must be replaced by

|ψoc >=
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |0 > ,
for d = 2(2n+ 1),

|ψoc >=
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] +
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |0 > ,
for d = 4n, (8.59)

n is a positive integer. There are 2
d
2
−1 summands. since we step by step replace all

possible pairs of
ab

[−] · · ·
ef

[−] in the starting part
03

[−i]
12

[−]
35

[−] · · ·
d−1 d

[−] (or
03

[−i]
12

[−]
35

[−]

· · ·
d−3 d−2

[−]
d−1 d

[+] ) into
ab

[+] · · ·
ef

[+] and include new terms into the vacuum state so
that the last 2n+ 1 summands have for d = 2(2n+ 1) case, n is a positive integer,
only one factor [−] and all the rest [+], each [−] at different position. For d = 4n

also the factor
d−1 d

[+] in the starting term
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] changes to
d−1 d

[−] . The vacuum state has then the normalization factor 1/
√
2d/2−1.

There is therefore

2
d
2
−1 2

d
2
−1 (8.60)

number of creation operators, defining the orthonormalized states when applaying
on the vacuum state of Eqs. (8.59) and the same number of annihilation operators,
which are defined by the creation operators on the vacuum state of Eqs. (8.59).
S̃ab connect members of different families, Sab generates all the members of one
family.

We recognize that:
ii.a. The above creation and annihilation operators are nilpotent – (b̂a†i )2 = 0 =
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(b̂ai )
2 – since the ”starting” creation operator b̂1†1 and annihilation operator b̂ai are

both made of the product of an odd number of nilpotents, while products of either
Sab or S̃ab can change an even number of nilpotents into projectors. Any b̂a†i is
correspondingly a factor of an odd number of nilpotents (at least one) (and an
even number of projectors) and its square is zero. The same is true for b̂ai .
ii.b. All the creation operators operating on the vacuum state of Eq.(8.59) give a
non zero vector – b̂a†i |ψoc > 6= 0 – while all the annihilation operators annihilate
this vacuum state – b̂ai |ψ0 > for any α and any i.
It is not difficult to see that b̂ai |ψoc >= 0, for any α and any i. First we recognize
that whatever the set of factors Smn · · ·Spr appear on the right hand side of the
annihilation operator b̂11 in Eq.(8.58), it lives at least one factor [−] unchanged.

Since b̂11 is the product of only nilpotents (−) and since
ab

(−)
ab

[−]= 0, this part of the
proof is complete.
Let us prove now that b̂α†i |ψoc > 6= 0 for each α, i. According to Eq.(8.57) the
operation Smn on the left hand side of b̂1†1 , withm,n, which does not belong to

the Cartan subalgebra set of indices, transforms the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−]

· · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−] · · · · · ·
d−1 d

[+] ) into the term
03

[−i]
12

[−]

· · ·
lm

(+) · · ·
nk

(+) · · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

(+) · · ·
nk

(+) · · · · · ·
d−1 d

[+] ) and b̂1†1

on such a term gives zero, since
lm

(+)
lm

(+)= 0 and
nk

(+)
nk

(+)= 0. Let us first assume that
Smn is the only term on the right hand side of b̂1†1 and that none of the operators
from the left hand side of b̂1†1 in Eq.(8.57) has the indicesm,n. It is only one term
among all the summands in the vacuum state (Eq.8.59), which gives non zero

contribution in this particular case, namely the term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · ·
d−1 d

[−]

(or the term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · · · · ·
d−1 d

[+] ). Smn transforms the part · · ·
lm

[+]

· · ·
nk

[+] · · · into · · ·
lm

(−) · · ·
nk

(−) · · · and since
lm

(+)
lm

(−) gives ηll
lm

[+], while for the rest
of factors it was already proven that such a factor on b̂1†1 forms a b1†i giving non
zero contribution on the vacuum (8.54).
We also proved that what ever other Sab but Smn operate on the left hand side of
b̂1†1 the contribution of this particular part of the vacuum state is nonzero. If the
operators on the left hand side have the indexesm or n or both, the contribution on
this term of the vacuum will still be nonzero, since then such a Smp will transform

the factor
lm

(+) in b̂1†1 into
lm

[−] and
lm

[−]
lm

(−) is nonzero, Eq. (8.71).
The vacuum state has a term which guarantees a non zero contribution for any
possible set of Smn · · ·Spr operating from the right hand side of b̂1†1 (that is for
each family) (which we achieved just by the transformation of all possible pairs

of
cd

[−],
gh

[−] into
cd

[+],
gh

[+]), the proof that b̂α†i operating on the vacuum |ψoc > of

Eq. (8.59) gives nonzero contribution. Among [−] also
03

[−i] is understood.
It is not difficult to see that for each ”family” of 2

d
2
−1 families it is only one term

among all the summands in the vacuum state |ψoc > of Eq. (8.59), which give
a nonzero contribution, since when ever [+] appears on a wrong position, that
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is on the position, so that the product of
ab

(+) from b̂1† and
ab

[+] from the vacuum
summand appears, the contribution is zero.
ii.b. Any two creation operators anti commute — {b̂α†i , b̂

β†
j }+ = 0.

According to Eq.8.57 we can rewrite {b̂α†i , b̂
b†
j }+, up to a factor, as

{Smn · · ·Sprb̂1†1 S
ab · · ·Sef, Sm

′n ′ · · ·Sp
′r ′ b̂1†1 S

a ′b ′ · · ·Se
′f ′ }+.

Whatever the product Sab · · ·SefSm ′n ′ · · ·Sp ′r ′ (or Sa
′b ′ · · ·Se ′f ′Smn · · ·Spr) is, it

always transforms an even number of (+) in b̂1†1 into [−]. Since an odd number of
nilpotents (+) (at least one) stays unchanged in this right b̂1†1 , after the application

of all the Sab in the product in front of it or
d−1 d

[ +] transforms into
d−1 d

( −),
and since the left b̂1†1 is a product of only nilpotents (+) or an odd number of
nilpotents and [+] for d = 2(2n+1) and d = 4n, n is an integer, respectively, while
d−1 d

[+]
d−1 d

(−) = 0, the anticommutator for any two creation operators is zero.
ii.c.. Any two annihilation operators anticommute – {b̂αi , β̂

b
j }+ = 0.

According to Eq.8.58 we can rewrite {b̂αi , b̂
β
j }+, up to a factor, as

{Sab · · ·Sefb̂11Smn · · ·Spr, Sa
′b ′ · · ·Se

′f ′ b̂11S
m ′n ′ · · ·Sp

′r ′ }+.

What ever the product Smn · · ·SprSa ′b ′ · · ·Se ′f ′ (or Sm
′n ′ · · ·Sp ′r ′Sab · · ·Sef) is,

it always transforms an even number of (−) in b̂11 into [+]. Since an odd number of
nilpotents (−) (at least one) stays unchanged in this b̂11, after the application of all

the Sab in the product in front of it or
d−1 d

[ +] transforms into
d−1 d

( −), and since
b̂11 in the left hand side is a product of only nilpotents (−) or an odd number of
nilpotents and [+] for d = 2(2n+1) and d = 4n, n is an integer, respectively, while
ab

(−)
ab

(−)= 0 and
ab

[+]
ab

[−]= 0, the anti commutator of any two annihilation operators
is zero.
ii.d. For any creation and any annihilation operators it follows: {b̂αi , b̂

β†
j }+|ψ− >=

δabδij|ψ0 > .

Let us prove this. According to Eqs. (8.57,8.58) we may rewrite {b̂αi , b̂
β†
j }+ up

to a factor as {Sab · · ·Sefb̂11Smn · · ·Spr, Sm
′n ′ · · ·Sp ′r ′ b̂1†1 Sa

′b ′ · · ·Se ′f ′ }+. We dis-
tinguish between two cases. It can be that both Smn · · ·SprSm ′n ′ · · ·Sp ′r ′ and
Sa
′b ′ · · ·Se ′f ′Sab · · ·Sef are numbers. This happens when α = β and i = j. Then

we follow i.b.. We normalize the states so that < ψαi |ψ
α
i >= 1.

The second case is that at least one of

Smn · · ·SprSm
′n ′ · · ·Sp

′r ′ and Sa
′b ′ · · ·Se

′f ′Sab · · ·Sef

is not a number. Then the factors like
ab

(−)
ab

[−] or
ab

[+]
ab

(−) or
ab

(+)
ab

[+] make the anticom-
mutator equal zero. And the proof is completed.

iii. We learned:
iii.a. From 2d internal states expressed with Grassmann coordinates, which are
all orthogonal with respect to the scalar product, Eq.(8.24), not all of 2d fulfill re-
quirements that the states should be written as product of Grassmann coordinates
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on the vacuum state. We payed particular attention on 2
d
2
−1 (2

d
2
−1 + 1), states,

Eqs. (8.41, 8.42). To these creation operators the same number, (2
d
2
−1(2

d
2
−1 + 1)),

of the corresponding annihilation operators belong, fulfilling the relation for the
creation and annihilation operators (8.40), for which we expect that the creation
and annihilation operators have to. These states form two (separate) groups of
the Lorentz representation: The members of each group are reachable by Sab

(which do not belong to the Cartan subalgebra (8.65)) from one of the state of each
group, each with (2

d
2
−1(2

d
2
−1 + 1))/2members. The second quantized states have

in d = 4n an even Grassmann caharacter, while in d = 2(2n + 1) they have an
odd Grassmann character. There are in addition creation operators of opposite
Grassmann character then these 2

d
2
−1(2

d
2
−1 + 1)) states either in d = 4n or in

d = 2(2n+ 1). They are products of two, four or at most product of d θa.
iii.b. From 2d internal states expressed with Clifford coordinates, which again
are orthogonal with respect to the scalar product, Eq.(8.24), only 2

d
2
−1 (2

d
2
−1)

fulfill requirements that the second quantized states are expressed by products
of nilpotents and projectors, which apply on the vacuum state. The products of
nillpotents and projectors have to have an odd Clifford character in either d = 4n

or d = 2(2n + 1). They form creation operators and annihilation operators, full-
filling Eq.(8.52), for which we expect that the creation and annihilation operators
have to.
The corresponding states form families of states. Each family members are reach-
able from any one by Sab, while any family can be reached by S̃ab.
iii.c. We pay attention on even-dimensional spaces only.

8.3 Conclusions

We have started the present study to understand, why ”nature made a choice” of
the Clifford algebra, rather than the Grassmann algebra, to describe the internal
degrees of freedom of fermion fields, although both spaces enable the second
quantization of the internal degrees of freedom of the fermion type. We study
as well how to fermionize boson fields (or bosonize fermion fields) in any d
(the reader can find the corresponding contribution in this proceedings) to better
understand why and how ”nature made choices of the theories and models” in
the expansion of the universe.

The creation and annihilation operators fulfill anticommutation relations,
desired for fermions either in Grassmann space or in Clifford space, although
states in Grassmann space carry integer spins, what leads in the spinn-charge-family
theory (since spins in d ≥ 5 manifest as charges in d = (1+ 3)) to the charges in
the adjoint representations of the charge groups (the subgroups of the Lorentz
group SO(1, 13)) while states in the Clifford space carry half integer spin and
correspondingly are all the charges in the fundamental representations of the
groups.

We want to understand as well how does this choice of whether taking
Grassmann or Clifford space, manifest in the breaking of the starting symmetry
in d-dimension down to d = (1+ 3). The spin-charge-family theory namely starts
at d = (1+ 13) with the simple action in which massless fermions carry only two
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kinds of spin described by two kinds of the Clifford algebra objects – γa and γ̃a

– and interact with the gravity only – through vielbeins, the gauge fields of the
Poincaré algebra and the two kinds of the spin connection fields, the gauge fields
of these two kinds of the Clifford algebra objects. The theory offers the explanation
for all the assumptions of the standard model of elementary fields, fermions and
bosons, with the appearance of families including, explaining also the phenomena
like the existence of the dark matter, of the matter-antimatter asymmetry, offering
correspondingly the next step beyond both standard models – cosmological one
and the one of the elementary fields.

To come to the low energy regime the symmetry must break, first from
SO(13, 1) to SO(7, 1)× SU(3)×U(1) and then further to SO(3, 1) ×SU(3)×U(1).
Further study is needed to understand whether the ”nature could start” at all
with Grassmann space while ”recognizing”, when breaking symmetry in steps,
the ”advantage” of the Clifford degrees of freedom with respect to the Grassmann
ones: The covariant momentum of the starting action of the spin-charge-family
theory, Eq. (8.1), would in the case that the Grassmann coordinates describe the
internal degrees of freedom of massless objects with the anticommutation relation
of the creation and annihilation operators (Eq.(8.40)) read: p0α = pα−

1
2

SabΩabα,
whereΩabα are the spin connection gauge fields of Sab (of the generators of the
Lorentz transformations in the Grassmann space) and fαa p0α would replace the
ordinary momentum, when massless objects start to interact with the gravitational
field, through the vielbeins and the spin connections in Eq. (8.33).

This contribution is a step towards understanding better the open problems
of the elementary particle physics and cosmology.

Although we have not yet learned enough to be able to answer the four ques-
tions – a. Why is the simple starting action of the spin-charge-family theory doing so
well in manifesting the observed properties of the fermion and boson fields? b. Un-
der which condition can more general action lead to the starting action of Eq. (8.1)?
c. What would more general action, if leading to the same low energy physics,
mean for the history of our Universe? d. Could the fermionization procedure of
boson fields or the bosonization procedure of fermion fields, discussed in this
Proceedings for any dimension d (by the authors of this contribution, while one of
them, H.B.F.N. [11], has succeeded with another author to do the fermionization
for d = (1+ 1)), tell more about the ”decisions” of the universe in the history.

8.4 APPENDIX: Lorentz algebra and representations in
Grassmann and Clifford space

A Lorentz transformation on vector components θa, γa, or γ̃a, which are used
to describe internal degrees of freedom of fields with the fermion nature, and on
vector components xa, which are real (ordinary) commuting coordinates:
θ ′a = Λab θ

b, γ ′a = Λab γ
b, γ̃ ′a = Λab γ̃

b and xa = Λab x
b,

leaves forms

aa1a2...aiθ
a1θa2 . . . θai , aa1a2...aiγ

a1γa2 . . . γai , aa1a2...ai γ̃
a1 γ̃a2 . . . γ̃ai
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and
ba1a2...ai x

a1xa2 . . . xai , i = (1, . . . , d)

invariant.
While ba1a2...ai (= ηa1b1ηa2b2 . . . ηaibi b

b1b2...bi) is a symmetric tensor
field, aa1a2...ai (= ηa1b1ηa2b2 . . . ηaibi a

b1b2...bi) are antisymmetric tensor Kalb-
Ramond fields. The requirements that x

′a x
′bηab = xc xdηcd, θ ′aθ ′bεab = θcθdεcd,

γ ′aγ ′bεab = γcγdεcd and γ̃ ′aγ̃ ′bεab = γ̃cγ̃dεcd, where the metric tensor ηab

(in our case ηab = diag(1,−1,−1, . . . ,−1)) lowers the indices of vectors {xa}

(= ηabxb), {θa}: (θa = ηab θb), {γa}: (γa = ηab γb) and {γ̃a}: (γ̃a = ηab γ̃b),
εab is the antisymmetric tensor, lead to ΛabΛcd ηac = ηbd. An infinitesimal
Lorentz transformation for the case with detΛ = 1,Λ00 ≥ 0 can be written as
Λab = δab +ωab, whereωab +ωba = 0.

According to Eqs. (8.14, 8.15, 8.21) one finds

{γa, S̃cd}− = 0 = {γ̃a, Scd}− ,

{γa,Scd}− = {γa, Scd}− =
i

2
(ηacγd − ηadγc) ,

{γ̃a,Scd}− = {γ̃a, S̃cd}− =
i

2
(ηacγ̃d − ηadγ̃c) . (8.61)

Comments: In the cases with either the basis θa or with the basis of γa or γ̃a the
scalar products — the norms — < B|B > < F|F > are non negative and equal to∑d
k=0

∫
ddxb∗b1...bkbb1...bk .

To have the norm which would have fields with the positive and the negative
norm one could define the norm as< φ0|bb1...bkγ

bk . . . γb1cc1...ckγ
c1 . . . γck |φ0 >,

as it is used in Ref. [21] to obtain the generalized Stueckelberg equation.

8.4.1 Lorentz properties of basic vectors

What follows is taken from Ref. [2] and Ref. [9], Appendix B.
Let us first repeat some properties of the anticommuting Grassmann coordi-

nates.
An infinitesimal Lorentz transformation of the proper ortochronous Lorentz

group is then

δθc = −
i

2
ωabSabθc = ωcaθa ,

δγc = −
i

2
ωabS

abγc = ωcaγ
a ,

δγ̃c = −
i

2
ωabS̃

abγ̃c = ωcaγ̃
a ,

δxc = −
i

2
ωabL

abxc = ωcax
a , (8.62)

whereωab are parameters of a transformation and γa and γ̃a are expressed by θa

and ∂
∂θa

in Eqs. (8.14, 8.15).
Let us write the operator of finite Lorentz transformations as follows

U = e
i
2
ωab(Sab+Lab) . (8.63)
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We see that the Grassmann θa and the ordinary xa coordinates and the Clifford
objects γa and γ̃a transform as vectors Eq.(8.63)

θ ′c = e−
i
2
ωab(Sab+Lab) θc e

i
2
ωab(Sab+Lab)

= θc −
i

2
ωab{Sab, θc}− + · · · = θc +ωcaθa + · · · = Λcaθa ,

x ′c = Λcax
a , γ ′c = Λcaγ

a , γ̃ ′c = Λcaγ̃
a . (8.64)

Correspondingly one finds that compositions like γapa and γ̃apa, here pa are
pxa (= i ∂

∂xa
), transform as scalars (remaining invariants), while Sabωabc and

S̃ab ω̃abc transform as vectors: U−1 Sabωabc U = Λc
dSabωabd, U−1 S̃ab ω̃abc U =

Λc
dS̃ab ω̃abd.

Also objects like

R =
1

2
fα[afβb] (ωabα,β −ωcaαω

c
bβ)

and
R̃ =

1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ)

from Eq. (8.1) transform with respect to the Lorentz transformations as scalars.
Making a choice of the Cartan subalgebra set of the algebra Sab, Sab and S̃ab,

Eqs. (8.10, 8.14, 8.15),

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , (8.65)

one can arrange the basic vectors so that they are eigenstates of the Cartan subal-
gebra, belonging to representations of Sab, or of Sab and S̃ab.

8.5 APPENDIX: Technique to generate spinor representations
in terms of Clifford algebra objects

We shall briefly repeat the main points of the technique for generating spinor
representations from Clifford algebra objects, following the reference[12]. We ask
the reader to look for details and proofs in this reference.

We assume the objects γa, Eq. (8.14), which fulfill the Clifford algebra, Eq (8.13).

{γa, γb}+ = I 2ηab, for a, b ∈ {0, 1, 2, 3, 5, · · · , d}, (8.66)

for any d, even or odd. I is the unit element in the Clifford algebra, while {γa, γb}± =

γaγb ± γbγa.
We accept the “Hermiticity” property for γa’s, Eq. (8.17), γa† = ηaaγa. lead-

ing to γa†γa = I.
The Clifford algebra objects Sab close the Lie algebra of the Lorentz group of

Eq. (8.21) {Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac). One finds from
Eq.(8.17) that (Sab)† = ηaaηbbSab and that {Sab, Sac}+ = 1

2
ηaaηbc.
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Recognizing that two Clifford algebra objects Sab, Scd with all indexes dif-
ferent commute, we select (out of infinitely many possibilities) the Cartan sub
algebra set of the algebra of the Lorentz group as follows

S0d, S12, S35, · · · , Sd−2 d−1, if d = 2n,

S12, S35, · · · , Sd−1 d, if d = 2n+ 1. (8.67)

To make the technique simple, we introduce the graphic representation[12] as
follows

ab

(k): =
1

2
(γa +

ηaa

ik
γb),

ab

[k]: =
1

2
(1+

i

k
γaγb), (8.68)

where k2 = ηaaηbb. One can easily check by taking into account the Clifford
algebra relation (Eq.8.66) and the definition of Sab that if one multiplies from the

left hand side by Sab the Clifford algebra objects
ab

(k) and
ab

[k], it follows that

Sab
ab

(k)=
1

2
k
ab

(k),

Sab
ab

[k]=
1

2
k
ab

[k] . (8.69)

This means that
ab

(k) and
ab

[k] acting from the left hand side on anything (on a
vacuum state |ψ0〉, for example) are eigenvectors of Sab.

We further find

γa
ab

(k) = ηaa
ab

[−k],

γb
ab

(k) = −ik
ab

[−k],

γa
ab

[k] =
ab

(−k),

γb
ab

[k] = −ikηaa
ab

(−k) (8.70)

It follows that Sac
ab

(k)
cd

(k)= − i
2
ηaaηcc

ab

[−k]
cd

[−k], Sac
ab

[k]
cd

[k]= i
2

ab

(−k)
cd

(−k), Sac
ab

(k)
cd

[k]=

− i
2
ηaa

ab

[−k]
cd

(−k), Sac
ab

[k]
cd

(k)= i
2
ηcc

ab

(−k)
cd

[−k] . It is useful to deduce the following
relations

ab

(k)
ab

(k) = 0,
ab

(k)
ab

(−k)= ηaa
ab

[k],
ab

(−k)
ab

(k)= ηaa
ab

[−k],
ab

(−k)
ab

(−k)= 0
ab

[k]
ab

[k] =
ab

[k],
ab

[k]
ab

[−k]= 0,
ab

[−k]
ab

[k]= 0,
ab

[−k]
ab

[−k]=
ab

[−k]
ab

(k)
ab

[k] = 0,
ab

[k]
ab

(k)=
ab

(k),
ab

(−k)
ab

[k]=
ab

(−k),
ab

(−k)
ab

[−k]= 0
ab

(k)
ab

[−k] =
ab

(k),
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0,
ab

[−k]
ab

(−k)=
ab

(−k) .

(8.71)
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We recognize in the first equation of the first row and the first equation of the
second row the demonstration of the nilpotent and the projector character of the

Clifford algebra objects
ab

(k) and
ab

[k], respectively.
Whenever the Clifford algebra objects apply from the left hand side, they always

transform
ab

(k) to
ab

[−k], never to
ab

[k], and similarly
ab

[k] to
ab

(−k), never to
ab

(k).
We define in Eq. (8.59) a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1,

<
ab

[k]

†
ab

[k] >= 1. (8.72)

Taking the above equations into account it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd. (We advise
the reader to see the reference[12].)

For d even, we simply set the starting state as a product of d/2, let us say,

only nilpotents
ab

(k), one for each Sab of the Cartan sub algebra elements (Eq.(8.67)),
applying it on an (unimportant) vacuum state[12]. Then the generators Sab, which
do not belong to the Cartan sub algebra, applied to the starting state from the left
hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
...

0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] ψ0
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
... (8.73)

8.5.1 Technique to generate ”families” of spinor representations in terms of
Clifford algebra objects

When all 2d states are considered as a Hilbert space, we recognize that for d even
there are 2d/2 ”families” and for d odd 2(d+1)/2 ”families” of spinors [12,13,9]. We
shall pay attention of only even d.

One Weyl representation form a left ideal with respect to the multiplication
with the Clifford algebra objects. We proved in Ref.[9], and the references therein
that there is the application of the Clifford algebra object from the right hand side,
which generates ”families” of spinors.

Right multiplication with the Clifford algebra objects namely transforms the
state of one ”family” into the same state with respect to the generators Sab (when
the multiplication from the left hand side is performed) of another ”family”.
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We defined in refs.[13] the Clifford algebra objects γ̃a’s as operations which
operate formally from the left hand side (as γa’s do) on any Clifford algebra object
A as follows

γ̃aA = i(−)(A)Aγa, (8.74)

with (−)(A) = −1, if A is an odd Clifford algebra object and (−)(A) = 1, if A is an
even Clifford algebra object.

Then it follows that γ̃a obey the same Clifford algebra relation as γa.

(γ̃aγ̃b + γ̃bγ̃a)A = −ii((−)(A))2A(γaγb + γbγa) = 2ηabA (8.75)

and that γ̃a and γa anticommute

(γ̃aγb + γbγ̃a)A = i(−)(A)(−γbAγa + γbAγa) = 0. (8.76)

We may write

{γ̃a, γb}+ = 0, while {γ̃a, γ̃b}+ = 2ηab. (8.77)

One accordingly finds

γ̃a
ab

(k): = −i
ab

(k) γa = −iηaa
ab

[k], (8.78)

γ̃b
ab

(k): = −i
ab

(k) γb = −k
ab

[k],

γ̃a
ab

[k]: = i
ab

[k] γa = i
ab

(k), (8.79)

γ̃b
ab

[k]: = i
ab

[k] γb = −kηaa
ab

(k) . (8.80)

If we define

S̃ab =
i

4
[γ̃a, γ̃b] =

1

4
(γ̃aγ̃b − γ̃bγ̃a), (8.81)

it follows

S̃abA = A
1

4
(γbγa − γaγb), (8.82)

manifesting accordingly that S̃ab fulfil the Lorentz algebra relation as Sab do.
Taking into account Eq.(8.74), we further find

{S̃ab, Sab}− = 0, {S̃ab, γc}− = 0, {Sab, γ̃c}− = 0. (8.83)

One also finds

{S̃ab, Γ }− = 0, {γ̃a, Γ }− = 0, for d even,

{S̃ab, Γ }− = 0, {γ̃a, Γ }+ = 0, for d odd, (8.84)

which means that in d even transforming one ”family” into another with either
S̃ab or γ̃a leaves handedness Γ unchanged. (The transformation to another ”family”
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in d odd with γ̃a changes the handedness of states, namely the factor 1
2
(1 ± Γ)

changes to 1
2
(1∓ Γ) in accordance with what we know from before: In spaces with

odd d changing the handedness means changing the ”family”.)
We advise the reader also to read [2]where the two kinds of Clifford algebra

objects follow as two different superpositions of a Grassmann coordinate and its
conjugate momentum.

We present for S̃ab some useful relations

S̃ab
ab

(k) =
k

2

ab

(k),

S̃ab
ab

[k] = −
k

2

ab

[k],

S̃ac
ab

(k)
cd

(k) =
i

2
ηaaηcc

ab

[k]
cd

[k],

S̃ac
ab

[k]
cd

[k] = −
i

2

ab

(k)
cd

(k),

S̃ac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[k]
cd

(k),

S̃ac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(k)
cd

[k] . (8.85)

We transform the state of one ”family” to the state of another ”family” by the
application of γ̃a or S̃ac (formally from the left hand side) on a state of the first
”family” for a chosen a or a, c. To transform all the states of one ”family” into states
of another ”family”, we apply γ̃a or S̃ac to each state of the starting ”family”. It is,
of course, sufficient to apply γ̃a or S̃ac to only one state of a ”family” and then
use generators of the Lorentz group (Sab), and for d even also γa’s, to generate all
the states of one Dirac spinor.

One must notice that nilpotents
ab

(k) and projectors
ab

[k] are eigenvectors not
only of the Cartan subalgebra Sab but also of S̃ab. Accordingly only S̃ac, which
do not carry the Cartan subalgebra indices, cause the transition from one ”family”
to another ”family”.

The starting state of Eq.(8.73) can change, for example, to

0d

[k0d]
12

[k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2), (8.86)

if S̃01 was chosen to transform the Weyl spinor of Eq.(8.73) to the Weyl spinor of
another ”family”.
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15. N.S. Mankoč Borštnik and H.B. Nielsen, Proceedings to the 8th Workshop ”What Comes

Beyond the Standard Models”, Bled, July 19 - 29, 2005, Ed. by Norma Mankoč Borštnik,
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19. D. Lukman and N.S. Mankoč Borštnik, J. Phys. A: Math. Theor. 45:465401, 2012

[arxiv:1205.1714, arxiv:1312.541, hep-ph/0412208 p.64-84].
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Abstract. In the future-included complex and real action theories whose paths run over not
only the past but also the future, we briefly review the theorem on the normalized matrix
element of an operator Ô, which is defined in terms of the future and past states with a
proper inner product IQ that makes a given Hamiltonian normal. The theorem states that,
provided that the operator Ô isQ-Hermitian, i.e. Hermitian with regard to the proper inner
product IQ, the normalized matrix element becomes real and time-develops under a Q-
Hermitian Hamiltonian for the past and future states selected such that the absolute value
of the transition amplitude from the past state to the future state is maximized. Discussing
what the theorem implicates, we speculate that the future-included complex action theory
would be the most elegant quantum theory.

Povzetek. Avtorja obravnavata teorijo z realno in kompleksno akcijo, ki poleg preteklosti
vključi tudi prihodnost. Na kratko predstavita izrek o normaliziranih matričnih elemen-
tih operatorja Ô, ki operira na stanja preteklosti in prihodnosti tako, da je v primerno
izbranem skalarnem produktu IQ hamiltonka normalna. Če je operator Ô hermitski glede
na ta skalarni produkt, so normalizirani matrični elementi realni, njihov časovni razvoj pa
poteka po tistih preteklih in prihodnjih stanjih, za katere je absolutna vrednost amplitude
prehoda iz preteklega v prihodnje stanje maksimizirana. Obravnavata posledice izreka
in domevata, da je najbolj elegantna kvantna teorija prav teorija kompleksne akcije, ki
vključuje prihodnost.

Keywords: Complex action theories, Future-included action theories, Influence
from the future

9.1 Introduction

Quantum theory is formulated via the Feynman path integral (FPI). Usually an
action in the FPI is taken to be real. However, there is a possibility that the action
? email: keiichi.nagao.phys@vc.ibaraki.ac.jp

?? Presented the talk at a previous Bled worshop
??? email: hbech@nbi.dk
† Presented the talk at Bled workshop. Talk was also discussed at length at previous Bled

workshops.
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is complex at the fundamental level but looks real effectively. If we pursue a
fundamental theory, it is better to require less conditions imposed on it at first.
In this sense such a complex action theory (CAT) is preferable to the usual real
action theory (RAT), because the former has less conditions at least by one: there
is no reality condition on the action. Based on this speculation the CAT has been
investigated with the expectation that the imaginary part of the action would
give some falsifiable predictions [1–4], and various interesting suggestions have
been made for Higgs mass [5], quantum mechanical philosophy [6–8], some fine-
tuning problems [9,10], black holes [11], de Broglie-Bohm particles and a cut-off in
loop diagrams [12]. Also, in Ref. [13], introducing what we call the proper inner
product IQ so that a given non-normal Hamiltonian becomes normal with respect
to it, we proposed a mechanism to effectively obtain a Hamiltonian which is Q-
Hermitian, i.e., Hermitian with respect to the proper inner product, after a long
time development. Furthermore, using the complex coordinate formalism [14], we
explicitly derived the momentum relation p = mq̇, where m is a complex mass,
via the FPI [15]. In general, the CAT1 could be classified into two types: one is the
future-not-included theory [21]2, i.e., the theory including only a past time as an
integration interval of time, and the other one is the future-included theory[1], in
which not only the past state |A(TA)〉 at the initial time TA but also the future state
|B(TB)〉 at the final time TB is given at first, and the time integration is performed
over the whole period from the past to the future.

In the future-included theory, the normalized matrix element [1] 〈Ô〉BA ≡
〈B(t)|Ô|A(t)〉
〈B(t)|A(t)〉 , where t is an arbitrary time (TA ≤ t ≤ TB), seems to have a role of an

expectation value of the operator Ô. Indeed, in Refs. [23,24] we argued in the case
of the action being complex that, if we regard 〈Ô〉BA as an expectation value in the
future-included theory, we obtain the Heisenberg equation, Ehrenfest’s theorem,
and a conserved probability current density. So 〈Ô〉BA is a strong candidate for the
expectation value in the future-included theory. The normalized matrix element
〈Ô〉BA is called the weak value [25] in the context of the future-included RAT, and
it has been intensively studied. The details are found in Ref. [26] and references
therein.

In Ref. [27], we considered a slightly modified normalized matrix element
〈Ô〉BAQ ≡ 〈B(t)|QÔ|A(t)〉

〈B(t)|QA(t)〉 , where 〈B(t)|Q ≡ 〈B(t)|Q, and Q is a Hermitian operator
that is appropriately chosen to define the proper inner product IQ. This matrix
element is obtained just by changing the notation of 〈B(t)| as 〈B(t)|→ 〈B(t)|Q in
〈Ô〉BA. We proposed a theorem in the future-included CAT, which states that, pro-
vided that an operator Ô is Q-Hermitian, 〈Ô〉BAQ becomes real and time-develops
under aQ-Hermitian Hamiltonian for the future and past states selected such that
the absolute value of the transition amplitude defined with IQ from the past state

1 The corresponding Hamiltonian Ĥ is generically non-normal. So the set of the Hamiltoni-
ans we consider is much larger than that of the PT-symmetric non-Hermitian Hamiltoni-
ans, which has been intensively studied [16–20].

2 In our recent study [22], we have pointed out that, if a theory is described with a complex
action, then such a theory is suggested to be the future-included theory rather than the
future-not-included theory.
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to the future state is maximized. We call this way of thinking the maximization
principle. This theorem applies to not only the CAT but also the RAT. In Ref. [27],
we proved this theorem only in the CAT, i.e., in the case of non-Hermitian Hamilto-
nians, by finding that essentially only terms associated with the largest imaginary
parts of the eigenvalues of the Hamiltonian Ĥ3 contribute significantly to the abso-
lute value of the transition amplitude defined with IQ, and that 〈Ô〉BAQ for such
maximizing states becomes an expression similar to an expectation value defined
with IQ in the future-not-included theory. This proof is based on the existence
of imaginary parts of the eigenvalues of Ĥ, so it cannot be applied to the RAT.
In Ref. [28], we presented another theorem particular to the case of Hermitian
Hamiltonians, i.e., the RAT case for simplicity, and proved it. In this paper, we
review the maximization principle and clarify what the theorems implicate based
on Refs. [27–29].

This paper is organized as follows. In section 2 we briefly review the proper
inner product and the future-included theory. In section 3 we present the theorems,
and prove them in section 4. Section 5 is devoted to discussion.

9.2 Proper inner product and future-included complex action
theory

We suppose that our system that could be the whole world is described by
a non-normal diagonalizable Hamiltonian Ĥ such that [Ĥ, Ĥ†] 6= 0. Based on
Refs.[13,14,29], we first review the proper inner product for Ĥ which makes Ĥ
normal with respect to it. We define the eigenstates |λi〉(i = 1, 2, · · · ) of Ĥ such
that

Ĥ|λi〉 = λi|λi〉, (9.1)

where λi(i = 1, 2, · · · ) are the eigenvalues of Ĥ, and introduce the diagonalizing
operator P = (|λ1〉, |λ2〉, . . .), so that Ĥ is diagonalized as Ĥ = PDP−1, where D is
given by diag(λ1, λ2, · · · ). Let us consider a transition from an eigenstate |λi〉 to
another |λj〉 (i 6= j) fast in time ∆t. Since |λi〉 are not orthogonal to each other in the
usual inner product I, I(|λi〉, |λj〉) ≡ 〈λi|λj〉 6= δij, the transition can be measured,
i.e., |I(|λj〉, exp

(
− i

~ Ĥ∆t
)
|λi〉)|2 6= 0, though Ĥ cannot bring the system from |λi〉

to |λj〉 (i 6= j). In any reasonable theories, such an unphysical transition from an
eigenstate to another one with a different eigenvalue should be prohibited. In
order to have reasonable probabilistic results, we introduce a proper inner product
[13,14]4 for arbitrary kets |u〉 and |v〉 as

IQ(|u〉, |v〉) ≡ 〈u|Qv〉 ≡ 〈u|Q|v〉, (9.2)

where Q is a Hermitian operator chosen as Q = (P†)−1P−1, so that |λi〉 get orthog-
onal to each other with regard to IQ,

〈λi|Qλj〉 = δij. (9.3)

3 In the CAT the imaginary parts of the eigenvalues of Ĥ are supposed to be bounded from
above to avoid the Feynman path integral

∫
e
i
~SDpath being divergently meaningless.

4 Similar inner products are studied also in refs.[30,19,20].
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This implies the orthogonality relation
∑
i |λi〉〈λi|Q = 1. In the special case of Ĥ

being hermitian,Q is the unit operator. We introduce the “Q-Hermitian” conjugate
†Q of an operator A by 〈u|QA|v〉∗ ≡ 〈v|QA†

Q

|u〉, so

A†
Q

≡ Q−1A†Q. (9.4)

If A obeys A†
Q

= A, A is Q-Hermitian. We also define †Q for kets and bras as

|u〉†Q ≡ 〈u|Q and (〈u|Q)†
Q

≡ |u〉. In addition, P−1 =

 〈λ1|Q〈λ2|Q
...

 satisfies P−1ĤP =

D and P−1Ĥ†
Q

P = D†, so Ĥ is “Q-normal”, [Ĥ, Ĥ†
Q

] = P[D,D†]P−1 = 0. Thus
the inner product IQ makes Ĥ Q-normal. We note that Ĥ can be decomposed as

Ĥ = ĤQh + ĤQa, where ĤQh = Ĥ+Ĥ†
Q

2
and ĤQa = Ĥ−Ĥ†

Q

2
are Q-Hermitian and

anti-Q-Hermitian parts of Ĥ respectively.
In Refs.[1,23,24], the future-included theory is described by using the future

state |B(TB)〉 at the final time TB and the past state |A(TA)〉 at the initial time TA,
where |A(TA)〉 and |B(TB)〉 time-develop as follows,

i~
d

dt
|A(t)〉 = Ĥ|A(t)〉, (9.5)

−i~
d

dt
〈B(t)| = 〈B(t)|Ĥ, (9.6)

and the normalized matrix element 〈Ô〉BA ≡ 〈B(t)|Ô|A(t)〉
〈B(t)|A(t)〉 is studied. The quantity

〈Ô〉BA is called the weak value[25,26] in the RAT. In refs.[23,24], we investigated
〈Ô〉BA and found that, if we regard 〈Ô〉BA as an expectation value in the future-
included theory, then we obtain the Heisenberg equation, Ehrenfest’s theorem,
and a conserved probability current density. Therefore, 〈Ô〉BA seems to have a
role of an expectation value in the future-included theory.

In the following, we adopt the proper inner product IQ for all quantities.
Hence we change the notation of the final state 〈B(TB)| as 〈B(TB)|→ 〈B(TB)|Q so
that the Hermitian operator Q pops out and the usual inner product I is replaced
with IQ. Then 〈B(TB)| time-develops according not to eq.(9.6) but to

−i~
d

dt
〈B(t)|Q = 〈B(t)|QĤ ⇔ i~

d

dt
|B(t)〉 = Ĥ†

Q

|B(t)〉, (9.7)

and the normalized matrix element is expressed as

〈Ô〉BAQ ≡ 〈B(t)|QÔ|A(t)〉
〈B(t)|QA(t)〉

. (9.8)

In addition, we suppose that |A(TA)〉 and 〈B(TB)| areQ-normalized by 〈A(TA)|QA(TA)〉 =
1 and 〈B(TB)|QB(TB)〉 = 1. In the RAT, since Q = 1, 〈Ô〉BAQ corresponds to 〈Ô〉BA.

9.3 Theorems of the maximization principle

In Ref. [27] we proposed the following theorem :
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Theorem 1. Maximization principle in the future-included CAT
As a prerequisite, assume that a given Hamiltonian Ĥ is non-normal but diagonalizable
and that the imaginary parts of the eigenvalues of Ĥ are bounded from above, and define a
modified inner product IQ by means of a Hermitian operatorQ arranged so that Ĥ becomes
normal with respect to IQ. Let the two states |A(t)〉 and |B(t)〉 time-develop according to
the Schrödinger equations with Ĥ and Ĥ†

Q

respectively: |A(t)〉 = e− i
~ Ĥ(t−TA)|A(TA)〉,

|B(t)〉 = e− i
~ Ĥ
†Q(t−TB)|B(TB)〉, and be normalized with IQ at the initial time TA and the

final time TB respectively: 〈A(TA)|QA(TA)〉 = 1, 〈B(TB)|QB(TB)〉 = 1. Next determine
|A(TA)〉 and |B(TB)〉 so as to maximize the absolute value of the transition amplitude
|〈B(t)|QA(t)〉| = |〈B(TB)|Q exp(−iĤ(TB − TA))|A(TA)〉|. Then, provided that an opera-
tor Ô isQ-Hermitian, i.e., Hermitian with respect to the inner product IQ, Ô†Q = Ô, the
normalized matrix element of the operator Ô defined by 〈Ô〉BAQ ≡ 〈B(t)|QÔ|A(t)〉

〈B(t)|QA(t)〉 becomes
real and time-develops under a Q-Hermitian Hamiltonian.

We call this way of thinking the maximization principle. This theorem means
that the normalized matrix element 〈Ô〉BAQ , which is taken as an average for an
operator Ô obeying Ô†Q = Ô, turns out to be real almost unavoidably. Also,
in the case of non-normal Hamiltonians, it is nontrivial to obtain the emerging
Q-hermiticity for the Hamiltonian by the maximization principle. The theorem is
given for systems defined with such general Hamiltonians that they do not even
have to be normal, so it can also be used for normal Hamiltonians in addition to
non-normal Hamiltonians. For a normal Hamiltonian Ĥ, Q is the unit operator.
In such a case the above theorem becomes simpler with Q = 1. There are two
possibilities for such a case: one is that Ĥ is non-Hermitian but normal, and the
other is that Ĥ is Hermitian. In both casesQ = 1, but there is a significant difference
between them. In the former case, there are imaginary parts of the eigenvalues of
Ĥ, Imλi, and the eigenstates having the largest Imλi blow up and contribute most
to the the absolute value of the transition amplitude |〈B(t)|QA(t)〉|. In the latter
case, there are no Imλi, and the full set of the eigenstates of Ĥ can contribute to
|〈B(t)|A(t)〉|. So we need to investigate them separately.

In the special case where the Hamiltonian is Hermitian, i.e., in the future-
included RAT, we can consider three possibilities: One is that |A(TA)〉 is given at
first, and |B(TB)〉 is chosen by the maximization principle. Another is the reverse.
The other is that both |A(TA)〉 and |B(TB)〉 are partly given and chosen. Since
we know empirically the second law of thermodynamics, we choose the first
option in the future-included RAT. We suppose that |A(t)〉 is a given fixed state,
and only |B(t)〉 is a random state, which should be chosen appropriately by the
maximization principle, though in the future-included CAT both |A(t)〉 and |B(t)〉
are supposed to be random states at first. In addition, in the future-included
RAT the hermiticity of the Hamiltonian is given at first, so we write the theorem
particular to the case of Hermitian Hamiltonians as follows:

Theorem 2. Maximization principle in the future-included RAT
As a prerequisite, assume that a given Hamiltonian Ĥ is diagonalizable and Hermitian.
Let the two states |A(t)〉 and |B(t)〉 time-develop according to the Schrödinger equation
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with Ĥ: |A(t)〉 = e−
i
~ Ĥ(t−TA)|A(TA)〉, |B(t)〉 = e−

i
~ Ĥ(t−TB) |B(TB)〉, and be nor-

malized at the initial time TA and the final time TB respectively: 〈A(TA)|A(TA)〉 = 1,
〈B(TB)|B(TB)〉 = 1. Next determine |B(TB)〉 for the given |A(TA)〉 so as to maximize
the absolute value of the transition amplitude |〈B(t)|A(t)〉| = |〈B(TB)| exp(− i

~ Ĥ(TB −

TA))|A(TA)〉|. Then, provided that an operator Ô is Hermitian, Ô† = Ô, the normalized
matrix element of the operator Ô defined by 〈Ô〉BA ≡ 〈B(t)|Ô|A(t)〉

〈B(t)|A(t)〉 becomes real and
time-develops under the given Hermitian Hamiltonian.

We investigate the above theorems separately.

9.4 Proof of the theorems

To prove the theorems we expand |A(t)〉 and |B(t)〉 in terms of the eigenstates |λi〉
as follows:

|A(t)〉 =
∑
i

ai(t)|λi〉, (9.9)

|B(t)〉 =
∑
i

bi(t)|λi〉, (9.10)

where

ai(t) = ai(TA)e
− i

~λi(t−TA), (9.11)

bi(t) = bi(TB)e
− i

~λ
∗
i (t−TB). (9.12)

We express ai(TA) and bi(TB) as

ai(TA) = |ai(TA)|e
iθai , (9.13)

bi(TB) = |bi(TB)|e
iθbi , (9.14)

and introduce

T ≡ TB − TA, (9.15)

Θi ≡ θai − θbi −
1

~
TReλi, (9.16)

Ri ≡ |ai(TA)||bi(TB)|e
1
~T Imλi . (9.17)

Then, since 〈B(t)|QA(t)〉 is expressed as

〈B(t)|QA(t)〉 =
∑
i

Rie
iΘi , (9.18)

|〈B(t)|QA(t)〉|2 is calculated as

|〈B(t)|QA(t)〉|2 =
∑
i

R2i + 2
∑
i<j

RiRj cos(Θi −Θj). (9.19)

The normalization conditions for |A(TA)〉 and |B(TB)〉 are expressed as∑
i

|ai(TA)|
2 =
∑
i

|bi(TB)|
2 = 1. (9.20)

We proceed with this study separately according to whether the given Hamil-
tonian Ĥ is non-Hermitian or Hermitian.
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9.4.1 Non-Hermitian Hamiltonians case

In the case of non-Hermitian Hamiltonians, there exist imaginary parts of the
eigenvalues of the Hamiltonian, Imλi, which are supposed to be bounded from
above to avoid the Feynman path integral

∫
e
i
~SDpath being divergently mean-

ingless. We can imagine that some of Imλi take the maximal value B, and denote
the corresponding subset of {i} as A. Then, since Ri ≥ 0, |〈B(t)|QA(t)〉| can take a
maximal value only under the following conditions:

|ai(TA)| = |bi(TB)| = 0 for ∀i /∈ A, (9.21)

Θi ≡ Θc for ∀i ∈ A, (9.22)∑
i∈A

|ai(TA)|
2 =
∑
i∈A

|bi(TB)|
2 = 1, (9.23)

and |〈B(t)|QA(t)〉|2 is estimated as

|〈B(t)|QA(t)〉|2 =

(∑
i∈A

Ri

)2

= e
2BT
~

(∑
i∈A

|ai(TA)||bi(TB)|

)2

≤ e 2BT~
{∑
i∈A

(
|ai(TA)|+ |bi(TB)|

2

)2}2
= e

2
~BT , (9.24)

where the third equality is realized for

|ai(TA)| = |bi(TB)| for ∀i ∈ A. (9.25)

In the last equality we have used this relation and Eq.(9.23). The maximization
condition of |〈B(t)|QA(t)〉| is represented by Eqs.(9.21)-(9.23) and (9.25). That is to
say, the states to maximize |〈B(t)|QA(t)〉|, |A(t)〉max and |B(t)〉max, are expressed as

|A(t)〉max =
∑
i∈A

ai(t)|λi〉, (9.26)

|B(t)〉max =
∑
i∈A

bi(t)|λi〉, (9.27)

where ai(t) and bi(t) obey Eqs.(9.22), (9.23), and (9.25).
To evaluate 〈Ô〉BAQ for |A(t)〉max and |B(t)〉max, utilizing the Q-Hermitian part

of Ĥ, ĤQh ≡ Ĥ+Ĥ†
Q

2
, we define the following state:

|Ã(t)〉 ≡ e− i
~ (t−TA)ĤQh |A(TA)〉max, (9.28)

which is normalized as 〈Ã(t)|QÃ(t)〉 = 1 and obeys the Schrödinger equation

i~
d

dt
|Ã(t)〉 = ĤQh|Ã(t)〉. (9.29)
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Using Eqs.(9.21)-(9.23) and (9.25), we obtain

max〈B(t)|QA(t)〉max = eiΘc
∑
i∈A

Ri = e
iΘce

BT
~ , (9.30)

and

max〈B(t)|QÔ|A(t)〉max

= eiΘce
BT
~
∑
i,j∈A

aj(TA)
∗ai(TA)e

i
~ (t−TA)(Reλj−Reλi)〈λj|QÔ|λi〉

= eiΘce
BT
~ 〈Ã(t)|QÔ|Ã(t)〉. (9.31)

Thus 〈Ô〉BAQ for |A(t)〉max and |B(t)〉max is evaluated as

〈Ô〉BmaxAmax
Q = 〈Ã(t)|QÔ|Ã(t)〉 ≡ 〈Ô〉ÃÃQ . (9.32)

Since
{
〈Ô〉ÃÃQ

}∗
= 〈Ô†Q〉ÃÃQ , 〈Ô〉BAQ for |A(t)〉max and |B(t)〉max has been shown

to be real for Q-Hermitian Ô.
Next we study the time development of 〈Ô〉ÃÃQ . We express 〈Ô〉ÃÃQ as 〈Ô〉ÃÃQ =

〈Ã(TA)|QÔH(t, TA)|Ã(TA)〉, where we have introduced the Heisenberg operator
ÔH(t, TA) ≡ e

i
~ ĤQh(t−TA)Ôe− i

~ ĤQh(t−TA). This operator ÔH(t, TA) obeys the
Heisenberg equation i~ d

dt
ÔH(t, TA) = [ÔH(t, TA), ĤQh], so we find that 〈Ô〉ÃÃQ

time-develops under the Q-Hermitian Hamiltonian ĤQh as

d

dt
〈Ô〉ÃÃQ =

i

~
〈
[
ĤQh, Ô

]
〉ÃÃQ . (9.33)

Thus Theorem 1 has been proven, and the maximization principle provides
both the reality of 〈Ô〉BAQ for Q-Hermitian Ô and the Q-Hermitian Hamiltonian.

9.4.2 Hermitian Hamiltonians case

Theorem 2 can be proven more simply than Theorem 1. Since the norms of |A(t)〉
and |B(t)〉 are constant in time in the case of Hermitian Hamiltonians,

〈A(t)|A(t)〉 = 〈A(TA)|A(TA)〉 = 1, (9.34)

〈B(t)|B(t)〉 = 〈B(TB)|B(TB)〉 = 1, (9.35)

we can directly use an elementary property of linear space, and find that the final
state to maximize |〈B(t)|A(t)〉|, |B(TB)〉max, is the same as |A(t)〉 up to a constant
phase factor:

|B(t)〉max = e−iΘc |A(t)〉. (9.36)

This phase factor presents the ambiguity of the maximizing state |B(t)〉max, and
shows that |B(t)〉max is not determined uniquely. We note that this is quite in
contrast to the case of non-Hermitian Hamiltonians, where only a unique class of
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|A(t)〉 and |B(t)〉 is chosen by the maximization principle. The normalized matrix
element 〈Ô〉BA for the given |A(t)〉 and |B(t)〉max becomes

〈Ô〉BmaxA =
max〈B(t)|Ô|A(t)〉

max〈B(t)|A(t)〉
= 〈A(t)|Ô|A(t)〉
≡ 〈Ô〉AA, (9.37)

where in the second equality we have used Eqs.(9.36) and (9.34). Thus 〈Ô〉BA for
the given |A(t)〉 and |B(t)〉max has become the form of a usual average 〈Ô〉AA, and
so it becomes real for Hermitian Ô. In addition, 〈Ô〉AA time-develops under the
Hermitian Hamiltonian Ĥ as

d

dt
〈Ô〉AA =

i

~
〈
[
Ĥ, Ô

]
〉AA. (9.38)

We emphasize that the maximization principle provides the reality of 〈Ô〉BA for
Hermitian Ô, though 〈Ô〉BA is generically complex by definition.

To see the differences from the case of non-Hermitian Hamiltonians more
explicitly, we investigate Theorem 2 by expanding |A(t)〉 and |B(t)〉 in the same
way as Eqs.(9.9)-(9.12). Then we can make use of Eqs.(9.13)-(9.20) just by noting
that Eqs.(9.17)-(9.19) are expressed as

Ri ≡ |ai(TA)||bi(TB)|, (9.39)

〈B(t)|A(t)〉 =
∑
i

Rie
iΘi , (9.40)

|〈B(t)|A(t)〉|2 =
∑
i

R2i + 2
∑
i<j

RiRj cos(Θi −Θj), (9.41)

since Imλi = 0 and Q = 1. Then, since Ri ≥ 0, |〈B(t)|A(t)〉| can take a maximal
value only under the condition:

Θi = Θc for ∀i, (9.42)

and |〈B(t)|A(t)〉|2 is estimated as

|〈B(t)|A(t)〉|2 =

(∑
i

Ri

)2

=

(∑
i

|ai(TA)||bi(TB)|

)2

≤

{∑
i

(
|ai(TA)|+ |bi(TB)|

2

)2}2
= 1, (9.43)

where the third equality is realized for

|ai(TA)| = |bi(TB)| for ∀i. (9.44)
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In the last equality we have used this relation and Eq.(9.20). The condition for
maximizing |〈B(t)|A(t)〉| is represented by Eqs.(9.42) and (9.44). In the case of
non-Hermitian Hamiltonians, the condition for maximizing |〈B(t)|QA(t)〉| is rep-
resented by Eqs.(9.21)-(9.23) and (9.25), and essentially only the subset having the
largest imaginary parts of the eigenvalues of Ĥ contributes most to the absolute
value of the transition amplitude |〈B(t)|QA(t)〉|, as we saw in Subsection 9.4.1.
This is quite in contrast to the present study in the case of Hermitian Hamiltonians,
where the full set of the eigenstates of Ĥ can contribute to |〈B(t)|A(t)〉|. Thus the
final state to maximize |〈B(t)|A(t)〉|, |B(TB)〉max, is expressed as

|B(TB)〉max =
∑
i

bmax
i (TB)|λi〉, (9.45)

where

bmax
i (TB) ≡ |ai(TA)|e

i(θai−
1
~Tλi−Θc) (9.46)

obeys ∑
i

|bmax
i (TB)|

2 = 1. (9.47)

Hence |B(t)〉max is expressed as

|B(t)〉max = e−
i
~ Ĥ(t−TB)|B(TB)〉max =

∑
i

bmax
i (t)|λi〉, (9.48)

where bmax
i (t) is given by

bmax
i (t) = bmax

i (TB)e
− i

~λi(t−TB) = ai(t)e
−iΘc . (9.49)

In the second equality we have used Eq.(9.46). Consequently, |B(t)〉max is found to
be the same as |A(t)〉 up to the constant phase factor, as we saw in Eq.(9.36).

9.5 Discussion

In this paper, after briefly explaining the proper inner product IQ, which makes
a given non-normal Hamiltonian normal, and also the future-included CAT, we
have reviewed the theorem on the normalized matrix element of Ô, 〈Ô〉BAQ , which
seems to have a role of an expectation value in the future-included CAT and
RAT. Assuming that a given Hamiltonian Ĥ is non-normal but diagonalizable,
and that the imaginary parts of the eigenvalues of Ĥ are bounded from above,
we presented a theorem that states that, provided that Ô is Q-Hermitian, i.e.,
Ô†Q = Ô, and that |A(t)〉 and |B(t)〉 time-develop according to the Schrödinger
equations with Ĥ and Ĥ†

Q

and are Q-normalized at the initial time TA and at
the final time TB, respectively, 〈Ô〉BAQ becomes real and time-develops under a
Q-Hermitian Hamiltonian for |A(t)〉 and |B(t)〉 such that the absolute value of the
transition amplitude |〈B(t)|QA(t)〉| is maximized. First we proved the theorem in
the case of non-Hermitian Hamiltonians based on Refs. [27,29]. Next we provided
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another theorem particular to the case of Hermitian Hamiltonians, and proved it,
based on Refs. [28,29]. It is noteworthy that, both in the future-included CAT and
RAT, we have obtained a real average for Ô at any time t by means of the simple
expression 〈Ô〉BAQ , though it is generically complex by definition. In addition, we
emphasize that, in the case of non-Hermitian Hamiltonians, we have obtained a
Q-Hermitian Hamiltonian.

In the usual theory, i.e., the future-not-included RAT, the expectation value
of Ô, 〈Ô〉AA, is constructed to be real for a Hermitian operator Ô by definition.
Similarly, even in the future-not-included CAT, 〈Ô〉AAQ is real for a Q-Hermitian
operator Ô. On the other hand, in the future-included CAT and RAT, 〈Ô〉BAQ is not
adjusted so, but it becomes real by our natural way of thinking, the maximiza-
tion principle. In addition, 〈Ô〉BAQ is expressed more elegantly than 〈Ô〉AAQ in the
functional integral form:

〈Ô〉BAQ =

∫
Dpath ψ∗BψAQOe

i
~S[path]∫

Dpath ψ∗BψAQe
i
~S[path]

. (9.50)

In the future-not-included theories 〈Ô〉AAQ does not have such a full functional
integral expression for all time. Therefore, 〈Ô〉BAQ seems to be more natural than
〈Ô〉AAQ , and we can speculate that the fundamental physics is given by 〈Ô〉BAQ in the
future-included theories rather than by 〈Ô〉AAQ in the future-not-included theories.
This interpretation provides a more direct connection of functional integrals to
measurable physics.

In such future-included theories we are naturally motivated to consider the
maximization principle. If we do not use it, 〈Ô〉BAQ , which is expected to have a role
of an expectation value in the future-included theories, is generically complex by
definition not only in the CAT but also in the RAT. This situation is analogous to the
usual classical physics, where classical solutions are generically complex, unless
we impose an initial condition giving the reality. Therefore, the maximization
principle could be regarded as a special type of initial (or final) condition. Indeed,
in the case of the future-included CAT, it specifies a unique class of combinations
of |A(TA)〉 and |B(TB)〉. On the other hand, in the case of the future-included RAT,
the maximization principle does not specify such a unique class, but only gives
the proportionality relation: Eq.(9.36), and thus leaves the initial condition to be
chosen arbitrarily. This is in contrast to the case of the future-included CAT. Thus
the specification of the future and past states by the maximization principle is
more ambiguous in the RAT than in the CAT. In this sense, the future-included
CAT seems to be nicer than the future-included RAT, though it still requires a
bit of phenomenological adjustment of the imaginary part of the action to get
a cosmologically or experimentally good initial condition, and also suggests a
periodic universe.

Therefore, we speculate that the functional integral formalism of quantum
theory would be most elegant in the future-included CAT. Though the future-
included CAT looks very exotic, it cannot be excluded from a phenomenological
point of view[23,24]. Only the maximization principle would be needed in addition
to the imaginary part of the action. The future-included CAT supplemented with
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the maximization principle could provide a unification of an initial condition
prediction and an equation of motion.
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10.1 Introduction

Majorana [1] put forward the idea of fermions having the property of being their
own antiparticles and such fermions are now usually called Majorana fermions or
Majorana particles.

The Majorana field ψM is defined in general as real or hermitean ψ†M = ψM.
Among the known bosons we have more commonly bosons, which are their

own antiparticles, and which we could be tempted to call analogously “Majorana
bosons” (a more usual name is “real neutral particles” [2]), such as the photon,
Z0, π0, . . . particles. Now the present authors extended [3,4] the Dirac sea idea [5]
of having negative energy electron single particle states in the second quantized
theory being already filled in vacuum, also to Bosons. This extension of the Dirac
sea idea to Bosons has a couple of new features:

1) We had to introduce the concept of having a negative number of bosons in
a single particle state. We described that by considering the analogy of a
single particle state in which a variable number of bosons can be present to
a harmonic oscillator, and then extend their wave functions from normal-
izable to only be analytical. The harmonic oscillator with wave functions
allowed to be non-normalizable and only required to be analytical has in-
deed a spectrum of energies En = (n+ 1

2
)ωwhere now n can be all integers

n = . . . ,−3,−2,−1, 0, 1, 2, . . .. So it corresponds to that there can be a negative
number of bosons in a single particle state.

2) It turns out though that these states - of say the “analytical wave function
harmonic oscillator” corresponding to negative numbers of bosons have al-
ternating norm square: For n ≥ 1 we have as usual 〈n|n〉 = 1 for n ≥ 0 (by
normalization) but for n ≤ −1we have instead 〈n|n〉 = c · (−1)n for n nega-
tive. (c is just a constant we put say c = +1.) This variation of norm square
is needed to uphold the usual rules for the creation a+ and annihilation a
operators

a+|n〉 =
√
1+ n|n+ 1〉

a|n〉 =
√
n|n− 1〉 (10.1)

to be valid also for negative n.
3) With the relations (10.1) it is easily seen that there is a “barrier” between n = −1

and n = 0 in the sense that the creation and annihilation operators a+, and a
cannot bring you across from the space spanned by the n = 0, 1, 2, . . . states
to the one spanned by the n = −1,−2, . . . one or opposite. It is indeed best
to consider the usual space spanned by the |n〉 ′s with n = 0, 1, 2, . . . as one
separate “sector” the “positive sector” and the one spanned by the |n〉 states
with n = −1,−2, . . . as another “sector” called the “negative sector”. Since in
the harmonic oscillator with the wave functions only required to be analytical
but not normalizable the states in the “positive sector” are not truly orthogonal
to those in the “negative sector” but rather have divergent or ill-defined inner
products with each other, it is best not even to (allow) consider inner products
like say
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〈0|− 1〉 = ill defined

〈n|p〉 = ill defined (10.2)

when n ≤ −1 and p ≥ 0 or opposite.
Basically we shall consider only one sector at a time.

4) The use of our formalism with negative number of particles to connect to the
usual and physically correct description of bosons with some charge or at least
an (at first) conserved particle number comes by constructing a “Dirac sea for
bosons”. That is to say one first notes that e.g. the free Klein-Gordon equation

�φ = 0

has both positive and negative energy solutions, and that the inner product

〈ϕ1|ϕ2〉 =
∫
ϕ∗1
←→
∂ 0ϕ2d

3~X (10.3)

gives negative norm square for negative energy eigenstates and positive norm
square for positive energy eigenstates.
Then the physical or true world is achieved by using for the negative energy
single particle states the “negative sector” (see point 3) above) while one for
the positive energy single particle states use the “positive sector”. That is to
say that in the physical world there is (already) a negative number of bosons
in the negative energy single particle states. In the vacuum, for example, there
is just −1 boson in each negative energy single particle state.
This is analogous to that for fermions there is in the Dirac sea just +1 fermion
in each negative energy single particle state. For bosons – where we have −1

instead +1 particle– we just rather emptied Dirac sea by one boson in each
single particle negative energy state being removed from a thought upon
situation with with 0 particles everywhere. (Really it is not so nice to think
on this removal because the “removal” cross the barrier from the “positive
sector” to the “negative sector” and strictly speaking we should only look at
one sector at a time (as mentioned in 3).)

5) It is rather remarkable that the case with the “emptied out Dirac sea” described
in 4) – when we keep to positive sector for positive energy and negative
sector for negative energy– we obtain a positive definite Fock space. This Fock
space also has only positive energy of its excitations as possibilities. Indeed
we hereby obtained exactly a Fock space for a theory with bosons, that are
different from their antiparticles.

In the present paper we like to study how to present a theory for bosons
which are their own antiparticles, Majorana bosons so to speak, in this formalism
with the “emptied” Dirac sea.

Since in the Dirac sea formalisms – both for fermions and for bosons – an
antiparticle is the removal of a particle from the Dirac sea, an antiparticle a priori
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is something quite different from a particle with say positive energy. Therefore
to make a theory / a formalism for a theory with particle being identified with
its antiparticles – as for Majorana fermions or for the photon, Z0, π0 – is in our or
Dirac’s Dirac sea formalisms a priori not trivial. Therefore this article. Of course
it is at the end pretty trivial, but we think it has value for our understanding to
develop the formalism of going from the Dirac sea type picture to the theories
with particles being their own antiparticles (“Majorana theories”).

One point that makes such a study more interesting is that we do not have to
only consider the physical model in the boson case with using positive sector for
positive single particle energy states and negative sector for negative energy single
particle states. Rather we could – as a play– consider the sectors being chosen in
a non-physical way. For example we could avoid “emptying” the Dirac sea in
the boson-case and use the positive sector for both negative and positive energy
single boson eigenstates. In this case the Fock space would not have positive norm
square. Rather the states with an odd number of negative energy bosons would
have negative norm square, and of course allowing a positive number of negative
energy bosons leads to their being no bottom in the Hamiltonian for such a Fock
space.

The main point of the present article is to set up a formalism for particles that
are their own antiparticles (call them “Majorana”) on the basis of a formalism for
somehow charged particles further formulated with the Dirac sea. That is to say
we consider as our main subject how to restrict the theory with the Dirac sea –
and at first essentially charged particle – to a theory in which the particles and
antiparticles move in the same way and are identified with each other.

For example to describe a one-particle state of a “Majorana” particle one
would naturally think that one should use a state related to either the particle or
the antiparticle for instance being a superposition of a particle and antiparticle
state.

So the states of the Fock space HMaj for describing the particles which are
their own antipatricles shall be below identified with some corresponding states in
the theory with Dirac sea. However, there are more degrees of freedom in a theory
with charged particles (as the Dirac sea one) than in a corresponding theory for
particles which are their own antiparticle. Thus the states in the with Dirac sea
Fock space cannot all be transfered to the Fock space from “Majorana” particles.
So only a certain subspace of the Fockspace for the with Dirac sea theory can be
identified with states of some number of Majorana particles.

To develop our formalism for this transition from the Dirac sea theory to the
one for Majorana particles, we therefore need a specification of which subspace is
the one to be used to describe the “Majorana particles”. Below we shall argue for
that this subspace HMaj becomes

HMaj =
{
| 〉|
(
a(~p, E > 0) + a†(−~p, E < 0)

)
| 〉 = 0, for all ~p

}
(10.4)

where we used the notation of a(~p, E < 0) for the annihilation operator for a
particle with momentum ~p and energy E corresponding to that being positive i.e.

E > 0⇒ E =

√
m2 + ~p2. Correspondingly the annihilation operator a(~p, E < 0)
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annihilates a particle with energy E = −

√
m2 + ~p2. The corresponding creation

operators just have the dagger † attached to the annihilation operator, as usual.
We define

r(~p) =
1√
2

(
a(~p, E > 0) + a†(−~p, E < 0)

)
(10.5)

This then shall mean, that we should identify a basis, the basis elements of
which have a certain number of the “Majorana bosons”, say, with some momenta –
in a physical world we only expect conventional particles with positive energy –
for the subspace HMaj contained in the full space with Dirac sea.

We thus have to construct below creation b†(~p) and annihilation b(~p) opera-
tors for the particles which are their own antiparticles (“Majoranas”). These b†(~p)
and b(~p) should now in our work be presented by formulas giving them in terms
of the creation and annihilation operators for the theory with Dirac sea (and thus
acting on the Fock space H of this “full” theory). In fact we shall argue for (below)

b†n =


(a†(a†~p,E>0)−a(−~p,E<0))√

2
(on pos. sec for pos. E, neg sec for neg E)

(a†(a†~p,E>0)+a(−~p,E<0))√
2

for both sectors

· · ·
(10.6)

and then of course it has to be so that these b†(~p) and b(~p) do not bring a Hilbert
vector out of the subspace HMaj but let it stay there once it is there. It would be
the easiest to realize such a keeping inside HMaj by action with b†(~p) – and we
shall have it that way – if we arrange the commutation rules[

r(~p), b†( ~p ′)
]
= 0[

r(~p), b( ~p ′)
]
= 0 (10.7)

(Here the commutation for ~p 6= ~p ′ is trivial because it then concerns different
d.o.f. but the

[
r(~p), b†( ~p ′)

]
= 0 and

[
r(~p), b( ~p ′)

]
= 0 are the nontrivial relations

to be arranged (below))
Indeed we shall find below

b†(~p) =
1√
2

(
a†(~p, E > 0) + a(−~p, E < 0)

)
(defined on both pos.)

b(~p) =
1√
2

(
a(~p, E > 0) + a†(−~p, E < 0

)
(10.8)

It is then that we shall arrange that if we extrapolate to define also the
b(†)(~p, E < 0) and not only for positive energy b(†)(~p, E > 0) = b(†)(~p) we should
obtain the formula usual in conventional description of Majorana particle theories

b†(~p) = b†(~p, E > 0) = b(−~p, E < 0)

b(~p) = b(~p, E > 0) = b†(−~p, E < 0) (10.9)
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For fermions we simply do construct these r(~p) and b(~p) rather trivially and
it must be known in some notation to everybody. For bosons, however almost
nobody but ourselves work with Dirac sea at all, and therefore it must be a bit
more new to get particles which are their own antiparticles into such a scheme. For
bosons also we have already alluded to the phenomenon of different “sectors” (see
3) above) being called for due to our need for negative numbers of particles. We
therefore in the present article as something also new have to see what becomes of
the theory with bosons being their own antiparticles when we go to the unphysical
sector-combinations. (The physical combination of sectors means as described in
point 4) above, but if we e.g. have the positive sector both for negative and positive
energy single particle states, this is a unphysical sector-combination.) This is a
priori only a discussion though of academic interest, since the truly physical world
corresponds to the physical combination described in point 4) with the Dirac sea
“emptied out”.

However, in our attempts to describe string field theory in a novel way we
raised to a problem that seemed formally to have solution using such on unphysi-
cal sector-combination.

In the following section 10.2 we just, as a little warm up, discuss the introduc-
tion in the Majorana fermion theory on a subspace of the Fock space of a fermion
theory in Dirac sea formulation.

In section 10.3 we then review with more formalism our “Dirac sea for bosons”
theory.

Then in section 10.4 we introduce the formalism r(~p), b†(~p) and b(~p) relevant
for the Majorana rather theory or for particles which are their own antiparticles.
The operators r(~p) defined in (10.5) are the operators defined to be used for singling
out the Majorana subspace, and b†(~p) and b(~p) are the creation and annihilation
operators for “Majorana-bosons”.

In section 10.5 we go to the unphysical sector combinations to study the
presumably only of acdemic interest problems there.

In section 10.6 we bring conclusion and outlook.

10.2 Warming up by Fermion

10.2.1 Fermion Warm Up Introduction

As the warming up consider that we have a fermion theory at first described
by making naively (as if nonrelativistically, but we consider relativity) creation
a†(n,~p, E > 0) and a†(n,~p, E < 0) for respectively positive and negative energy
E of the single particle state. Also we consider the corresponding annihilation
operators a(σ,~p, E > 0) and a(σ,~p, E < 0)
The physically relevant second quantized system takes its outset in the physical
vacuum in which all the negative energy E < 0 single particle states are filled
while the positive energy ones are empty.

| vac phys〉 =
∏
σ,~p

a†(σ,~p, E < 0) | 0 totally empty〉 (10.10)



i
i

“proc17” — 2017/12/11 — 19:44 — page 150 — #164 i
i

i
i

i
i

150 H.B. Nielsen and M. Ninomiya

Of course in modern practice you may ignore the Dirac sea and just start
from the physical vacuum | vac phys〉 and operate on that with creation and
annihilation operators. If you want to say create on antiparticle with momentum
~p (and of course physically wanted positive energy) you operate on | vac phys〉
with

a†anti(σ,~p, E > 0) = a(σ
1,−~p, E < 0) (10.11)

i.e. the antiparticle creation operator a†anti(σ,~p, E > 0) is equal to the annihilation
operator a(σ1,−~p, E < 0) with the “opposite” quantum numbers.

10.2.2 Constructing Majorana

Now the main interest of the present article is how to construct a theory of particles
being their own antiparticle (“Majorana”) from the theory with essentially charged
particles – carrying at least a particle-number “charge”– by appropriate projection
out of a sub-Fock space and by constructing creation and annihilation operators
for the Majorana –in this section– fermions.

Let us remark that this problem is so simple, that we can do it for momentum
value, and if we like to simplify this way we could decide to consider only one
single value of the momentum ~p and spin. Then there would be only two creation
and two annihilation operators to think about

a†(E > 0) = a†(σ,~p, E > 0)

a†(E < 0) = a†(σ,~p, E < 0) (10.12)

and thus the whole Fock space, we should play with would only have 2 · 2 = 4

states, defined by having filled or empty the two single particle states being the
only ones considered in this simplifying description just denoted by “E > 0” and
“E < 0”.

In fact the construction of a full Majorana-formalism will namely be obtained
by making the construction of the Majorana Fock (or Hilbert) space for each
momentum ~p and spin and then take the Cartesian product of all the obtained
Majorana-Fock spaces, a couple for each spin and momentum combination.

The four basis states in the Fock space after throwing away all but one mo-
mentum and one spin-state are:

| 1 antiparticle〉 =| vac totally empty〉
| vac phys〉 = a†(E < 0) | vac totally empty〉

| 1 fermion in phys〉 = a†(E > 0)a†(E < 0) | vac totally empty〉
| both particle and antip.〉 = a†(E > 0) | vac totally empty〉 (10.13)

Considering the situation from the point of view of the physical vacuum

| vac phys〉 = a†(E < 0) | vac totally empty〉 (10.14)
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creating a Majorana particle should at least either a particle or an antiparticle or
some superposition of the two (but not both).

So the one Majorana particle state shoule be a superpositon of

| 1 fermion in phys〉 = a†(E > 0)a†(E < 0) | vac totally empty〉 (10.15)

and
| 1 antiferm in phys〉 =| vac totally empty〉 (10.16)

The most symmetric state would natutally be to take with coefficients 1√
2

these two states with equal amplitude:

| 1 Majorana〉 = 1√
2

(
a†(E > 0)a†(E < 0) + 1

)
| vac totally empty〉 (10.17)

We should then construct a creation operators b†(σ,~p) or just b† so that

b† | vac phys〉 =| 1 Majorana〉 (10.18)

Indeed we see that
b† =

1√
2

(
a†(E > 0) + a(E < 0)

)
(10.19)

will do the job.
If we use b† and

b =
1√
2

(
a(E > 0) + a†(E < 0)

)
(10.20)

it turns out that states needed are the – superpositoins of –

| vac phys〉 = a†(E < 0) | vac totally empty〉 (10.21)

and
b† | vac phys〉 =| 1 Majorana〉 (10.22)

This subspace which in our simplyfication of ignoring all but one momentum
and spin state actually represents the whole space HMaj used to describe the
Majorana theory has only 2 dimensions contrary to the full Hilbert space H which
in our only one momentum and spin consideration has 4 dimensions.

So it is a genuine subspace and we shall look for an operator r = r(h,~p) which
gives zero when acting on HMaj but not when it acts on the rest of H.

It is easily seen that

r =
1√
2

(
a(E > 0) − a†(E < 0)

)
(10.23)
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will do the job. Thus we can claim that

HMaj = {|〉 | r |〉 = 0} (10.24)

Written for the full theory with all the momenta and spins we rather have

HMaj = {| 〉 ∈ H | ∀h~p[r(~p, h) |〉 = 0]} (10.25)

where
r(~p, h) =

1√
2

(
a(~p, h, E > 0) − a†(−~p, h, E < 0)

)
(10.26)

and a(~p, h, E > 0) is the annihilation operator for a fermion with momentum ~p

and eigenstate h of the normalized helicity

h ∼ ~Σ · ~p/ | ~p | (10.27)

where ~Σ is the spin angular momentum, and the energy E = +

√
~p2 +m2.

The fully described creation opperator for a Majorana particle fermion with
momentum ~p and helicity h,

b†(~p, h) =
1√
2

(
a†(~p, h, E > 0) + a(−~p, h, E < 0)

)
(10.28)

and the corresponding annihilation operator

b(~p, h) =
1√
2

(
a(~p, h, E > 0) + a†(−~p, h, E < 0)

)
(10.29)

One easily checks that the operation with these operators b(~p, h) and b+(~p, h)
map HMaj on HMaj because{

r( ~p ′, h ′), b(~p, h)
}
+
= 0{

r( ~p ′, h ′), b†(~p, h)
}
+
= 0 (10.30)

10.3 Review of Dirac Sea for Bosons

Considering any relativistically invariant dispersion relation for a single particle it
is, by analyticity or better by having a finite order differential equation, impossible
to avoid that there will be both negative and positive energy (eigen) solutions. This
is true no matter whether you think of integer or half integer spin or on bosons
or fermions(the latter of course cannot matter at all for a single particle theory).
In fact this unavoidability of also negative energy single particle states is what is
behind the unavoidable CPT-theorem.
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There is for each type of equation a corresponding inner product for sin-
gle particle states, so that for instance the Klein-Gordon equation and the Dirac
equation have respectively

〈ϕ1 | ϕ2〉 =
∫
ϕ∗1

←→
∂

∂t
ϕ2d

3~X (Klein Gordon) (10.31)

and

〈ψ1 | ψ2〉 =
∫
ψ†1ψ2d

3~X =

∫
~ψ1γ

0ψ2d
3~X (for Dirac equation) (10.32)

( see e.g. [7])
At least in these examples –but it works more generally– the inner product of

a single particle state with itself, the norm square, gets negative for integer spin
and remains positive for the half integer spin particles, when going to the negative
energy states.

For integer spin particles (according to spin statistics theorem taken to be
bosons) as for example a scalar we thus have negative norm square for the negative
energy single particle states. This means that for all the states for which we want
to make an analogy to the filling of the Dirac sea, we have to have in mind, that
we have this negative norm square.

That is to say, that thinking of second quantizing the norm square of a multiple
particle state in the Fock space would a priori alternate depending on whether the
number of particles (bosons) with negative energy is even or odd.

Physically we do not want such a Fock space, which has non-positive-definite
norm –since for the purpose of getting positive probabilities we need a positive
definite inner product –.

The resolution to this norm square problem in our “Dirac sea for bosons” –
model is to compensate the negative norm square by another negative norm square
which appears, when one puts into a single particle state a negative number of
bosons.

This is then the major idea of our ‘Dirac sea for bosons”-work, that we formally
–realy of course our whole model in this work is a formal game – assume that it is
possible to have a negative number of particles (bosons) in a single particle state.
That is to say we extend the usual idea of the Fock space so as to not as usual have
its basic vectors described by putting various non-negative numbers of bosons
into each single particle state, but allow also to have a negative number of bosons.

Rather we allow also as Fock-space basis vector states corresponding to that
there could be negative integer numbers of bosons. So altogether we can have
any integer number of bosons in each of the single particle states (whether it
has positive or negative energy at first does not matter, you can put any integer
number of bosons in it anyway).

In our “Dirac-sea for Bosons” –paper [3] we present the development to
include negative numbers of particles via the analogy with an harmonic oscillator.
It is well-known that a single particle state with a non-negative number of bosons
in it is in perfect correspondance with a usual harmonic oscillator[6] in which
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the number of excitations can be any positive number or zero. If one extend the
harmonic oscillator to have in the full complex plan extending the position variable
q (say)and the wave function ψ(q) to be formally analytical wave function only,
but give up requiring normalizability, it turns out that the number of excitations
n extends to n ∈ Z, i.e. to n being any integer. This analogy to extend harmonic
oscillator can be used to suggest how to build up a formalism withe creation a†

and annihilation operators a and an inner product for a single particle states in
which one can have any integer number of bosons.

It is not necessary to use extended harmonic oscillator. In fact one could
instead just write down the usual relations for creation and annihilation operators
first for a single particle state say

a†(~p, E > 0) | k(~p, E > 0)〉 =
√
k(~p, E > 0) + 1 | k(~p, E > 0) + 1〉 (10.33)

and

a(~p, E > 0) | k(~p, E > 0)〉 =
√
k(~p, E > 0) | k(~p, E > 0) − 1〉 (10.34)

or the analogous ones for a negative energy single particle state

a†(~p, E < 0) | k(~p, E >)〉 =
√
k(~p, E > 0) + 1 | k(~p, E > 0) + 1〉 (10.35)

and

a(~p, E < 0) | k(~p, E > 0)〉 =
√
k(~p, E < 0) | k(~p, E < 0) − 1〉 (10.36)

and then extend them - formally by allowing the number k(~p, E > 0) of bosons in
say a positive energy single particle state with momentum ~p and (positive energy)
to be also allowed to be negative. You shall also allow the numbers k(~p, E < 0) in
a negative energy single particle state with momentum ~p to be both positive or
zero and negative.

Then there are a couple of very important consequences:

A) You see from these stepping formulas that there is a “barriere” between the
number of bosons k being k = −1 and k = 0. Operating with the annihilation
operator a on a state with k = 0 particles give zero

a | k = 0〉 = 0 (10.37)

and thus does not give the | k = −1〉 as expected from simple stepping. Similar
one cannot with the creation operator a† cross the barriere in the opposite
direction, since

a† | k = −1〉 =
√
−1+ 1 | k = 0〉 = 0 (10.38)
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Thus we have that the states describing the number of bosons k in a given
single particle state are not connected by –a finite number of operations – of
creation and annihilation operatiors.
Really this means that we make best by considering the positive sector of the
space of positive or zero number of bosons and another sector formed from
the | k〉 states with k = −1,−2,−3, ... being a negative number of bosons. By
ordinary creation and annihilation operators, as they would occur in some
interaction Hamiltonian, one cannot cross the barriere. This means that if to
beign with one has say a negative number of boson in a given single particle
state, then an ordinary interaction cannot change that fact.
Thus we take it that one can choose once forever to put some single particles
states in their positive sector and others in their negative sector, and they
then will stay even under operation of an interaction Hamiltonian. If one for
example make the ansatz that all the negative energy single particle states
have a negative number of bosons while the positive energy states have zero
or a positive number of bosons in them, then this ansatz can be kept forever.
This special choice we call the “physical choice” and we saw already[3] –and
shall see very soon here – that this choice gives us a positive definite Fock
space.

B) The norm square of the states | k〉 (with k = −1,−2, . . .) i.e. with negative
numbers k of bosons have to vary alternatingly with k even, k odd.
Using the writing of a negative k

| k〉 ∼ a|k|−1 | k = −1〉 (10.39)

We may evaluate 〈k | k〉 ∼< −1 | (a†)|k|−1a|k|−1 | −1〉 for k ≤ −1.
Now using still the usual commutation rule

[a†, a] = −1 (10.40)

you easily see that we normalize by putting

| k〉 = 1√
(|k|− 1)!

a|k|−1 | −1〉 (10.41)

and
〈k | k〉 = (−1)|k| (10.42)

say for k ≤ −1 (having taken 〈−1 | −1〉 = −1.) while of course for k =

0, 1, 2, . . . you have 〈k | k〉 = 1.
The major success of our “Dirac sea for bosons” is that one can arrange the
sign alternation with (10.42) with the total number of negative energy bosons
to cancel against the sign from in (10.31) so as to achieve, if we choose the
“physical sector”, to get in total the Fock space, which has positive norm square.
This “physical sector” corresponds to that negative energy single particle states
are in the negative sectors, while the positive energy single particle states are
in the positive sector.
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The basis vectors of the full Fock space for the physical sector are thus of the
form

| . . . , k(~p, E > 0), . . . ; . . . , k(~p, E < 0), . . .〉 (10.43)

where the dots . . . denotes that we have one integer number for every mo-
mentum vector –value (~p or ~p ′), but now the numbers k(~p, E > 0) of particles
in a positive energy are– in the physical sector-combination– restricted to
be non-negative while the numbers of bosons in the negative energy single
particle states are restricted to be negative

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = −1,−2,−3, . . . (10.44)

These basis vectors (10.43) are all orthogonal to each other, and so the inner
product is alone given by their norm squares

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . |
| . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

= (−1)](neg energy b)
∏
~p ′

(−1)|k(
~p ′,E<0)| = 1 (10.45)

Here ](neg energy b) means the total number of negative energy bosons i.e.

](neg energy b) =
∑
~p ′

k(~p, E < 0) (10.46)

(a negative number in our physical sector-combination). The factor

(−1)](neg energy b.)

comes from (10.31) which gives negative norm square for single particle states
with negative energy, because

←→
∂
∂t

is essentially the energy. The other factor∏
~p ′(−1)

|k( ~p ′,E<0)| comes from (10.42) one factor for each negative single par-
ticle energy state, i.e. each ~p ′. Had we here chosen another sector-combination,
e.g. to take k(~p, E < 0) non-negative as well as k(~p, E > 0), then we would
have instead

k(~p, E > 0) = 0, 1, 2, . . .

k( ~p ′, E < 0) = 0, 1, 2, . . .

}
(both pos sectors.) (10.47)

and the inner with themselves, norm squares product for the still mutually
orthogonal basis vectors would be

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .
| . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

= (−1)](neg energy b)

(for both positive sectors) (10.48)
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and that for this case (“sector combination”), the inner product is not positive
definite.
Such strange sector combination is of course mainly of academical interest.
But for instance this last mentioned “both positive sector” sector-combination,
can have easily position eigenstate particles in the Fock space description.
Normally positon is not possible to be well defined in relativistic theories.
As already mentioned above, we have a slightly complicated inner product in
as far as we have sign-factors in the inner product coming from two different
sides:

1)The inner product sign-factor from the single particle wave function coming
from (10.31) gives a minus for negative energy particles, ending up being
(−1)](neg. energy b) in (10.45).

2)The other inner product sign factor comes from (10.42).
In the above, we have used the dagger symbol “ † ” on a† to denote the Hermi-
tian conjugate w.r.t. only the inner product coming from (10.42), but have not
included the factor from 1) meaning from (10.31). Thus we strictly speaking
must consider also a full dagger (full †f) meaning hermitian conjugation corre-
sponding the full inner product also including 1), i.e. the (10.31) extra minus
for the negative energy states. So although we have not changed a(~p, E > 0)
nor a(~p, E < 0) we have to distinguish two different a† ′s namely a† and a†f .
In fact we obtain with this notation of two different †( ′)s.

a†f(~p, E > 0) = a†(~p, E > 0) (10.49)

but
a†f(~p, E < 0) = −a†(~p, E < 0) (10.50)

Since at the end, the physical/usual second quantized Boson-theory has as
its inner product the full inner product one should, in the physical use, use
the Hermitian conjugation †f. So the creation operators to be identified with
creation operators are respectively:
For a particle;

a†usual(~p) = a
†f(~p, E > 0) (10.51)

while for an antiparticle of momentum ~p it is;

a†usual anti(~p) = a(−~p, E < 0) (10.52)

Similarly:

ausual(~p) = a(~p, E > 0)

ausual anti(~p) = a
†f(−~p, E < 0) = −a†(−~p, E < 0) (10.53)

Using the extended commutation rules

[a(~p,>< E), a
†( ~p ′, >< E)] = δ ~p ′~p ·

{
1 for same < or >
0 for different < or >

(10.54)
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so that for instance
[a(~p,< E), a†( ~p ′, < E)] = δ~p ~p ′ (10.55)

We quickly derive the correspondingcommutation rules using the “full dag-
ger”

[a(~p, E > 0), a†f( ~p ′, E > 0)] = δ~p ~p ′ (10.56)

and
[a(~p, E < 0), a†f( ~p ′, E < 0)] = δ~p ~p ′ (10.57)

10.4 “Majorana-bosons”

We shall now in this section analogously to what we did in sections 10.2 for
Fermions as a warm up excercise from our Fock space defined in section 10.3 for
e.g. the physical sector- combination extract a subspace HMaj and on that find
a description of now bosons which are their own antiparticles. There would be
some meaning in analogy to the Fermion case to call such bosons which are their
own antiparticles by the nickname “Majorana-bosons”.

As for the fermions we shall expect a state with say kMaj(~p) “Majorana-
bosons”with momentum equal to ~p to be presented as a superposition of a number
of the “essentially charged” bosons or antibosons of the type discussed in forego-
ing section. Here an antiparticle of course means that one has made the number
of bosons in a negative energy single particle state one unit more negative. Typ-
ically since the physical vacuum has k(~p, E < 0) = −1 for all momenta and an
antiparticle of momentum ~pwould mean that k(−~p, E < 0) gets decreased from
−1 to −2. If you have several antiparticles l say in the same state with momentum
~p of course you decrease k(−~p, E < 0) to −1 − l, k(−~p, E < 0) = −1 − l (for l
antiparticles).

In other words we expect a state with say lMaj “Majorana-bosons” with
momentum ~p to be a superposition of states in the Fock space with the number of
antiparticles running from l = 0 to l = lMaj while correspondingly the number
with momentum ~p is made to lMaj−l so that there are together in the representing
state just equally many particles or antiparticles as the number of “Majorana-
bosons” lMaj wanted.

We actually hope –and we shall see we shall succeed– that we can construct a
“Majorana-boson” creation operator for say a “Majorana-boson” with momentum
~p,b†(~p) analogously to the expressions (10.19) and (10.20)
b†(~p) = 1√

2

(
a†(~p, E > 0) + a(−~p, E < 0)

)
and b(~p) = 1√

2

(
a(E > 0) + a†(E < 0)

)
.

Since an extra phase on the basis states does not matter so much we could also
choose for the boson the “Majorana boson” creation and annihilation operators to



i
i

“proc17” — 2017/12/11 — 19:44 — page 159 — #173 i
i

i
i

i
i

10 Bosons Being Their Own Antiparticles in Dirac Formulation 159

be

b†f(~p) =
1√
2

(
a†(E > 0) + a(−~p, E < 0)

)
=

1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
b(~p) =

1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) − a†(−~p, E < 0)

)
. (10.58)

One must of course then check –first on the physical sector-combination but
later on others– that b†(~p) and b(~p) obey the usual commutation rules[

b(~p), b( ~p ′)
]
= 0[

b†f(~p), b†f( ~p ′)
]
= 0[

b(~p), b†f( ~p ′)
]
= δ~p ~p ′ . (10.59)

We also have to have a vacuum for the “Majorana-boson” theory, but for that
we use in the physical sector-combination theory the same state in the Fock space
as the one for the “essentially charged” boson system. This common physical
vacuum state (in the Fock space) is characterized as the basis vector

| . . . , k(~p, E > 0), . . . ; . . . , k(~p, E > 0), . . .〉 (10.60)

with
k(~p, E > 0) = 0 for all ~p (10.61)

and
k(~p, E < 0) = −1 for all ~p (10.62)

Indeed we also can check then of course that defining

| vac phys〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k( ~p ′, E < 0) = −1, . . .〉 (10.63)

we have
b(~p) | vac phys〉 = 0 (10.64)

On the other hand, we can also see that e.g.

1√
lMaj!

(
b†f(~p)

)lMaj
| vac phys〉

=
1

2lMaj/2
· Σl

(
lMaj
l

)(
a†(~p, E > 0)

)l
a(−~p, E < 0)lMaj−l | vac phys〉

= Σl

(
lMaj
l

)
| . . . , k(~p, E > 0) = l, . . . ; . . . , k(−~p, E < 0) = lMaj − l, . . .〉

·
√
l!
√
(lMaj − l)! ·

1√
lMaj!

=
1

2lMaj/2
· Σl

√(
lMaj
l

)
| . . . , k(~p, E > 0), . . . ; . . . , k(−~p, E < 0), . . .〉 (10.65)
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If we only put the Majorana-boson particles into the momentum ~p state of
course only k(~p, E > o) and k(−~p, E < 0) will be different from their | phys vac〉
values 0 and −1 respectively for E > 0 and E < 0. But really the extension to put
“Majorana-bosons” in any number of momentum states is trivial.

We now have also to construct the analogous operator to the r(~p) for the
fermions so that we can characterize the subspace HMaj to be for the boson case

HMaj = {|〉 | r(~p) |〉 = 0} . (10.66)

We in fact shall see that the proposal

r(~p) =
1√
2
(a(+~p, E > 0) + a†(−~p, E < 0))

=
1√
2
(a(~p, E > 0) − a†f(−~p, E < 0) (10.67)

does the job.
Now we check (using (10.58))[

r(~p), b†f(~p)
]
=

=

[
1√
2

(
a(~p), E > 0) + a†(−~p, E < 0)

)
,
1√
2

(
a†(~p), E > 0) + a(−~p, E < 0)

)]
or

=
1

2

[(
a(~p, E > 0) − a†f(−~p, E < 0)), (a†f(~p, E > 0) + a(−~p, E < 0)

)]
=
1

2
(1− 1) = 0 (10.68)

and also

[r(~p), b(~p)] =

=

[
1√
2

(
a(~p), E > 0) − a†f(−~p, E < 0)

)
,
1√
2

(
a(~p), E > 0) + a†f(−~p, E < 0)

)]
=

[
1√
2

(
a(~p), E > 0) + a†(−~p, E < 0)

)
,
1√
2

(
a(~p), E > 0) − a†(−~p, E < 0)

)]
= 0 (10.69)

We should also check that the physical vacuum

| phys vac〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k( ~p ′, E < 0) = −1, . . .〉 (10.70)

in which there is in all negative energy (with momentum ~p ′ say) single particle
states k( ~p ′, E < 0) = −1 bosons, and in all positive energy single particle states
k(~p, E > 0) = 0 bosons is annihilated by the r(~p) operators.
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Now indeed

r(~p) | phys vac〉

=
1

2

(
a(~p, E > 0) − a†f(−~p, E, 0)

)
| phys vac〉

=
1

2

(
a(~p, E > 0) + a†(−~p, E, 0)

)
· | . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0)

= −1, . . .〉
= 0 (10.71)

basically because of the barriere, meaning the square roots in the formulas (10.34,10.35)
became zero.

The result of this physical section for the most attractive formalism with b(~p)
and b†f(~p) annihilating and creating operators for the Boson-type particle being
its own antiparticle (=Majorana Boson) and to them corresponding useful state
condition operator rf(~p) is summarized as:

b(~p) =
1√
2

(
a(~p, E > 0) − a†f(−~p, E < 0)

)
b†f(~p) =

1√
2

(
a†f(~p, E > 0) − a(−~p, E < 0)

)
| phys vac〉 =| . . . , k(all ~p, E > 0) = 0, . . . ; . . . , k(all ~p, E < 0) = −1, . . .〉

rf(~p) =
1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
(10.72)

the useful subspace for bosons being their own antiparticles being

HMaj f =
{
| 〉 | ∀~prf(~p) | 〉 = 0

}
(10.73)

(One should note that whether one chooses our r( ~p ′) ′s or the rf(~p) ′s to de-
fine makes no difference for the space HMaj f rather than Hf, since we actually
have r(~p) = rf(~p) the two expressions being just expressed in terms of different
a†(~p, E < 0) and a†f(~p, E < 0) say)

We can easily check that our explicit state expressions (10.65) indeed are
annihilated by r(~p) It were formally left out theE > 0 or E < 0 for the b(~p) and
b†f(~p) it being understood that E > 0, but formally we can extrapolate also to
E < 0 and it turns of b(~p, E > 0) = b†f(−~p, E < 0)?

10.4.1 Charge Conjugation Operation

Since we discuss so much bosons being their own antiparticles coming out of a
formalism in which the bosons –at first– have antiparticles different from them-
selves, we should here define a charge conjugation operator C that transform a
boson into its antiparticle:
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That is to say we want this operator acting on the Fock space to have the commu-
tation properties with our creation and annihilation operators

C−1a(~p, E > 0)C = a†f(−~p, E < 0) (10.74)

and
C−1a†f(~p, E > 0)C = a(−~p, E < 0). (10.75)

We also have
C−1a(~p, E < 0)C = a†f(−~p, E > 0) (10.76)

and
C−1a†f(~p, E < 0)C = a(−~p, E > 0) (10.77)

These requirements suggest that we on the basis of (10.43) for the Fock space
have the operation

C | . . .
∼

k (~p, E > 0), . . . ; . . . ,
∼

k ( ~p ′, E < 0), . . .〉

=| . . . , k(~p, E > 0) = −
∼

k (− ~p ′, E < 0) + 1, . . . ; (10.78)

. . . , k( ~p ′, E < 0) = −1−
∼

k (− ~p ′, E > 0), . . .〉.

Using the “full inner product” this C operation conserves the norm, and in
fact it is unitary under the full inner product corresponding hermitean conjugation
†f i.e.

C†fC = 1 = CC†f (10.79)

But if we used the not full inner product, so that the norm squares for basis
vector would be given by (10.81) and therefore corresponding hermitean conjuga-
tion †, then if C acts on a state in which the difference of the number of positive
and negative energy bosons is odd, the norm square would change sign under the
operation with C.

So under † the charge conjugation operator could not possibly be unitary:

C†C 6= 1 6= CC† (10.80)

10.5 “Majorana boson” in unphysical sector-combination

As an example of one of the unphysical sector-combination we could take what in
our earlier work “Dirac sea for Bosons” were said to be based on the naive vacuum.
This naive vacuum theory means a theory in which we do not make any emptying
vacuum but rather let there be in both positive and negative single particle energy
states a positive or zero number of particles. So in this naive vacuum attached
sector combination we can completely ignore the extrapolated negative number
of boson possibilities; we so to speak could use the analogue of the harmonic
oscillator with normalized states only.
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This means that the inner product excluding the negative single particle state
normalization using (10.31) will be for this naive vacuum sector combination
completely positive definite.

However, including the negative norm factor for the negative energy states
from (10.31) so as to get the full inner product we do no longer have the positive
definite Hilbert inner product on the Fock space. Now rather we have for basis
vectors (10.43) instead of (10.45) that the norm squares

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉
= (−1)](neg. energy b.) (10.81)

This means that the norm square of a basis vector is positive when the number
of negative energy bosons is even, but negative when the number of negative
energy bosons is odd.

In the naive vacuum sector combination the vacuum analogue Fock space
state is the “naive vacuum”,

| naive vac.〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0) = 0, . . .〉. (10.82)

In analogy to what we did in the foregoing section 10.4, we should then
construct the states with various numbers of bosons of the Majorana type being
their own antiparticles by means of some creation and annihilation operators
b†f(~p) and b(~p), but first one needs a vacuum that is its own “anti state” so to
speak, meaning that the charge conjugation operator C acting on it gives it back.
i.e. one need a vacuum | vac?〉 so that

C | vac?〉 =| vac?〉 (10.83)

But this is a trouble! The “naive vacuum” | naive vac.〉 in not left invariant un-
der the charge conjugation operator C defined in the last subsection of Section 10.4
by (10.78).

Rather this naive vacuum is by C transformed into a quite different sector
combination, namely in that sector combination, in which there is a negative
number of bosons in both positive and negative energy single particle eigenstates.
i.e. the charge conjugation operates between one sector combination and another
one! But this then means, that we cannot make a representation of a theory with
(only) bosons being their own antiparticles unless we use more than just the naive
vacuum sector combination. i.e. we must include also the both number of particles
being negative sector combination.

In spite of this need for having the two sector combinations –both the naive
all positive particle number and the opposite all negative numbers of particles– in
order that the charge conjugation operator should stay inside the system –Fock
space, we should still have in mind that the creation and annihilation operators
cannot pass the barriers and thus can not go from sectors, also the inner product
between different sector combinations are divergent and ill defined (and we should
either avoid such inner products or define them arbitrarily).

So if we construct “Majorana boson” creation and annihilation operators
analogoulsy to the b(~p) and b†f(~p) in foregoing section as a linear combination of
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a(†)(~p,>< E) operators operating with such b(~p) and b†f( ~p ′)swill stay inside one
sector combination. For instance such b(~p) and b†f(~p) constructed analogously
to the physical sector ones formally would operate arround staying inside the
naive vacuum sector combination if one starts there, e.g. on the naive vacuum
| naive vac.〉. In this –slightly cheating way– we could then effectively build up
a formalism for bosons which are their own antiparticles inside just one sector
combination. When we say that it is “slightly cheating” to make this construction
on only one sector combination it is because we cannot have the true antiparticles if
we keep to a sector combination only, which is not mapped into itself by the charge
conjugation operator C. It namely then would mean that the true antiparticle
cannot be in the same sector combination.

Nevertheless let us in this section 5 study precisely this “slightly cheating”
formalism of keeping to the naive vacuum sector combination with positive
numbers of particles only.

We then after all simply use the naive vacuum | naive vac.〉 defined by (10.82)
as the “Majorana boson”-vacuum although it is not invariant under C, which we
must ignore or redefine, if this shall be o.k.

We may e.g. build up a formalism for the slightly cheating Majorana bosons
by starting from the | naive vac.〉 (10.82) and build up with b†f(~p) taken to be the
same as

b†f(~p) =
1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
(10.84)

and

b(~p) =
1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) − a†(−~p, E < 0)

)
(10.85)

We have already checked that for all sector combinations we have[
b(~p, b†f( ~p ′)

]
= δ~p ~p ′ (10.86)

and of course [
b(~p, b( ~p ′

]
= 0

=
[
b†f(~p), b†f( ~p ′)

]
(10.87)

So we see that we can build up using b(~p) and b†f(~p) a tower of states
with any nonnegative number of what we can call the Majorana bosons for any
momentum ~p.

We can also in all the sector combinations use the already constructed

r(~p) =
1

2

(
a(~p, E > 0) − a†f(−~p, E < 0)

)
=
1

2

(
a(~p, E > 0) + a†(−~p, E < 0)

)
(10.88)
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to fullfill the commutation conditions[
r(~p), b†f(~p)

]
= 0[

r(~p), b( ~p ′)
]
= 0 (10.89)

and we even have
r(~p) | naive vac.〉 = 0 (10.90)

So indeed we have gotten a seemingly full theory of “Majorana Bosons” inside
the naive vacuum sector combination subspace

HMaj = {|〉 | ∀~p (r(~p) |〉 = 0)} (10.91)

but it is not kept under the C as expected.
But really what we ended up constructing were only a system of positive

energy particle states since the creation with b†f(~p) = b†(~p) starting from the
naive vacuum only produces positive energy particles in as far as the a(−~p, E < 0)
contained in b†f(~p) just gives zero on the naive vacuum.

So this a “bit cheating” formalism really just presented for us the “essentially
charged” positive energy particles as “the Majorana-bosons”.

That is to say this a bit cheating formalism suggests us to use in the naive
vacuum sector combination the “essentially charged particles” as were they their
own antiparticles.

If we similarly built a Majorana boson Fock space system of the

C | naive vac.〉 =| vac. with both E > 0 and E < 0 emptied out〉
=| . . . , k(~p, E > 0) = −1, . . . ; . . . , k(~p, E < 0) = −1, . . .〉, (10.92)

we would obtain a series of essentially antiparticles (with positive energies) con-
structed in the “both numbers of bosons negative” sector combination.

What we truly should have done were to start from the superposition

| self copy vac.〉=̂ 1√
2
(| naive vac.〉+ C | naive vac.〉)

=
1√
2
(| . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0) = 0, . . .〉

+ | . . . , k(~p, E > 0) − 1, . . . ; . . . , k(~p, E < 0) = −1, . . .〉)
(10.93)

and then as we would successively go up the latter with b†f(~p) operators we would
successively fill equally many positive energy particles into the | naive vac.〉 and
positive energy antiparticles in C | naive vac.〉. Note that analogously to the above
called “a bit cheating” Majorana-boson construction using only the positive energy
single particle states we obtain here only use of the positive energy states for the
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naive vacuum sector combination and only the negative energy single particle
states for the Charge conjugation to the naive vacuum sector combination. Also it
should not be misunderstood: The filling in is not running parallel in the sense that
the sectors truly follow each other. Rather one has to look for if there is Majorana
boson by looking into both sector-combination- projections.

So we see that what is the true Majorana boson theory built on the two
unphysical sector combinations having respectively nonzero numbers of particles
(the naive vacuum construction) and negative particles number in both positive
and negative energies is the following:

A basis state with n(~p) Majorana bosons with momentum ~p, -and as we
always have for Majorana’s positive energy- gets described as a superposition
ot two states –one from each of the two sector combinations– with just n(~p)
ordinary (positive energy) essentially charged bosons (of the original types of our
construction created by a†..) and a corresponding Fock space state from the other
sector, now with n(~p) antiparticles in the other sector combination (the one built
from C | naive vac.〉).

Both of these separate sector combinations have for the used states a positive
definite Hilbert space.

As already stated the overlap between different sector combinaions vectors
are divergent and illdefined.

We can check this rather simple way of getting the Majorana bosons described
in our on the state 1

2
(| naive vac.〉+ C | naive vac.〉) built system of states by

noting what the condition r(~p) |〉 = 0 tells us the two sector combinations:
On a linear combination of basis vectors of the naive vacuum construction

type

|〉 = Σ | k(~p, E > 0) ≥ 0, . . . ; . . . , k(~p, E < 0) ≥ 0, . . .〉
C...k(~p,E>0)...;...k̃(~̇p,E<0)... (10.94)

the requirement
r(~p) |〉 = 0 (10.95)

relates coefficients which correspond to basis states being connected by k(~p, E > 0)
going one up while k(−~p, E < 0) going one unit down or opposite. As we get the
relation √

1+ k(~p, E > 0)C...k(~p,E>0)+1,...;...,k(−~p,E<0),...

+C...,k( ~p ′,E>0),...;...,k(−~p,E<0)−1,...·

√
k(−~p, E < 0) = 0 (10.96)

we can easily see that the states being annihilated are of the form

∑
(−1)k(~p,E>0)

√
k(−~p, E < 0)!√
k(~p, E > 0)!

· | . . . , k(~p, E > 0), . . . ; . . . , k(−~p, E < 0), . . .〉,

(10.97)
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where we sum over k(~p, E > 0) and the difference d = k(~p, E > 0) − k(−~p, E < 0)

is FIXED.
As a special case we might look at possibility that the difference

d = k(~p, E > 0) − k(−~p, E < 0) (10.98)

were 0. In this case the | naive vac.〉 itself would be in the series. In this case the
solution (10.97) reduces to∑

k=0

(−1)k | . . . , k(~p, E > 0) = k, . . . ; . . . , k(−~p, E < 0) = k, . . .〉 (10.99)

But it is now the problem that this series does not converge. But for appropri-
ate values of the difference d,

d ≥ 2, (10.100)

the series (10.97)converge.
For the convergent cases we can estimate the norm square of a state (10.97) to

go proportional to

‖ |〉‖2 ∝
∞∑
k=0

(k− d)!

k!
(−1)k−d (10.101)

where the (−1)k−d now comes from the alternating “full” norm square due to the
factor (−1)](neg. energy b.). This expression in turn is proportional to

∞∑
k=0

(
k− d

−d

)
(−1)k−d =

∑
n=−d

(
n

−d

)
(−1)n (n = k− d)

=
(−1)−d

(1− (−1))
−d+1

(10.102)

which is zero for d− 1 ≥ 1.
So indeed it is seen that the basis states in HMaj part inside the naive vacuum

sector combination has zero norm. Since the states with different numbers of
Majorana-bosons are represented by mutually orthogonal it means that the whole
part of the naive vacuum sector combination used to represent the Majorana-
bosons has totally zero inner product. Basically that means that the inner product
transfered from the original theory with its “essentially charged bosons” to the for
Majorana bosons in subspace HMaj turns out to be zero.

This result means –extrapolating to suppose zero norm also in the divergent
cases– that in the unphysical sector combination we get no non-trivial inner
product for the Majorana-bosons.

If ones use the true Majorana boson description by as necessary combining
two sector combinations, one could use the ambiguity (and divergence) of the
inner product of states from different sectors to make up instead a non trivial inner
product.
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10.5.1 Overview of All four Sector Combinations

Strictly speaking we could make an infinite number of sector combinations, be-
cause we for every single particle state – meaning for every combination of a
spin state and a momentum say ~p – could choose for just that single particle
state to postulate the second quantized system considered to be started at such
a side of the “barriers” that just this special single particle state had always a
negative number of bosons in it. For another one we could instead choose to
have only a non-negative numbe of bosons. Using all the choice possibilities of
this type would lead us so to speak to the infinite number of sector combina-
tions 2#“single particle states”, where #“single particle states” means the number
of single particle states. But most of these enormously many sector combinations
would not be Lorentz invariant nor rotational invariant. Really, since the sector
combination should presumably rather be considered a part of the initial state
condition than of the laws of Nature, it might be o.k. that it be not Lorentz nor
rotational invariant. Nevertheless we strongly suspect that it is the most impor-
tant to consider the Lorentz and rotational invariant sector-combination-choices.
Restricting to the latter we can only choose a seprate sector for the positive enegry
states and for the negative energy sector, and then there would be only 22 = 4

sector combinations.
Quite generally we have the usual rules for creation and annihilation oper-

ators,but you have to have in mind that we have two different hermitean con-
jugations denoted respectively by † and by †f, and that the creation operators
constructed from the same annihilation operators are related

a†f(~p, E > 0) = a†(~p, E > 0)

a†f(~p, E < 0) = −a†(~p, E < 0) (10.103)

These “usual” relations are[
a(~p, E > 0), a†( ~p ′, E > 0)

]
= δ~p ~p ′[

a(~p, E < 0), a†( ~p ′, E < 0)
]
= δ~p ~p ′[

a(~p, E > 0), a†f( ~p ′, E > 0)
]
= δ~p ~p ′[

a(~p, E < 0), a†f( ~p ′, E < 0)
]
= −δ~p ~p ′ (10.104)

while we have exact commutation for awith a or for a† or a†f with a† or a†f . Each
a(~p, E >< 0) or a†f or a† act changing only the number of particle in just the single
relevant single particle state, meaning it changes only k(~p, E >< 0); the rules are as
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seen analytical continuations generally

a†(~p, E > 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=
√
k(~p, E > 0) + 1 | . . . , k(~p, E > 0) + 1, . . . ; . . . , k( ~p ′, E < 0), . . .〉

a†( ~p ′, E < 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=

√
k( ~p ′, E < 0) + 1 | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0) + 1, . . .〉

a†f(~p, E > 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=
√
k(~p, E > 0) + 1 | . . . , k(~p, E > 0) + 1, . . . ; . . . , k( ~p ′, E < 0), . . .〉

a†f( ~p ′, E < 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=−

√
k( ~p ′, E < 0) + 1 | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0) + 1, . . .〉

a(~p, E > 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=
√
k(~p, E > 0) | . . . , k(~p, E > 0) − 1, . . . ; . . . , k( ~p ′, E < 0), . . .〉

a( ~p ′, E < 0) | . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=

√
k( ~p ′, E < 0) | . . . , k(~p, E > 0) + 1, . . . ; . . . , k( ~p ′, E < 0) − 1, . . .〉 (10.105)

The four sector combination with the same sector for the same sign of the
energy E of the single particle states were called:

1)The “physical sector” has

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = −1,−2,−3 . . . (10.106)

2)The “sector-combination constructed from the naive vacuum” has

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = 0, 1, 2, . . . (10.107)

3)The “both sectors with negative numbers” sector-combination has

k(~p, E > 0) = −1,−2,−3 . . .

k(~p, E < 0) = −1,−2,−3 . . . (10.108)

4)The “a positive number with negative energy and vise versa” has

k(~p, E > 0) = −1,−2,−3 . . .

k(~p, E < 0) = 0, 1, 2, . . . (10.109)

In the physical sector combination the Fock space ends up having positive
definite norm square and so this sector-combination is the one usual taken for
being the in nature realized one.
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10.5.2 Formulas for “Majorana particles”

The theory of Majorana fermions may be so well known that we had nothing to
say, but it were written about it in section 2.

For the boson case we introduced for each (vectorial) value of the momentum
an operator acting on the Fock space called r(~p) defined by (10.88)

r(~p) =
1√
2

(
a(~p, E > 0) − a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) + a†(−~p, E < 0)

)
(10.110)

with the properties [
r(~p), b( ~p ′)

]
= 0[

r(~p), b†( ~p ′)
]
= 0[

r(~p), b†f( ~p ′)
]
= 0 (10.111)

where the creation b†f(~p)
(
= b†f(~p

)
and annihilation b(~p) operators for the “Ma-

jorana bosons” (i.e. boson being its own antiparticle) were defined in terms of the
a’s as

b†f(~p) =
1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
(10.112)

and

b(~p) =
1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
(10.113)

=
1√
2

(
a(~p, E > 0) − a†(−~p, E < 0

)
(10.114)

These operators obey (see(10.86) and (10.87))[
b(~p, b†f( ~p ′)

]
= δ~p ~p ′[

b(~p, b( ~p ′
]
= 0[

b†f(~p), b†f( ~p ′)
]
= 0 (10.115)

and so these operators are suitable for creating and annihilation of particles, and
indeed these particles are the “Majorana bosons”. As a replacement for the in
usual formalism for “Majorana bosons” say

b(~p, E) = b†f(−~p,−E) (10.116)
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we have in our notation
b(−~p) |with

>↔<= b
†f(~p) (10.117)

as is easily seen from (10.113) and (10.112) just above.
But now we need also a vacuum from which to start the creation of the

“Majorana bosons” with b†f(~p). In the two sector-combinations 1) the physical
one and 4) “a positive number with negative energy and vice versa” there are the
suitable vacua:

In 1)

| physical vac〉 =| . . . , k(~p, E > 0) = 0, . . . ; . . . , k(~p, E < 0) = −1, . . .〉 (10.118)

and in 4)

|
pos in E < 0

neg in E > 0
〉 = 1 . . . , k(~p, E > 0) = −1, . . . ; . . . , k(~p, E < 0) = 0, . . .〉 (10.119)

In the sector-combinations 2) and 3), however, there are no charge conjugation
symmetric states to use as the vacuum state for a “Majorana-boson” formalism. In
this case the vacuum of 2) goes under charge conjugation C into that of 3).

10.6 Outlook on String Field Theory Motivation

One of our own motivations for developping the sort of boson Dirac sea theory
for bosons being their own antiparticles, i.e. a theory with Dirac sea, were to use it
in our own so called “novel string field theory”[8–11].

In this “novel string field theory” we sought to rewrite the whole of string
theory[12–15,28,29] (see also modified cubic theory [24])- although we did not
yet come to superstrings[25,17,26] although that should be relatively easy - into a
formalism in which there seems a priori to be no strings. The strings only come
out of our novel string field theory [18–23] by a rather complicated special way
of looking at it. In fact our basic model in this novel string field theory is rather
like a system of /a Fock space for massless scalar particles, which we call “objects”
in our formulation, but they have much although not all properties similar to
scalar massless particles. These particles/objects we think must be in an abstract
way what we here called Majorana bosons. This means they should be their own
antiparticles to the extend that they have antiparticles.

But their being put into cyclically ordered orientable chains may put a need
for a deeper understanding of the Majorananess for these “objects”.

The reason for the objects, that in our novel string field theory are a kind
of constituents, for the strings being supposed to a nature reminiscent of the
Majorana particles or being their own antiparticles, is that they carry in themselves
no particle number or charge, except that they can have (26)-momentum. (For
complete consistency of the bosonic string theory it is wellknown that 26 space
time dimensions are required.) The bulk of the string (in string theory) can namely
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be shrunk or expanded ad libitum, and it is therefore not in itself charged, although
it can carry some conserved quantum numbers such as the momentum densities.

We take this to mean that the string as just bulk string should be considered
to be equal to its own antimaterial. If we think of splitting up the string into small
pieces like Thorn[27], or we split the right and left mover parts separately like we
did ourselves, one would in both cases say that the pieces of Thorn’s or the objects
of ours should be their own antiparticles. With our a bit joking notation: they
should be Majorana. Thus we a priori could speculate that, if for some reason we
should also like to think our objects as particles, then from the analytical properties
of the single particle in relativistic theories must have both positive and negative
energy states. Then a treatment of particles being their own antiparticles in the
Dirac sea formulation could - at least superficially -look to be relevant.

One could then ask, what we learned above, that could be of any help sug-
gesting, how to treat long series of “objects”, if these objects are to be considered
bosons that are their own antiparticles:

• 1. In the novel string field theory of ours it is important for the association
to the strings, that one considers ring shaped chains of objects. We called
such ring shaped chains of objects for “cyclically ordered chains”. Now such
ordering of our “objects” (as we call them), or of any type of particles, into
chains in which each particle (or “object”) can be assigned a number (although
in our special model only a number modulo some large number N) is o.k. for
particles with an individuality. However, if we have particles (or “objects”) that
are say bosons, then all particles are identical - or one could say any allowed
state is a superposition of states in which all possible permutations on the
particles have been performed and a superposition of the results of all these
permutations with same amplitude only is presented as the final state -. But
this then means that one cannot order them, because you cannot say, which is
before which in the ordering, because you cannot name the single particle.
You could only say, that some particle A is, say, just before some particle
B in a (cyclic) ordering, if you characterize A as being the particle with a
certain combination of coordinates (or other properties) and B as being the
one with a certain other combination of coordinates (and other properties).
Unless you somehow specify by e.g. some approximate coordinates (or other
characteristic) which particle you think about, it has no meaning to express
some relation involving the relative ordering, say, of two bosons.

• 2. The problem just mentioned in assigning order to bosons means, that the
concept of “cyclically ordered chains” of objects - or for that matter building
up any string from particle pieces like Thorn say - cannot be done once the
particles or objects are bosons, but rather should be preferably formulated
before one symmetrize the wave function under the particle permutation so as
to implement that they are bosons. One shall so to speak go back in the
“pedagogical” development of boson-theory and think in the way before the
symmetry principle under permutations making the particles bosons were
imposed. In this earlier stage of the description the cyclically ordered chains,
or any type of ordering, which one might wish, makes sense. So here it looks
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that going back and postponing the boson constraint is needed for ordering
chains.

• 3. But seeking to go back prior to boson or fermion formulation makes a
problem for the Dirac sea - in both boson and fermion cases -: If we want to
consider the case of individual particles or objects fully, we have to imagine
that we have given names (or numbers) to all the particles in the Dirac sea!
For this problem we may think of a couple of solutions:

– a. We could imagine an interaction that would organize the particles in
the ground state (to be considered a replacement for the physical vacuum)
or that some especially important state for the Fock space obtained by
imposing some other principle is postulated to make up a kind of vacuum
state. Then one could hope or arrange for the interaction or state-selecting
principle chosen, that the vacuum state becomes such, that the objects (or
particles) in the Dirac sea goes into such a state, that these objects have
such positions or momenta, that it due to this state becomes possible to
recognize such structure that their ordering in the wanted chain becomes
obvious. If so, then the (cyclic) ordering can come to make sense.
This solution to the problem may be attractive a priori, because we then
in principle using the now somewhat complicated state of the vacuum
can assign orderings to the whole Dirac sea, and thus in principle give an
individuality even to the Dirac sea particles and missing particles / the
holes can make sense, too. They so to speak can inherit their individuality
from the particles missing, which before being removed were sitting in the
chains of the vacuum. We have thus at least got allowance to talk about a
chain ordering for pieces of chains for the holes. There is so to speak an
ordering of the holes given by the ordering of the particles removed from
the Dirac sea originating from the chain postulated to have appeared from
the interaction or from some special selection principle for the vacuum
state.
A little technical worry about the “gauge choice” in our novel string field
theory: In our novel string field theory we had made a gauge choice for
the parametrization of the strings, that led to the objects having a special
component of their momenta p+, or in the language of our papers on this
string field theory J+(I) for the Ith object in the chain fixed to a chosen
small value aα ′/2. Since the argument for there having to be negative
energy solutions(to say the Dirac equation) and thus a need for a Dirac sea
at all is actually analyticity of the equation of motion, we would suppose
that also for our objects one should keep “analyticity” in developing ones
picture of the “negative energy states” and thereby of the Dirac sea. But
then the p+ or J+, which is fixed to constant could hardly get continued
to anything else than the same constant ? This sounds a bit unpleasant,
if we imagine the p+ be lightlike or timelike, because then we cannot
find the negative energy state with the chosen gauge condition, and the
whole reason for the Dirac sea seems to have disappeared. And thus the
discussion of Majorana may also have lost its ground. But if we imagine
the gauge choice fixed component to be spacelike, then we obtain, that
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the gauge condition surface intersects the light cone in two disconnected
pieces that are actually having respectively positive and negative energy.
So assumming the gauge choice done with a space-like component we
have indeed the possibility of the Majorananess discussion! And also in
this case of a spacelike p or J component being fixed (by gauge choice) our
construction of the Majorana bosons makes perfect sense.
Now it gets again severely complicated by the chains postulated in the
vaccuum. In the space-like gauge fixing case it also becomes of course
complicated, but the complication is due to the complicated state rather
than to the gauge fixing alone.
Let us, however, stress again: To make a ordering of the objects in the Dirac
sea into say cyclically ordered chains a much more complicated state in
the Fock space is needed than the simple say physical vacuum.
To figure out how to think about such a situation with a “complicated”
vacuum state replacing the, say, “physical vacuum” as discussed above,
we might think about the analogous situation with the fermions. When one
has a quantum field theory with fermions having interactions, it means that
the interaction part of the Hamiltonian has caused that the ground state for
the full Hamiltonian is no longer the state with just the Dirac sea fillied and
the positive energy single particle states empty. Rather it is a “complicated”
superposition of states in the Fock space, most of which would in the free
theory have positive energy. These are states which can be described as
states with some - infinite - number of positive energy fermions and some
anti-fermions present (in addition to the vacuum with just the Dirac sea
filled). The presence of anti-fermions (holes) means, that if one acts with
a creation operators b†(~p, E < 0) for inserting a fermion with a negative
energy (E < 0), then one shall not necessarily get 0 as in the free theory
vacuum, because one has the possibility(chance) of hitting a single particle
state in which there is a hole. The Fock-space state created by such an action
will have higher full Hamiltonian energy than the “interaction vacuum”,
because the latter is by definition the lowest energy state, but one has
anyway succeeded in inserting a fermion in a state which from the free
theory counted has a negative energy. It should be absolutely possible
that such an inserted in the just mentioned sense negative energy particle
could be part of the construction of say a bound state or some composite
object resonance or so. Similarly it could on top of a “complicated vacuum”
(meaning a ground state e.g. for the full Hamiltonian but not for the free
one) be possible to remove with an annihilation operator a(~p, E > 0) a
particle from a single particle state (having with the free Hamiltonian)
positive energy (E > 0). One could namely have the chance of hitting a
positve energy single particle state, in which there already is a particle in
the “complicated vacuum”. Such a removal or hole in a positive single
particle state is what we ought to call a “negative energy anti-particle”.
We here sought to argue, that if one for some reason or another (because
of interaction and taking the ground state, or because one has postuleted
some “complicated vacuum” just to make ordering make sense) use a
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“complicated vacuum”, then it becomes possible formally to add particles
or anti-particles with negative energy.
Especially we want to stress the possibility that, if one wants to describe
properly a resonance or a bound state composed or several particles (e.g.
fermions) then one might need to assign some of the constituents negative
energy in the sense just alluded to here.
Strictly speaking it comes to look in the “complicated vacuum” as if one
has got doubled the number of species of effective particle, because one now
by acting with e.g. a†(~p, E > 0) both can risk to produce a positive energy
particle, and can risk to fill in a hole in positive energy single particle state
and thereby creating a negative energy anti-particle. So operating with
the same operator we risk two different results, which may be interpreted
as if one had effectively had two different types of operators and thereby
doubly as many types of particles as we started with. We have so to speak
- in the case of non-Majorana particles - gotten both positive and negative
energy particles and also both positve and negative anti-particles effective
on the “complicated vacuum”.
If we go to make our particles Majorana, we reduce the number of species
by a factor two (as expected in as far as Majorana means that particle and
anti-particle gets identified.)
In the case of the “complicated vacuum” the transition to Majorana also
reduce the number of species by a factor 2 and thus compensates for the
effect of the “complicated vacuum”. With Majorana the particles and anti-
particles are no longer distinguished, but with the “complicated vacuum”
we obtain both positive and negative energy (Majorana)particles. It essen-
tially functions as if the particle were no more Majorana. The “complicated
vacuum”, so to speak, removed the Majorananess.
We hope in later publication to be able to check that the just delivered story
of the interaction vacuum increasing the number of species effectively by
the factor two, is found when using the Bethe-Salpeter equation to describe
bound states. Then there ought according to the just said to be effectively
both negative and positive states relevant for the “constituent” particles in
the Bethe-Salpeter equation.
Applying the just put forward point of view on the objects in our novel
string field theory we should imagine that in this formulation with the
“complicated vacuum” being one with chains in it it is possible for some
objects to have their energy negative. Nevertheless a whole chain formed
from them might end up with positive energy by necessity.
Such a possibility of negative energy for single objects that can nevertheless
be put onto the vacuum might be very important for complete annihilation
of pieces of one chain put onto the vacuum with part on an other one also
put onto that vacuum. If we did not have such possibility for both signs
along the chains, then we could not arrange that two incomming cyclically
ordered chains could partly annihilate, because energy conservation locally
along the chains would prevent that.
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At least in principle it must though be admitted, that such a picture based
on an interaction or by some restriction of the state of the whole world
makes a complicated vacuum is a bit complicated technically.
But physically it is wellknown, that the vacuum in quantum field theories
is a very complicated state, and so we might also expect that in string
theory a similarly complicated vacuum would be needed. And that should
even be the case in our novel string field theory in spite of the statement,
often stated about this theory, that it has no interaction properly; all the
seeming interactions being fake. But we could circumvent the need for
an interaction to produce the complicated vacuum, we seemingly need
by claiming that we instead have a restriction on the Fock space states of
the system of objects, that is allowed. Such a constraint could force the
vacuum to be more complicated, and thus in succession lead to that it
becomes allowed in the more complicated vacuum to have some of the
objects having even negative energy, which in turn could allow a complete
annihilation of objects from one cyclicaally ordered chain and another set
up in the same state (built on the complicated vacuum)

– b. We give up seeing any chain structure in the vacuum as a whole, but
rather attempt to be satisfied with ordering the missing particles, (or may
be the antiparticles?).
Naturally we would start imagining that we can have a Majorana boson, if
we wish, represented by -1 negative energy boson, because the Majorana
boson is a superposiotion of a particle and an antiparticle, and the latter
really can be considered -1 particle of negative energy.
At first one might think that having two bound states or two strings,
which would like to partially annihilate -as it seems that we need in our
derivation of Venezianoamplitude in our novel string field theory - could
be indeed achieved by having part of one of these composed structures
treated or thought upon as consisting of antiparticles, since one would
say that particle and anti-particle can annihilate. However, when anti-
particle and particle both with positive energy annihilate, then at least
some energy is in excess and they therefore cannot annihilate completely
into nothing. Rather there would have to some emmitted material left
over to take away the energy. If we therefore as it seems that we would
to get the terms missing in our novel string field theory t get the correct
three term Veneziano amplitude should have a total annihilaton without
left over such positive energy particles and antiparticles are not sufficient.
Therefore this b. alternative seems not to truly help us with the problem of
our novel string field theory to reproduce the Veneziano model fully.

• 4. In our formalism above - taken in the physical vacuum - the “Majorana-
boson” became a superposition of being a hole and a genuine positive enrgy
particle. The hole meant it were in part of the superposition - i.e. with some
probability 50 % - −1 particle with negative energy. So one would with signifi-
cant probability be able to consider that the “Majoran-boson” were indeed a
lack of a negative energy original particle. For calculating amplitudes of some
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sort one would then imagine that we might even have to add up contributions
from the holes and contributions from the positive energy particles.
For each object, say, we should think we should have both a contribution in
which it is considered a particle (with positive energy) and one in which it is a
hole.

• 5. From the construction of the creation and annihilation operators for the
“Bosons being their own antiparticles ” - the b’s - being constructed as contain-
ing the quite analogous contributions from a hole part and a particle part, it
looks that in building up states with many Majorana- bosons one gets an anal-
ogous built up for both the holes and the particles and with say the analogous
momenta.
Here analogous means that the holes are holes for states with opposite mo-
mentum, but since it is holes it becomes the same net momentum for the hole
as from the particle analogous to it.

• 6. With any sort of even formal interaction one would think that a hole and a
particle can annihilate as stuff annihilate anti-matter. But if you have a pair
of positive energy particles or anti-particles, they can only annihilate into
some other particles of some sort. They cannot just disappear together. That is
however, possible, if you have a negative energy particle and a positive energy
one of just opposite four(or 26) momenta.

• 7. If one would say choose a gauge so that the particles get as in our gauge
choice in our papers on the novel string theory that a certain momentum
component, p+ say, is specified to be a fixed value aα ′/2 as we choose, then
one would have to let the particle, the state of which is made the hole have its
p+ = −aα ′/2, i.e. the opposite value. (Then if one has negative numbers of
such particles, of course they contribute a positive p+ again.) If one has indeed
completely opposite four momenta - including energy - then an anihilation
without left over is possible, otherwise not. It is therefore it is so crucial with
negative energy constituents, if any such total disappearance of a pair is
needed/wanted.
But if we have physically only the free simple vacuum in which one has just
for bosons emptied the negative energy states and for fermions just filled the
negative energy states and no more, then all modifications will even particle
for particle have positive energy. It will either be a removal of a negative energy
particle meaning an antiparticle created or an insertion of a positive energy
particle. Both these modifications would mean insertion of positive energy
and they could not annihilate with each other without leaving decay material.
So to have a piece of a cyclically ordered chain annihilate without decay material
with another piece, it is needed that we do not just have the free theory vacuum.
We need instead something like a “complicated vacuum” such as can be gotten
by the effect of either interactions, or from some more complicated postulate
as to what the vacuum state should be.
In our novel string field theory, in which it is claimed that there are no in-
teractions in the object formulation, we cannot refer to interactions. Rather
we must refer to making a postulate about what the “complicated vacuum
state” should be. As already mentioned above we need in order that ordering
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into the cyclically ordered chains can make sense to have as the (vacuum)
state a state in which the various objects can have so different single particle
states that we can use their single particle state characteristic to mark them
so as to give them sufficient individuality. Really we should postulate such a
“complicated vacuum state” that there would for each object be an effectively
unique successor lying as neighbor for the first one. But such restrictions to
somewhat welldefined positions relative to neighbors in a chain must mean
that it cannot at all be so, that there are just, 1 for fermions, -1 for bosons,
particels in the negative energy states and zero in the positive ones. Rather it
means, that considering such a free vacuum as starting point the state with
the chains organized into the “compicated vacuum” is strongly excited. So
there are many both particles and anti particles present in this “complicated
vacuum ” needed to have chains inside the vacuum.
But as already said such “complicated vacuum” can give the possibility of
having effectively negative energy constituents. Since our objects are essen-
tially constituents, this also means that our objects in a complicated vacuum
can get allowed to be of negative energy. We must arrange that by allowing
them in our gauge choice to get the J+ have both signs. If so we may enjoy the
full annihilation without left over material.

• 8. To construct an operator creating a chain (or series) of Majorana particles
- in our novel SFT we mean the objects - we strictly speaking should use a
specific linear combination of the hole and the positive energy particle (or
object) for every Majorana particle created along the chain, but if we project
out at the end the constructed Fock space state into the subspace used for the
Majorana boson description, it is not so important to use precisely the correct
linear combination. We shall namely obtain the right linear combination, since
in that case it comes out of such a projection automatically.
But trusting that projecting into the Majorana-describing sub-space will do
the job, we can just choose at will whether we use a series of positive energy
particle (or object) creation operator or instead the corresponding hole creating
(destruction of negative energy) operator.

Since our objects are a priori Majorana ones, it may at the end due to the
doubling of state-types mentioned get them rather described effective as non-
Majorana, in the way that they can be in both positive and negative energy single
particle states. This actually reminds us more about the “naive vacuum” sector
combination. But now it is the result of the “complicated vacuum” and of the
thereby associated “doubling of the number of species effectively”.

10.6.1 The “Rough Dirac Sea” in General

Let us extract and stress the idea, which we suppose will be very important for
our formulation of the scattering amplitude for strings in our novel string field
theory, but which could also be imagined to deliver an approximation that could
be useful especially for bound states with many constituents, “the (very) rough
Dirac sea”. This rough Dirac sea is really the same as what we called above the
“complicated vacuum”.
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The picture of true rough sea (a rough sea is the opposite of a calm sea,
and it means that there lots of high waves may actually) be a very good one to
pedagogically promote the idea of the effects of the “complicated vacuum” or the
“rough Dirac sea” leading to that we effectively get negative energy particles and
antiparticles.

In this picture the “calm Dirac sea” means the free approximation vacuum, in
which - in the physical choice of sector combination, which is what one normally
will have in mind - the negative energy states are filled for the fermion case, while
“emptied out” in the boson case. In any case this calm Dirac sea is the picture for
the theory vacuum in the unperturbed approximation (the free vacuum). But in
interacting quantum field theories the vacuum gets perturbed by the interaction
and becomes a more complicated state “the complicated vacuum”, and it is for this
“complicated vacuum” that the analogy with the rough sea is very good. There
should have been near the surface -at the average surface height - a region in
heights, in which you find with some probability water and with some probability
air. Just at the should-have-been surface (= average surface) one expects that the
probability for finding water is 50 % and for finding air in a given point is 50 %.

Now imagine: we come with an extra water molecule (or may be just a tiny bit
of water) and want to insert it into the sea or the air not too far from the “should-
have-been surface”. Now if there happen to be a wave of water present, where you
want to or attempt to insert such an extra tiny bit of water, you will not succeed,
and that is analogous to getting zero, when you want to create a particle with a
creation operator into a state that is already filled (say, we think for simplicity on
the fermion case). If, however, there happen to be a valley in the waves, you will
succeed in inserting a tiny bit of water even if it is under the average water height!
This corresponds to inserting a negative energy particle into the “rough Dirac sea”
or the “complicated vacuum”. You may also think about removing a droplet of
water. That will of course only succeed, if there is some water in the point in space,
wherein you want to do it. Again it is not guaranteed that you can remove a bit of
water in the rough sea, even if you attempt to remove it deeper than the average
water height, because there might be a valley among the waves. Also if you hit a
wave you might be able to remove a bit of water from a height above the average
height.

In this way we see that you can produce sometimes a hole in the water both
with positive and negative height (analogous to the both positive and negative
(single particle) energy). Similarly you may produce both above and below extra
bubbles of water.

This means that we have got a kind of doubling: While in the calm Dirac sea
you can only make droplets ( particles) above the average surface and only holes
( antiparticles) below, we now in the rough sea can do all four combinations.

10.6.2 Infinite Momentum Frame Wrong, in Rough Dirac Sea?

With “rough Dirac sea”-thinking we arrived at the idea, that one might describe
for instance a bound state or resonance as composed of constituent particles not all
having positive energy; but some of the constituents could have negative energy.
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It must be legal to choose to describe a bound state or resonance state by a
linear combination - weighted with what is essentially a wave function for the
constituents in the bound state or resonance - of creation operators and annihila-
tion operators (for describing the contained anti-particles among the constituent
particles) and let it act on the vacuum. We might, say, think of an operator of the
form

A†(bound state) = (10.120)

=

∫
Ψ(~p1, h1, s1; ...;~pN, hN, sN)

∗
∏
h1,s1

(a†(~p1, h1, s1)d
3~p1,h1,s1) · · ·

∏
hN,sN

(a†(~pn, hN, sN)d
3~pN); (10.121)

|bound state (Fock)state〉 = (10.122)

= A†(bound state)|“complicated vacuum”〉 (10.123)

=

∫
Ψ(~p1, h1, s1; ...;~pN, hN, sN) (10.124)∏

h1,s1

(a†(~p1, h1, s1)d
3~p1,h1,s1) · · ·

∏
hN,sN

(a†(~pn, hN, sN)d
3~pN) (10.125)

|“complicated vacuum”〉 (10.126)

where Ψ(~p1, h1, s1; ...;~pN, hN, sN) is (essentially) the wave function for a bounds
state of N constituents numbered from 1 to N. The momenta of the constituents
are denoted by ~pi with i = 1, 2, ..., N, while the internal quantum numbers are
denoted hi, and then there is the symbol si that can be si = “positive”= (E > 0) or
si =“negative” = (E < 0) , meaning that the single particle energy of the constituent
here is allowed to be both positive and negative, it being denoted by si, which
of these two possibilities is realized for constituent number i. In this expression
(10.126) we took just N constituents, but it is trivial to write formally also the
possibillity of the bound state being in a state, that is a superposition of states with
different values of the number N of constituents:

A†(bound state) = (10.127)

=
∑

N=1,2,...

∫
ΨN(~p1, h1, s1; ...;~pN, hN, sN)

∗
∏
h1,s1

(a†(~p1, h1, s1)d
3~p1,h1,s1) · · ·

∏
hN,sN

(a†(~pn, hN, sN)d
3~pN). (10.128)

In this way we could describe a (bound) state inserted on the background of
the true (“complicated”) vacuum with a superposition of different numbers of
constituents. In principle we could find a wave function set, ΨN(~p1, h1, s1; ...;
~pN, hN, sN) for N = 1, 2, ..., that could precisely produce the (bound) state or
resonace in question. It might because of the allowance of both negative and
positive energy constituents be possible to construct in this way a given state in
more than one way. But one could well imagine, that if we would like to have
the wave function reasonably smooth, then it would be hard to quite avoid the
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negative energy constituents contributions - they are of course only relevant by
giving nonzero contributions to the state created provided the Diarc sea is rough
- and thus it looks like being essentially needed to use wave functions with also
negative energy constituents, unless one is willing to give up the accuracy in
which the influence from the interaction on the vacuum must be included.

But if we thus accept a description with negative constituent energy, the usual
thinking on the “infinite momentum frame”[31] seems wrong:

If we in fact have constituents with single particle state negative energy,
then boosting such a state eversomuch in the longitudinal momentum direction
cannot bring these negative energy constituents to get posive longitudinal and
thereby positive Bjorken x. So the usual story that provided we boost enough all
constituents obtain positive x cannot be kept in our rough Dirac sea scenario with
its negative energy constituents!

This may be the reason for the trouble in our novel string field theory which
triggered us into the present work. In this novel string field theory formulation
we namely used infinite momentum frame and actually took it, that all the there
called objects - which are essentially constituents - had their J+ = aα ′/2. But
now the 26-momentum, which is proportional to the Jµ, should then for all the
objects have the + component positve. But now the notation is so, that this +

component means the longitudinal momentum in the infinite momentum frame.
So we assumed a gauge choice in our formulation of this novel string field theory
which is inconsistent with the negative energy constituent story arising from rough
Dirac sea.

This “mistake” is very likely to be the explanation for the strange fact, that
we in deriving the Veneziano model from our novel string field theory formalism
only got one out of the three terms we would have expected.

The suggested solution to our trouble would then be to allow also for con-
stituents with the J+ being negative. That would mean we could not keep to the
simple gauge choice enforcing a positive value to J+ but would have to allow also
negative values for this J+.

That in turn might then allow constituent pairs from say different bound states
- or different strings as it would be in our formalism - to totally annihilate meaning
without leaving any material after them, because no excess energy would have to
be there after the annihilation. Negative energy and positive energy together have
the chance of such total annihilation.

10.7 Conclusion and Outlook

The in many ways intuitively nice and appealing language of the Dirac sea, which
we have in an earlier work extended also to be applicable for bosons, is at first not
so well suited for particles –“Majorana particles”– which are identical to their own
antiparticles. In the present article we have nevertheless developped precisely this
question of how to describe particles –bosons or fermions– which are, as we call
it, “Majorana”. We use also this terminology “Majorana” even for bosons to mean
that a particle is its own antiparticle. The fermion case is rather well known. So our
main story was first to review, how it were at all possible to make (a free) theory
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for bosons based on a Dirac sea, and secondly the new features of this Dirac sea
for boson theory as follows:

a)negative norm squares
b)negative number of particles.

The main point then became how to get what we call a Majorana-boson
theory through these new features. This comes about by constructing in terms of
the creation and annihilation operators a†f(~p, E > 0) and a(~p, E < 0) for a type of
boson that might have a charge, some creation and annihilation operators b(~p)
and b†f(~p) for the Majorana boson, which is really a superposition of a boson and
an anti-boson of the type described by a and a†.

10.7.1 The old Dirac sea for bosons

The Dirac sea for boson theory is based on having a Fock space, for which a basis
consists of states with a number of bosons k(~p, E >< 0), which can be both positive,
zero and negative integer, in both positive and negative energy E single particle
states for each 3−momentum ~p,

| . . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉 ∈ Fock space. (10.129)

Because of the complication that the inner product

〈ϕ1 |(f) ϕ2〉 =
∫
ϕ∗1

←→
∂

∂t
ϕ2d

3~X (10.130)

for a (single particle) boson is not positive definite we have to distinguish two
different inner products | and |f say and thus also the two thereto responding
hermitean conjugations † and †f, meaning respectively without and with the∫
ϕ∗1
←→
∂
∂t
ϕ2d

3~X included. In fact we have for the norm square for these two inner
products

〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . |f
. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=(−1)](neg. energy b.〈. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . . |

. . . , k(~p, E > 0), . . . ; . . . , k( ~p ′, E < 0), . . .〉

=(−1)](neg. energy b. ·
∏

(~p,E><0)for which k≤−1

(−1)|k| (10.131)

10.7.2 Main Success of Our Previous Dirac Sea (also) for Bosons:

The remarkable feature of the sector with the emptied out Dirac sea for bosons -
what we called the physical sector - is that one has arranged the sign alternation
(10.42) with the total number of negative energy bosons to cancel the sign from
(10.31) so as to achieve that the total Fock space has positive norm square. This
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“physical sector” corresponds to that negative energy single particle states are
in the negative sectors, while the positive energy single particle states are in the
positive sector.

Thus the basis vectors of the full Fock space for the physical sector are of the
form

| . . . , k(~p, E > 0), . . . ; . . . , k(~p, E < 0), . . .〉 (10.132)

where the dots . . . denotes that we have one integer number for every momentum
vector –value (~p or ~p ′), but now the numbers k(~p, E > 0) of particles in a positive
energy are– in the physical sector-combination– restricted to be non-negative while
the numbers of bosons in the negative energy single particle states are restricted
to be negative

k(~p, E > 0) = 0, 1, 2, . . .

k(~p, E < 0) = −1,−2,−3, . . . (10.133)

In this physical sector our Dirac Sea formalism is completely equivalent to
the conventional formalism for quantizing Bosons with “charge” (i.e. Bosons
that are not their own antiparticles), say e.g. π+ and π−.

But let us remind ourselves that this idea of using Dirac sea allows one to not
fill the Dirac sea, if one should wish to think of such world. With our extension of
the idea of the Dirac sea to also include Bosons one also gets allowed to not empty
out to have −1 boson in each negative energy single particle state. But for bosons
you have the further strange feature of the phantasy world with the Dirac sea not
treated as it should be to get physical, that one even gets negative norm square
states, in addition to like in the fermion case having lost the bottom in the energy.

10.7.3 Present Article Main Point were to Allow for Bosons being their own
Antiparticles also in Dirac sea Formalism

We could construct a “Majorana-boson” creation operator for say a “Majorana-
boson” with momentum ~p, b†(~p) analogously to the expressions (10.19) and
(10.20).
b†(~p) = 1√

2

(
a†(~p, E > 0) + a(−~p, E < 0)

)
and b(~p) = 1√

2

(
a(E > 0) + a†(E < 0)

)
Since an extra phase on the basis states does not matter so much we could also

choose for the bosons the “Majorana boson” creation and annihilation operators
to be

b†f(~p) =
1√
2

(
a†(E > 0) + a(−~p, E < 0)

)
=

1√
2

(
a†f(~p, E > 0) + a(−~p, E < 0)

)
b(~p) =

1√
2

(
a(~p, E > 0) + a†f(−~p, E < 0)

)
=

1√
2

(
a(~p, E > 0) − a†(−~p, E < 0)

)
(10.134)
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Such creation operators b†f(~p) and their corresponding annihilation operators
b(~p) make up the completely usual creation and annihilation operator algebra
for Bosons that are their own antiparticles in the case of the “physical sector
combination”. This “physical sector combination” means that we emptied out the
Dirac sea in the sense that in the “vacuum” put just −1 boson in each negative
energy single particle state. This correspondence means that our formalism is
for this “physical sector combination” completely equivalent to how one usually
describes Bosons - naturally without charge - which are their own antiparticles.
But our formalism is to put into the framework of starting with a priori “charged”
Bosons which then quite analogously to fermions have the possibility of having
negative energy (as single particles). We then treat the analogous problem(s) to
the Dirac sea for Fermions, by “putting minus one boson in each of the negative
energy single particle states. That a bit miraculously solves both the problem of
negative norm squares and negative second quantized energy, and even we can
on top of that restrict the theory, if we so wish,to enforce the bosons to be identified with
their own antiparticles.

We saw above that

• 1. We obtain the Fock-space (Hilbert-space) for the Bosons being their own
antiparticles by restriction to a subspace

HMaj = {|〉 | r(~p) |〉 = 0} , (10.135)

where we have defined

r(~p) =
1√
2
(a(+~p, E > 0) + a†(−~p, E < 0))

=
1√
2
(a(~p, E > 0) − a†f(−~p, E < 0). (10.136)

Of course when one forces in the original Dirac sea formalism the antiparticles
differnt from the particles to behave the same way in detail it means a drastic
reduction of the degrees of freedom for the second quantized system - the Fock
space-, and thus it is of course quite natural that we only use the subspace
HMaj being of much less (but still infinite) dimension than the original one.

• 2. In our formalism - since we use to write the creation operator for the boson
being its own antiparticle as a sum of creation of a particle and of a hole (10.134)
- a “Majorana-boson”is physically described as statistically or in superposition
being with some chanse a particle and with some chance a hole. Really it is
obvious, that it is 50 % chance for each. So the physical picture is that the
“Majorana-boson” is a superposition of a hole and an original positive energy
particle in the “physical sector combination”.
• 3. We could construct a charge conjugation operation C which on our Fock

space with both negative and positive energy states present as possibilities
obtained the definition:

C | . . .
∼

k (~p, E > 0), . . . ; . . . ,
∼

k ( ~p ′, E < 0), . . .〉

=| . . . , k(~p, E > 0) = −
∼

k (− ~p ′, E < 0) + 1, . . . ; (10.137)

. . . , k( ~p ′, E < 0) = −1−
∼

k (− ~p ′, E > 0), . . .〉.
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Of course the state of the system of negative single particle comes to depend on
that of the positive energy system after the charge conjugation and oppositely.
With (10.58) or (10.134) one sees that on the whole system or Fock space
of Bosons being their own antiparticles is left invariant under the charge
conjugation operator C. This is as expected since these “Majorana Bosons”
should be invariant under C.

10.7.4 The Unphysical Sector Combinations and Boson-theories therein with
Bosons being their own antiparticles

As a curiosity - but perhaps the most new in the present article - we have not
only the physical sector combination, which so successfully just gives the usual
formalism for both “charged” bosons and for what we called Majorana-bososns
(the ones of their own antiparticles) but three more “sector-combinations” meaning
combinations of whether one allows only negative numbers of bosons, or only
non-negative numbers for the positive and the negative single particle states. The
reader should have in mind that there is what we called the barier, meaning that
the creation and annihilation operators cannot cross from a negative number of
particles in a single particle state to a positive one or opposite, and thus we can
consider the theories in which a given single particle state has a positive or zero
number of particles in it as a completely different theory from one in which one
has a negative number of bosons in that single particle state. For simplicity we
had chosen to only impose that we only considered that all single particle states
with one sign of the single particle energy would have their number of particles
being on the same side of the barrier. But even with this simplifying choice there
remained 22 = 4 different sector-combinations. One of these sector-combinations -
and of course the most important one because it matches the usual and physical
formalism - were the “physical sector combination” characterized by their being a
non-negative number k of bosons in all the positive energy single particle states
(i.e. for E > 0), while the number k of bosons in the negative energy single particle
states (i.e. for E < 0) is restricted to be genuinely negative −1,−2,−3, ....

The sector combination possibility 4) in our enumeration above the Fock
space gets negative definite instead of as the one for the physical sector combi-
nation which gets positive definite. But these sector combinations are analogous
or isomorphic with the appropriate sign changes allowed. Also our charge con-
jugation operator C operates inside both the “physical sector combination” and
inside the sector combination number 4), which is characterized as having just the
opposite to those of the physical sector, meaning that in sector combination 4) one
has a negative number of particles in each positive energy (single particle)state,
while there is a positive or zero number in the negative energy states. Thus the
construction of particles being their own antiparticles would be rather analogous
to that in the physical sector combination.

Less trivial is it to think about the two sector combinations 2) and 3) because
now the charge conjugation operator C goes between them:Acting with the charge
conjugation operator C on a state in the section combination 2) which we called the
“naive vacuum sector combination” one gets a result of the operation in the different
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sector combination namely 3). You can say that the charge conjugation operator does
not respect the barrier, it is only the creation and annihilation operators which
respect this barrier. A priori one would therefore now expect that one should
construct the formalism for the boson being its own antiparticle for these sector
combinations 2) and 3) based on a Fock space covering both parts of the sector
combination 2) and part of 3). To realize that one gets eigenstates of the charge
conjugation operator such a combination of the the two sector combinations is
of course also needed. However, if one just wanted to realize an algebra of the
creation and annihilation operators that could be interpreted as a formalism for
the boson type being its own antiparticle, one might throw away one of the two
sector combinations, say combination 3), and keep only the “naive vacuum sector
combination” 2). Since the creation and annihilation operators cannot cross the
barrier from one sector combination into the other one, such a keeping to only one
of the two sectors between the charge conjugation operator goes back and forth
would not make much difference for the creation and annihilation operators. We
did in fact develop such a formalism for bosons being their own antiparticles in this
way in alone “the naive vacuum sector combination”. Interestingly it now turned
out that keeping to only one sector combination the whole Fock space constructed
for the boson being its own antiparticle became of zero norm square. Really we
should say Hilbert inner product became completely zero for the subsector of the
Fock space - of this unphysical “naive vacuum sector combination” -. This is of
course at least possible since the sector combinations 2)(=the naive vacuum one)
and 3) have both positive and negative norm square states- so that no-zero Hilbert
vectors can be formed as linear combinations of positive and negative normsquare
Hilbert-vectors. (In the physical sector combination nor the sector combination 4)
zero norm states cannot be found because the Hilbert innerproduct is respectively
positively and negatively definite.).

10.7.5 Speculations Bound States, Rough Dirac Sea etc.

Then in the last section above we have some to the rest more weakly connected
speculations meant to be of help for the original problem bringing us to the
considerations in this article, namely our “novel string field theory”. A major
suggestion, that came out of these considerations were to have in mind that,
when you have an interacting quantum field theory, the vacuum gets into a rather
complicated superposition of Fock space states, that makes descriptions as the
“rough Dirac sea” or “the complicated vacuum” appropriate. While in say the
“physical vacuum” - descussed in the article - you can only remove particles from
negative energy states and only add particles to the positive single particle states,
one does not have this restriction in the interacting vacuum, or say the “rough
Dirac sea” vacuum. This point of view suggests that to make a proper description
of a bound state or a resonance by means of a wave function in a relativistic
quantum field theory, describing how to add or remove constituents from the
“rough Dirac sea”-vacuum one should include also negative energy possibilities for
the particles or antiparticle constituents.
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These considerations are also hoped to be helpful for the problems we have
for the moment with obtaining the full Veneziano model amplitude from our novel
string field theory.
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Abstract. We propose a UV complete model based on SUSY SU(2)H gauge theory with
confinement. New Z2 discrete symmetry and Z2-odd right-handed neutrino superfields
are also introduced to the model. Its low-energy effective theory can provide solutions for
Baryogenesis, DM candidate, and origin of neutrino masses. Below a confinement scale, the
Higgs sector is described in terms of mesonic superfields of fundamental SU(2)H doublets.
We also discuss how to test the scenario by the future collider experiments in a benchmark
scenario.

Povzetek. Avtor predlaga model za konfinirane kvarke, ki temelji na supersimetrični umer-
itveni teoriji SU(2)H, dopolnjeni z diskretno simetrijo Z2. Tudi za nevtrinska superpolja
uporabi Z2 diskretno simetrijo. V limiti nizkih energij lahko model ponudi odgovore za
nastanek barionov, kandidate za temno snov in pojasni izvor nevtrinskih mas. Na energijski
skali pod kromodinamskim faznim prehodom opiše Higgsove skalarje z mezonskimi su-
perpolji osnovnega dubleta SU(2)H. Obravnava tudi možnosti preverbe modela na bodočih
poskusih na pospeševalnikih.

Keywords: New Physics, Composite Higgs sector, SUSY

11.1 Introduction

A Higgs boson was discovered in 2012 at LHC experiments, and it has been
confirmed that its properties are consistent with the Higgs boson in the Standard
Model (SM). However, it is not the end of the story. The SM has still serous
problems. For example, there is no successful mechanism of Baryogenesis, there
is no candidate of the Dark Matter (DM), there is no natural explanation of tiny
neutrino masses, and so on. On the other hand, we have not fully understood
the Higgs sector yet. There are still several fundamental questions. For example,
how many Higgs bosons are there?, Whether is the Higgs boson a elementary
scalar or a composite state? What is the origin of the negative mass squared of
the Higgs boson? and so on. In many models, extension of the SM for explaining
unsolved problems, such as Baryogenesis, DM, neutrino masses, etc lead to an

? E-mail: shindou@cc.kogakuin.ac.jp
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extended Higgs sector. Thus, we can say that the Higgs sector will be a probe of
new physics.

In this talk, we consider a SUSY model[1,2] with additional SU(2)H gauge
symmetry to the SM gauge group and three matter fields (and three anti-matter
fields) which are fundamental representations under the SU(2)H. In the low energy
effective theory of this model, the Higgs sector is described by mesonic fields
of those six fields. We then show that this effective theory can provide enough
enhancement of the first order electroweak phase transition (1stOPT) which is
required by successful electroweak baryogenesis scenario[3], DM candidates, and
mechanism to generate tiny neutrino masses through radiative corrections.

11.2 Model

In SUSY SU(Nc) gauge theory with Nc + 1 flavour fields, confinement occurs
at some scale[6]. The simplest example is Nc = 2 case. Utilising this setup, we
propose a model with SU(2)H symmetry with three flavour fields which are fun-
damental representations of SU(2)H. There should also be three anti-matter fields
for each fundamental representation matter fields. We described these six fields
as Ti(i = 1, · · · , 6). This setup is almost same as one in the minimal SUSY fat
Higgs model[7]. In the minimal SUSY fat Higgs model, two doublets and one
singlet mesonic fields are light in the low energy effective theory by introducing
additional fields. In our model, in contrast, all the mesonic fields appears in the
low energy effective theory.

We here introduce a right-handed neutrino (RHN) which is singlet under
SU(2)H as well as the SM gauge symmetry. The model also has an unbroken
discrete symmetry Z2 in order to forbid tree level contributions to neutrino masses.
The RHN has an odd charge under the Z2 parity. We show the charge assignment
of Ti and the RHN NcR under the SM gauge symmetry, SU(2)H, and the Z2 parity
in Table 11.1-(I). The fifteen mesonic fields below a certain scale ΛH which are
canonically normalized as Hij ' 1

4πΛH
TiTj(i 6= j) are listed in the Table 11.1-(II).

The superpotential of the Higgs sector below ΛH is given by

Weff =λN
(
HuHd + v20

)
+ λNΦ

(
ΦuΦd + v2Φ

)
+ λNΩ

(
Ω+Ω− − ζη+ v2Ω

)
+ λ
{
ζHdΦu + ηHuΦd −Ω+HdΦd −Ω−HuΦu −NNΦNΩ

}
. (11.1)
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(I)

Superfield SU(2)H SU(3)C SU(2)L U(1)Y Z2(
T1
T2

)
2 1 2 0 +1

T3 2 1 1 +1/2 +1

T4 2 1 1 −1/2 +1

T5 2 1 1 +1/2 −1

T6 2 1 1 −1/2 −1

NcR 1 1 1 0 −1

(II)

Superfield SU(3)C SU(2)L U(1)Y Z2

Hd ≡
(
H14
H24

)
1 2 −1/2 +1

Hu ≡
(
H13
H23

)
1 2 +1/2 +1

Φd ≡
(
H15
H25

)
1 2 −1/2 −1

Φu ≡
(
H16
H26

)
1 2 +1/2 −1

Ω− ≡ H46 1 1 −1 −1

Ω+ ≡ H35 1 1 +1 −1

N ≡ H56, NΦ ≡ H34, NΩ = H12 1 1 0 +1

ζ ≡ H36, η ≡ H45 1 1 0 −1

Table 11.1. (I) The charge assignment of the SU(2)H doublets Ti and the RHN NcR under
the SM gauge group (SU(3)c×SU(2)L×U(1)Y and the Z2 parity. (II) The field content of the
extended Higgs sector in the low energy effective theory below the scale ΛH.

By the Naive Dimensional Analysis, λ ' 4π is naively expected at the confinement
scale ΛH. The relevant soft SUSY breaking Lagrangian terms are given by

LH =−m2HuH
†
uHu −m2HdH

†
dHd −m2ΦuΦ

†
uΦu −m2ΦdΦ

†
dΦd

−m2NN
∗N−m2NΦN

∗
ΦNΦ −m2NΩN

∗
ΩNΩ −m2Ω+

Ω∗+Ω+ −m2Ω−
Ω∗−Ω−

−m2ζζ
∗ζ−m2ηη

∗η−

{
m2ζηη

∗ζ+
B2ζ
2
ζ2 +

B2η

2
η2 + h.c.

}
−
{
Cλv20N+ CΦλv

2
ΦNΦ + CΩλv

2
ΩNΩ + h.c.

}
− {BµHuHd + BΦµΦΦuΦd + BΩµΩ(Ω+Ω− + ζη) + h.c.}

− λ
{
ANHuHdN+ANΦΦuΦdNΦ +ANΩ(Ω+Ω− − ηζ)NΩ +AζHdΦuζ

+AηHuΦdη+AΩ−
HuΦuΩ− +AΩ+

HdΦdΩ+ + h.c.
}
. (11.2)

By the vacuum expectation values (vev’s) of Z2-even singlet fieldsN,NΦ andNΩ,
the mass parameters µ = λ〈N〉, µΦ = λ〈NΦ〉 and µΩ = λ〈NΩ〉 are induced. The
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RHN has Yukawa couplings and the Majorana mass term given by

WN =yiNN
c
RLiΦu + hiNN

c
RE
c
iΩ− +

MR

2
NcRN

c
R +

κ

2
NNcRN

c
R . (11.3)

11.3 Benchmark point and its phenomenology

For successful electroweak baryogenesis, the condition ϕc/Tc > 1 should be
satisfied, which means that the 1stOPT is strong enough. Though new CP violation
phases are required in order to reproduce the correct amount of Baryon asymmetry
of the Universe, we here focus only on the 1stOPT. It is naively expected that we can
introduce several CP phases relevant to Baryogenesis as in the case of MSSM[8]. In
our model, the 1stOPT can be enhanced by the loop contributions of extra Z2-odd
scalar particles strongly enough.

Since our low energy effective theory keeps both Z2-parity and R-parity
unbroken, there are potentially three kinds of the DM candidates, i.e. the lightest
particles with the parity assignments of (−,+), (+,−), and (−,−). However, in
the case that one of them is heavier than the sum of the masses of the others, the
heaviest one decays into the other two particles so that the heaviest particle cannot
be a DM.

In our model, tiny neutrino masses are generated via loop contributions
shown in Fig. 11.1. There are one-loop and three-loop contributions. The one-loop
and three-loop diagrams correspond to the SUSY versions of Ma model[4] and
AKS[5], respectively. It is interesting that the one-loop diagrams are driven by
the coupling yN and the three-loop diagrams are controlled by another coupling
hN. Both one-loop and three-loop contributions can be significant if hN � yN.
Therefore, two different mass squared differences can be generated even if only
one RHN is introduced.

Φu

νjνi
νR νR

mνR

η, ζ η, ζ

B2
η , B

2
ζ , m

2∗
ζη

HuHu

Φu

yiN yjN

νjνi

Hu Hu

ζ ζ

B2
ζ

νR νR

mνR

Hd

eRi eRj

hi
N hj

N

Hd

Ω− Ω−
νjνi

Hu Hu

ζ ζ

B2
ζ

νR νR

mνR
Ω̃− Ω̃−

H̃d

ẽRi ẽRj

hi
N hj

N

Φd Φd

H̃dΩ̃+ Ω̃+

(I) (II) (III)

Fig. 11.1. (I) A one-loop diagram and (II) three-loop diagrams which contribute to the
neutrino mass matrix. The figures are taken from [1]

A benchmark scenario is provided in Table 3 of Ref. [1] and some predictions
are shown in Table 4 of the same reference, where the condition ϕc/Tc > 1 is
satisfied, the neutrino masses and the mixing angles given by neutrino oscillation
data can be reproduced, and the relic abundance of the DM can be explained with
satisfying the constraints from the experiments such as LFV searches.
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Fig. 11.2. The mass spectrum of the relevant particles in the bench mark scenario. The figure
is taken from Ref.[1].

Though this point is already excluded by the direct detection experiment
of the DM[9], we discuss phenomenological consequences of this benchmark
scenario, because we can see some general features of our model in the scenario. In
Fig. 11.2, the mass spectrum of the relevant particles in this benchmark scenario is
shown. The Z2-even part of the spectrum is similar to one in nMSSM. A significant
size of mass splitting between the charged Higgs boson and the heavy Higgs
bosons is required for obtaining the large mixing between doublet fields and a
singlet field, which is necessary to reproduce the relic abundance of the DM. By
looking at such a large splitting in the spectrum of extra Higgs bosons, the Z2-even
part of our scenario can be distinguished from the MSSM. In this benchmark
scenario, ϕc/Tc is enhanced by the loop effect of Φu andΩ−. The loop effect can
also significantly affect the h-γ-γ coupling and the triple Higgs boson coupling as
shown in Table 11.2. By using precise measurement of the SM-like Higgs boson
couplings at future collider experiment such as ILC[10], our benchmark scenario
can be distinguished from nMSSM too.

Couplings hWW hZZ hūu hd̄d h¯̀` hγγ hhh

κhφφ = ghφφ/g
SM
hφφ 0.990 0.990 0.990 0.978 0.978 0.88 1.2

Table 11.2. The deviations in the coupling constants from the SM values in the benchmark
scenario defined in Ref. [1].
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It is also interesting to discuss phenomenology in the Z2-odd sector. By the
direct search of inert doublet particles[11] and inert charged singlet searches[12] at
ILC, it is expected to get a strong hint on the Z2-odd sector of the scenario.

11.4 Conclusion

We have attempted to construct a simple model to solve the three problems such
as baryogenesis, DM, and tiny neutrino mass, which cannot be explained in the
SM. We have succeeded to find such a UV model based on SUSY SU(2)H gauge
theory with confinement. In its low energy effective theory, we have shown that
the 1stOPT is enhanced strongly enough for successful electroweak baryogenesis,
multi-components DM scenario is realised, and tiny neutrino masses are generated
via one-loop and three-loop diagrams. We have also introduced a benchmark
scenario and we have discussed how to test it at future collider experiments. In
this benchmark scenario, the spin-independent cross section of DM’s are above
the latest result of the DM direct detection experiments, so that we should look
for a new benchmark scenario. In addition, we focus only on the 1stOPT for the
baryogenesis. For complete analysis, new CP violation phases should be taken
into account.

Recently, effects of CP violation in the singlet-doublet dark matter model is
discussed and it is shown that the spin-independent cross section can be sup-
pressed with a certain CP violation in the dark sector[13]. Therefore, it will be
important to take CP phases in to account for evading the strong constraint from
the direct detection of DMs as well as for complete analysis of the baryogenesis
scenario.
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Abstract. Some recent research of quantum corrections inN = 1 supersymmetric theories
is briefly reviewed. The most attention is paid to the theories regularized by higher covariant
derivatives. In particular, we discuss, how the NSVZ and NSVZ-like relations appear with
this regularization and how one can construct the NSVZ scheme in all orders.

Povzetek. Avtor na kratko poroča o nedavnih raziskavah kvantnih popravkov v super-
simetričnih teorijah tipaN = 1 s posebnim poudarkom na teorijah regulariziranih z višjimi
kovariantnimi odvodi. Predstavi, kaj se zgodi z relacijami tipa NSVZ in tej podobnimi v tej
regularizaciji in kako poteka konstrukcija NSVZ sheme v vseh redih.

Keywords: Supersymmetric theories, Quantum corrections, Regularization,N = 1

sypersymmetric extensions of the Standard Model

12.1 Introduction

N = 1 sypersymmetric extensions of the Standard Model (SM) are very inter-
esting candidates for describing physics beyond it [1]. In these theories there are
no quadratically divergent quantum corrections to the Higgs mass, the running
of coupling constants agrees with the predictions of the Grand Unified Theories,
and the proton lifetime (proportional to M4

X) is much larger than in the non-
supersymmetric case. This makes them very attractive from the phenomenological
point of view. However, the supersymmetric extensions of SM predict a lot of
new particles, which are superpartners of quarks, leptons, gauge bosons and
Higgs bosons. Supersymmetry also requires two Higgs doublets, which produces
2× 2× 2− 3 = 5Higgs bosons. To make masses of superpartners sufficiently large,
it is necessary to break supersymmetry. Although it is highly desirable to break su-
persymmetry spontaneously, the simplest models (like MSSM) include soft terms,
which explicitly break supersymmetry, but do not produce quadratic divergences.
Investigation of quantum corrections in supersymmetric theories and theories
with softly broken sypersymmetry and comparing them with experimental data
can provide information about physics beyond SM.
? E-mail: stepan@m9com.ru
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It is convenient to describe N = 1 supersymmetric theories in N = 1 su-
perspace, because in this case supersymmetry is a manifest symmetry. In this
language, the renormalizable N = 1 SYM theory (with a simple gauge group G,
for simplicity) is described by the action

S =
1

2e20
Re tr

∫
d4xd2θWaWa +

1

4

∫
d4xd4θφ∗i(e2V)i

jφj

+
{ ∫

d4xd2θ
(1
4
mij0 φiφj +

1

6
λijk0 φiφjφk

)
+ c.c.

}
,

where θ denotes auxiliary Grassmannian coordinates. The real superfield V(x, θ, θ̄)
is the gauge superfield, and the supersymmetric gauge field strength is defined as
Wa = D̄2

(
e−2VDae

2V
)
/8. The matter superfields φi are chiral, D̄ȧφi = 0, where

in our notation Da and D̄ȧ denote the right and left supersymmetric covariant
derivatives, respectively. In terms of superfields the gauge transformations can be
written as

φ→ eAφ; e2V → e−A
+

e2Ve−A, (12.1)

and are parameterized by a chiral superfield A = ie0A
BTB.

Quantum behaviour of sypersymmetric theories is better than in the non-
supersymmetric case. For example, in the most interesting for phenomenology
case of N = 1 supersymmetry, there are no divergent quantum corrections to
the superpotential [2]. Consequently, the renormalization of masses and Yukawa
couplings in such theories is related to the renormalization of the chiral matter
superfields. As a non-renormalization theorem one can also consider a relation
between the β-function and the anomalous dimensions of the chiral matter super-
fields which takes place in N = 1 supersymmetric theories [3–6],

β(α, λ) = −
α2
(
3C2 − T(R) + C(R)i

jγj
i(α, λ)/r

)
2π(1− C2α/2π)

. (12.2)

In our notation r = dimG, and TA are the generators of the representation R
to which the chiral matter superfields belong, such that tr (TATB) = T(R) δAB

and (TATA)i
j ≡ C(R)i

j. For the adjoint representation T(Adj) = C2, where
fACDfBCD ≡ C2δ

AB. The relation (12.2) is usually called the exact NSVZ β-
function, because for the pure N = 1 SYM theory it gives the exact expression for
the β-function. In this paper (following Ref. [7]) we will also discuss the relation
between the NSVZ β-function and the non-renormalization theorem for the triple
gauge-ghost vertices. This theorem claims that in N = 1 SYM theories three-point
vertices with two ghost legs and one leg of the quantum gauge superfield are
finite.

Although a lot of general arguments can be used for obtaining Eq. (12.2),
see, e.g., [8–10], it is not so trivial to establish how the NSVZ relation appears in
perturbative calculations. Certainly, for doing such calculations the theory should
be properly regularized, and the way of removing divergences should be specified.
By other words, it is necessary to fix a subtraction scheme. The calculations done
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with the dimensional reduction [11] in the DR-scheme in the three- and four-loop
approximations [12–14,16] demonstrated that Eq. (12.2) does not take place starting
from the three-loop approximation. However, one can explain the disagreement
by the scheme dependence of the NSVZ relation [17,18]. A possibility of this
explanation is non-trivial due to some scheme-independent consequences of the
NSVZ relation [18,19]. Thus, with the dimensional reduction the NSVZ equation
should be obtained by a special tuning of the subtraction scheme in every order,
while the general all-order prescription giving the NSVZ scheme is absent.

Also it should be noted that the dimensional reduction is not mathematically
consistent [20], and can break supersymmetry in higher orders [21,22]. That is why
the use of other regularizations is also reasonable and interesting. In this paper we
will mostly discuss various application of the Slavnov higher covariant derivative
regularization [23,24] to calculating quantum corrections inN = 1 supersymmetric
theories. Unlike the dimensional reduction, this regularization is consistent and
can be formulated in a manifestly N = 1 supersymmetric way [25,26]. It is also
applicable to theories with N = 2 supersymmetry [27–29]. The main idea of
this regularization is to add a term with higher degrees of covariant derivatives
to the action of a theory. Then divergences beyond the one-loop approximation
disappear, while the remaining one-loop divergences are regularized by inserting
the Pauli–Villars determinants into the generating functional [30]. In this paper we
will demonstrate that this regularization allows to reveal some interesting features
of quantum corrections in supersymmetric theories which are missed in the case
of using the dimensional technique.

12.2 NSVZ relation inN = 1 SQED

12.2.1 Higher derivative regularization in the Abelian case

We will start with the simplest N = 1 supersymmetric gauge theory, namely,
the N = 1 supersymmetric electrodynamics (SQED) with Nf flavors. In the mass-
less case this theory is described by the action

S =
1

4e20
Re
∫
d4xd2θWaWa +

Nf∑
f=1

1

4

∫
d4xd4θ

(
φ∗fe

2Vφf + φ̃
∗
fe

−2V φ̃f

)
, (12.3)

which is written in terms of N = 1 superfields. In this formalism supersymmetry
is a manifest symmetry of the theory. The usual gauge field is now a component of
the real gauge superfield V . The terms containing the chiral matter superfields φf
and φ̃f produce Dirac fermions and the other terms needed for supersymmetry in-
variance. In the Abelian case the supersymmetric gauge field strength is described
by the chiral spinor superfield Wa = D̄2DaV/4. For the theory (12.3) the NSVZ
β-function (12.2) takes the form [31,32]

β(α) =
α2Nf

π

(
1− γ(α)

)
. (12.4)
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To regularize the theory (12.3) by the Slavnov higher derivatives method, we
add the term

SΛ =
1

4e20
Re
∫
d4xd2θWa

(
R(∂2/Λ2) − 1

)
Wa (12.5)

to the classical action, where the function R(∂2/Λ2) contains higher degrees of
derivatives. Note that for Abelian theories one should use the usual deriva-
tives (instead of the covariant ones). In the simplest case it is possible to choose
R = 1 + ∂2n/Λ2n. Due to the presence of the higher derivative term, the propa-
gator of the gauge superfield contains higher degrees of the momentum in the
denominator, and all diagrams beyond the one-loop approximation become finite.
For removing the remaining one-loop divergences, following Ref. [30], we insert
into the generating functional the Pauli–Villars determinants,

Z =

∫
Dµ
∏
I

(
detPV(V,MI)

)NfcI
exp
{
iSreg + iSgf + iSSources

}
, (12.6)

with the constants cI satisfying the conditions
∑
I cI = 1;

∑
I cIM

2
I = 0. Here

MI = aIΛ (where aI are constants independent of α0) are masses of the Pauli–
Villars superfields proportional to the parameter Λ which enters the regulator
function R.

Below we will see that the NSVZ equation follows from the underlying
relation between the two-point Green functions. In N = 1 SQED these two-point
Green functions are related to the corresponding part of the effective action by the
equation

Γ (2) =

∫
d4p

(2π)4
d4θ

(
−

1

16π
V(−p)∂2Π1/2V(p)d

−1(α0, Λ/p)

+
1

4

Nf∑
f=1

(
φ∗f(−p, θ)φf(p, θ) + φ̃

∗
f(−p, θ)φ̃f(p, θ)

)
G(α0, Λ/p)

)
. (12.7)

Here ∂2Π1/2 ≡ −DaD̄2Da/8 is a supersymmetric transversal projection operator,
and the transversality of the gauge superfield two-point function follows from the
Slavnov–Taylor identities.

The function d−1 expressed in terms of the renormalized coupling constant
α(α0, Λ/µ) should be finite in the limit Λ→∞. The charge renormalization con-
stant Z3 is then defined as Z3(α,Λ/µ) ≡ α/α0. To construct the renormalization
constant Z for the chiral matter superfields, we require finiteness of the function
Z(α,Λ/µ)G(α0, Λ/p) in the limit Λ→∞.

According to [33], it is important to distinguish the renormalization group
functions (RGF) defined in terms of the bare coupling constant and the ones
defined in terms of the renormalized coupling constant. In terms of the bare
coupling constant RGF are defined by the equations

β(α0) ≡
dα0

d lnΛ

∣∣∣
α=const

; γ(α0) ≡ −
d lnZ
d lnΛ

∣∣∣
α=const

. (12.8)
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They are independent of a renormalization prescription for a fixed regularization,
see, e.g., [33], but depend on the regularization. Below we will see that for the
theory (12.3) these RGF satisfy the NSVZ relation in all loops in the case of using
the above described version of the higher derivative regularization.

12.2.2 Charge renormalization in the lowest loops

Explicit calculations in the lowest loops made with the higher covariant
derivative regularization demonstrated that loop integrals giving a β-function
defined in terms of the bare coupling constant are integrals of total derivatives
[34]. They can be also presented as integrals of double total derivatives [35]. The
β-function of N = 1 SQED with Nf flavours, regularized by higher derivatives, is
calculated by the help of the equation

β(α0)

α20
=

d

d lnΛ

(
d−1(α0, Λ/p) − α

−1
0

)∣∣∣
p=0

. (12.9)

By other words, we calculate the two-point Green function of the gauge superfield
and differentiate it with respect to lnΛ in the limit of the vanishing external
momentum. For example, the two-loop result for the β-function written as the
integral of double total derivatives has the form

β(α0)

α20
= 2πNf

d

d lnΛ

∫
d4q

(2π)4
∂

∂qµ
∂

∂qµ

{∑
I

cI
ln(q2 +M2

I )

q2
+

∫
d4k

(2π)4

× 2e2

k2Rk

( 1

q2(k+ q)2
−
∑
I

cI
1

(q2 +M2
I )((k+ q)

2 +M2
I )

)}
+O(e4). (12.10)

The (essentially larger) three-loop expression can be found, e.g., in [36]. Note that
the β-function does not vanish because of integrand singularities. This can be
illustrated by a simple example: consider a nonsingular function f(q2) rapidly
decreasing at infinity. Then∫

d4q

(2π)4
∂

∂qµ

(qµ
q4
f(q2)

)
= −

1

8π2
f(0). (12.11)

Doing similar calculations it is possible to decrease the number of integrations in
Eq. (12.10) and reduce this expression to the integral giving the one-loop anoma-
lous dimension of the matter superfield (also defined in terms of the bare coupling
constant),

β(α0)

α20
=
Nf

π

(
1−

d

d lnΛ
lnG(α0, Λ/q)

∣∣∣
q=0

)
=
Nf

π

(
1− γ(α0)

)
. (12.12)
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12.2.3 NSVZ relation in all loops

The all-loop derivation of the NSVZ relation for RGF defined in terms of the
bare coupling constant by the direct summing of supergraphs for N = 1 SQED
regularized by higher derivatives has been made in [37,38] and verified at the
three-loop level in [39]. Here we briefly explain the main ideas of the method of
Ref. [37].

First, it is necessary to prove that all loop integrals for the β-function defined
in terms of the bare coupling constant are integrals of double total derivatives. For
this purpose it is convenient to use the background field method which (in the
Abelian case) is introduced by making the replacement V → V +V, where V is the
background gauge superfield, in the action. Then we make the formal substitution
V → θ4, after which

d∆Γ
(2)
V

d lnΛ

∣∣∣
V=θ4

=
1

2π
V4 ·

d

d lnΛ

(
d−1(α0, Λ/p) − α

−1
0

)
=
1

2π
V4 ·

β(α0)

α20
, (12.13)

where V4 is the (properly regularized) volume of the space-time.
For N = 1 SQED the functional integrals over the matter superfield are Gaus-

sian and can be calculated exactly. This allows operating with some expressions
valid in all loops. In particular, it is possible to find the formal expression for the
two-point function of the background gauge superfield. Then after the substitution
V → θ4 we try to present the result as an integral of double total derivatives. In
the coordinate representation an integral of a total derivative is written as

Tr
(
[xµ, Something]

)
− Singularities = −Singularities. (12.14)

After some non-trivial transformations the result for the expression (12.13) can
be presented as a trace of double commutator, i.e. as an integral of a double total
derivative. The details of this calculation are described in Ref. [37]. The result
does not vanish due to singularities of the integrand, which can be summed in all
orders. This gives

d∆Γ (2)

d lnΛ

∣∣∣
V=θ4

=
Nf

2π2
V4
(
1−

d lnG
d lnΛ

∣∣∣
q=0

)
=
Nf

2π2
V4
(
1− γ(α0)

)
, (12.15)

and we obtain the exact all-order result

β(α0)

α20
=
Nf

π

(
1− γ(α0)

)
. (12.16)

Note that this equation is valid for an arbitrary renormalization prescription in
the case of using the higher derivative regularization, because RGF entering it are
defined in terms of the bare coupling constant.

In graphical language, this result can be explained as follows [35] (see also
[40]): If we have a supergraph without external lines, then a contribution to the
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β-function can be constructed by attaching two external lines of the background
gauge superfield V to it, while a contribution to the anomalous dimension is
obtained by cutting matter lines in the considered supergraph. The equation
(12.16) relates both these contributions.

12.2.4 How to construct the NSVZ scheme inN = 1 SQED

Eq. (12.16) is valid for RGF defined in terms of the bare coupling constant.
However, RGF are standardly defined by a different way, in terms of the renormal-
ized coupling constant,

β̃(α) ≡ dα

d lnµ

∣∣∣
α0=const

; γ̃(α) ≡ d lnZ
d lnµ

∣∣∣
α0=const

, (12.17)

and are scheme-dependent. However, both definitions of RGF give the same
functions, if the conditions

Z3(α, x0) = 1; Z(α, x0) = 1 (12.18)

are imposed on the renormalization constants, in which x0 is a fixed value of
x = lnΛ/µ [18,19,33]: β̃(α0) = β(α0); γ̃(α0) = γ(α0).

β̃ and γ̃ are scheme-dependent and satisfy the NSVZ equation only in a
certain (NSVZ) scheme. Now, from Eq. (12.16) and the above arguments it is
evident that for the theory regularized by higher derivatives this NSVZ scheme is
fixed in all loops by the boundary conditions (12.18).

The general statements discussed above can be verified by explicit calculations
in the lowest loops. They are non-trivial starting from the three-loop approxima-
tion, because the β-function and the anomalous dimension are scheme-dependent
starting from the three- and two-loop order, respectively.

For the higher derivative regulator Rk = 1+ k2n/Λ2n

1

α0
=
1

α
−
Nf

π

(
ln
Λ

µ
+ b1

)
−
αNf

π2

(
ln
Λ

µ
+ b2

)
−
α2Nf

π3

(Nf
2

ln2
Λ

µ

− ln
Λ

µ

(
Nf
∑
I

cI lnaI +Nf +
1

2
−Nfb1

)
+ b3

)
+O(α3); (12.19)

Z = 1+
α

π

(
ln
Λ

µ
+ g1

)
+
α2(Nf + 1)

2π2
ln2

Λ

µ
−
α2

π2
ln
Λ

µ

×
(
Nf
∑
I

cI lnaI −Nfb1 +Nf +
1

2
− g1

)
+
α2g2

π2
+O(α3), (12.20)

where bi and gi are arbitrary finite constants, which fix a subtraction scheme.
Differentiating Eqs. (12.19) and (12.20) with respect to lnΛ we construct RGF
defined in terms of the bare coupling constant,
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β(α0)

α20
=
Nf

π
+
α0Nf

π2
−
α20Nf

π3

(
Nf
∑
I

cI lnaI +Nf +
1

2

)
+O(α30); (12.21)

γ(α0) = −
α0

π
+
α20
π2

(
Nf
∑
I

cI lnaI +Nf +
1

2

)
+O(α30), (12.22)

which appear to be independent of the constants bi and gi and to satisfy the NSVZ
relation. However, RGF defined in terms of the renormalized coupling constant,

β̃(α)

α2
=
Nf

π
+
αNf

π2
−
α2Nf

π3

(
Nf
∑
I

cI lnaI +Nf +
1

2
+Nf(b2 − b1)

)
+O(α3); (12.23)

γ̃(α) = −
α

π
+
α2

π2

(
Nf +

1

2
+Nf

∑
I

cI lnaI −Nfb1 +Nfg1
)
+O(α3) (12.24)

depend on these constants and, therefore, on a subtraction scheme. This sub-
traction scheme can be fixing, e.g., by imposing the conditions (12.18). Choosing
x0 = 0, from these equations we obtain g2 = b1 = b2 = b3 = 0. Therefore, in this
scheme only powers of lnΛ/µ are included into the renormalization constants,
while all finite constants vanish. Thus, the considered scheme looks very similar
to the minimal subtractions. However, now we use the higher derivative regu-
larization, so that it is reasonable to call this scheme HD + MSL, where MSL is
the abbreviation for Minimal Subtraction of Logarithms. Substituting the above
values of the finite constants into Eqs. (12.23) and (12.24), it is easy to see that in
this scheme these RGF satisfy the NSVZ relation.

12.2.5 Quantum corrections with the dimensional reduction

It is well known [12–14] that in the DR-scheme the NSVZ relation is not
valid starting from the three-loop approximation. However, to obtain it, one
can specially tune a subtraction scheme in each order. It is also possible to try
making calculations similarly to the higher derivative case [41,42]. However, the
corresponding relation between the functions d−1 and G (which is at present
obtained only in the lowest orders) has a more complicated form, than for the
higher derivative case. The boundary conditions analogous to (12.18) can also be
written, but the right hand side of one of them is a series in α. It was demonstrated
that such a structure agrees with the results obtained in [13,14].

12.2.6 NSVZ-like relation in softly broken N = 1 SQED regularized by
higher derivatives
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NSVZ-like relations [43–45] also exist in theories with softly broken super-
symmetry for renormalization of the gaugino mass. Their origin is the same as in
the case of rigid theories. For example, the exact equation describing the renormal-
ization of the photino mass in softly broken N = 1 SQED, regularized by higher
derivatives,

γm(α0) =
α0Nf

π

[
1−

d

dα0

(
α0γ(α0)

)]
, (12.25)

is obtained by exactly the same method as the NSVZ β-function in the case of
rigid N = 1 SQED [46]. For RGF defined in terms of the renormalized coupling
constant this relation is also valid in the HD + MSL scheme [47].

12.3 AdlerD-function inN = 1 SQCD

NSVZ-like expression can be also written for the Adler D-function [48] in
(massless) N = 1 SQCD interacting with the Abelian gauge field [49,50],

S =
1

2g20
tr Re

∫
d4xd2θWaWa +

1

4e20
Re
∫
d4xd2θWaWa

+

Nf∑
f=1

1

4

∫
d4xd4θ

(
φ+
f e
2qfV+2Vφf + φ̃

+
f e

−2qfV−2Vtφ̃f

)
. (12.26)

This theory is invariant under the SU(Nc) × U(1) gauge transformations. The
chiral matter superfields φf and φ̃f belong to the fundamental representation
of SU(Nc) and have the charges qfe and −qfe with respect to the group U(1),
respectively. In our notation V is the non-Abelian SU(Nc) gauge superfield and V
is the Abelian U(1) gauge superfield. Evidently, the theory contains two coupling
constants, αs = g2/4π and α = e2/4π.

The D-function encodes quantum corrections to the electromagnetic coupling
constant αwhich appear due to the strong interaction. In the supersymmetric case
this implies that the electromagnetic gauge superfield V is treated as an external
field. Due to the Ward identity the two-point Green function of this superfield is
transversal,

∆Γ (2) = −
1

16π

∫
d4p

(2π)4
d4θV ∂2Π1/2V

(
d−1(α0, α0s, Λ/p) − α

−1
0

)
. (12.27)

The Adler function can be defined in terms of the bare coupling constant by the
equation

D(α0s) =
3π

2

d

d lnΛ

(
d−1(α0, α0s, Λ/p) − α

−1
0

)∣∣∣
p=0

=
3π

2α20

dα0

d lnΛ
. (12.28)
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Again, this function depends on regularization, but is independent of a renormal-
ization prescription for a fixed regularization.

According to [49,50], in the case of using the higher covariant derivative
regularization1 the exact expression for the Adler function for the considered
theory can be written in the NSVZ-like form

D(α0s) =
3

2

∑
f

q2f ·Nc
(
1− γ(α0s)

)
. (12.29)

It looks very similar to the NSVZ β-function in N = 1 SQED and is derived in all
loops by exactly the same method. However, Eq. (12.29) contains the anomalous
dimension of the non-Abelian theory, and this is a very essential difference from
the N = 1 SQED case. Recently this expression has been confirmed by an explicit
three-loop calculation in Ref. [51].

12.4 Non-AbelianN = 1 supersymmetric theories

12.4.1 Regularization and renormalization

Let us consider the theory described by the action (12.1) in the massless limit.
It is convenient to do calculations using the background field method introduced
by replacement e2V → eΩ

+

e2VeΩ. The background gauge superfield V is then
related toΩ andΩ+ by the equation e2V = eΩ

+

eΩ. The higher derivative term
in this case can be written in the form

SΛ =
1

2e20
Re tr

∫
d4xd2θ eΩeΩWae−Ωe−Ω

[
R
(
−
∇̄2∇2

16Λ2

)
− 1
]
Adj

eΩeΩ

×Wae−Ωe−Ω +
1

4

∫
d4xd4θφ+eΩ

+

eΩ
+
[
F
(
−
∇̄2∇2

16Λ2

)
− 1
]
eΩeΩφ, (12.30)

where the functions R(x) and F(x) rapidly increase at infinity and satisfy the
condition R(0) = F(0) = 1. It is convenient to fix a gauge without breaking the
background gauge invariance. For this purpose it is possible to use the gauge
fixing term

Sgf = −
1

16ξ0e
2
0

tr
∫
d4xd4θ∇2VK

(
−
∇̄2∇2

16Λ2

)
Adj
∇̄2V, (12.31)

where K(0) = 1 and K(x) also rapidly grows at infinity. The corresponding actions
for ghosts and the Pauli–Villars determinants can be found in Ref. [52], where they
are discussed in all details. The renormalization constants are introduced by the
equations

1 The higher derivative term for the considered theory should contain covariant derivatives
∇a = e−Ω

+

Dae
Ω+

; ∇̄ȧ = eΩD̄ȧe
−Ω, where e2V = eΩ

+

eΩ.
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1

α0
=
Zα

α
; V = ZVZ

−1/2
α VR; c̄c = ZcZ

−1
α c̄RcR; φi = (

√
Zφ)i

j(φR)j,

(12.32)
where c̄ and c are the chiral Faddeev–Popov ghost superfields.

12.4.2 Finiteness of the triple gauge-ghost vertices

InN = 1 gauge supersymmetric theories the three-point gauge-ghost vertices
(c̄ Vc, c̄+Vc, c̄ Vc+, and c̄+Vc+) with two ghost legs and a single leg of the quantum
gauge superfield are finite [7], so that

d

d lnΛ
(Z−1/2
α ZcZV) = 0. (12.33)

(At the one-loop level it was found in [52].) This theorem is derived by the help of
the Slavnov–Taylor identities, which can be obtained using the standard methods
[53,54]. To write the identity for the considered three-point functions, we introduce
the chiral source J and the source term

−
e0

2

∫
d4xd2θ fABCJAcBcC + c.c. (12.34)

Then using the superspace Feynman rules it is possible to prove that the effective
vertex

δ3Γ

δcCz δc
D
wδJ By

=
e0

4
fBCD

∫
d4p

(2π)4
d4q

(2π)4
H(p, q)D̄2zδ

8
zy(q+ p)D̄2wδ

8
yw(q) (12.35)

is finite in all orders. Really, we can present the corresponding superdiagrams as
integrals over the total superspace, which include integration over

∫
d4θ = −

1

2

∫
d2θD̄2 + total derivatives in the coordinate space. (12.36)

Consequently, due to chirality of all external legs the non-vanishing result can be
obtained only if two right spinor derivatives also act to the external legs. Thus,
commuting supersymmetric covariant derivatives, we see that the result should
be proportional to, at least, second degree of the external momenta and is finite in
the ultraviolet region.

From dimensional and chirality considerations one can write the following
expression for the one of triple gauge-ghost Green functions,

δ3Γ

δc̄∗Ax δVBy δc
C
z

= −
ie0

16
fABC

∫
d4p

(2π)4
d4q

(2π)4

(
f(p, q)∂2Π1/2

−Fµ(p, q)(γ
µ)ȧ

bD̄ȧDb + F(p, q)
)
y

(
D2xδ

8
xy(q+ p) D̄2zδ

8
yz(q)

)
, (12.37)
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where δ8xy(p) ≡ δ4(θx − θy)eipα(x
α−yα). Then the Slavnov–Taylor identity can be

written in the form

Gc(q)F(q, p) +Gc(p)F(p, q) = 2Gc(q+ p)H(−q− p, q), (12.38)

where Gc(q) is the two-point Green function for the Faddeev–Popov ghosts. Mul-
tiplying this equation to Zc, differentiating the result with respect to lnΛ and
setting p = −qwe obtain finiteness of the function F(−q, q), which follows from
the finiteness of (Gc)R and H in the limit Λ→∞. This means that the correspond-
ing renormalization constant is finite, see Eq. (12.33). Consequently, all three-point
ghost-gauge vertices are also finite.

12.4.3 Vc̄c-vertices in the one-loop approximation

In the one-loop approximation (after the Wick rotation)

F(p, q) = 1+
e20C2

4

∫
d4k

(2π)4

{
−

(q+ p)2

Rkk2(k+ p)2(k− q)2
−

ξ0 p
2

Kkk2(k+ q)2

× 1

(k+ q+ p)2
+

ξ0 q
2

Kkk2(k+ p)2(k+ q+ p)2
+
( ξ0
Kk

−
1

Rk

)(
−

1

k2(k+ q)2

−
1

k2(k+ p)2
+

2

k2(k+ q+ p)2
−

2(q+ p)2

k4(k+ q+ p)2

)}
+O(α20, α0λ

2
0). (12.39)

It is easy to see that this expression is finite in the UV region. The other functions
in Eq. (12.37) are also finite, see [7]. The finiteness of the function H, defined in Eq.
(12.35), at the one-loop level has also been demonstrated,

H(p, q) = 1−
e20C2

4

∫
d4k

(2π)4

{
p2

Rkk2(k+ q)2(k+ q+ p)2
+

(q+ p)2

k4(k+ q+ p)2

×
( ξ0
Kk

−
1

Rk

)
+

q2

k4(k+ q)2

( ξ0
Kk

−
1

Rk

)}
+O(e40, e

2
0λ
2
0). (12.40)

12.4.4 New form of the NSVZ relation

Let write the NSVZ relation (12.2) for RGF defined in terms of the bare
couplings (see the definitions in Ref. [7]) in the form

β(α0, λ0)

α20
= −

3C2 − T(R) + C(R)i
j(γφ)j

i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
(12.41)

and take into account that the β-function can be related to the renormalization
constant Zα,
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β(α0, λ0) =
dα0(α, λ,Λ/µ)

d lnΛ

∣∣∣
α,λ=const

= −α0
d lnZα
d lnΛ

∣∣∣
α,λ=const

. (12.42)

Then the right hand side of Eq. (12.41) can be expressed in terms of γc and γV by
the help of Eq. (12.33),

β(α0, λ0) = −2α0
d ln(ZcZV)
d lnΛ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0) + γV(α0, λ0)

)
. (12.43)

Substituting this identity into Eq. (12.41) we rewrite the exact NSVZ β-function in
a different form,

β(α0, λ0)

α20
= −

1

2π

(
3C2 − T(R) − 2C2γc(α0, λ0) − 2C2γV(α0, λ0)

+C(R)i
j(γφ)j

i(α0, λ0)/r
)
. (12.44)

Eq. (12.44) admits a simple graphical interpretation similar to the Abelian case.
Consider a supergraph without external lines. By attaching two external legs
of the superfield V we obtain a set of diagrams contributing to the β-function.
From the other side, cutting internal lines gives superdiagrams contributing to
the anomalous dimensions of the Faddeev–Popov ghosts, of the quantum gauge
superfield, and of the matter superfields. Eq. (12.44) relates these two sets of
superdiagrams.

12.4.5 The NSVZ scheme for non-Abelian gauge theories

The RGF standardly defined in terms of the renormalized couplings (we
again denote them by tildes) are scheme-dependent and satisfy the NSVZ relation
only in a certain (NSVZ) subtraction scheme. Let us suggest that, similar to the
Abelian case, RGF defined in terms of the bare couplings satisfy the NSVZ relation
(12.44) in the case of using the higher covariant derivative regularization. Really,
the qualitative way of its derivation looks exactly as in N = 1 SQED and the
factorization into total derivatives [55,56] and double total derivatives [57] also
takes place at least in the lowest orders. Then, repeating the argumentation of Ref.
[33], one can prove that in the non-Abelian case both definitions of RGF give the
same result (for coinciding arguments) if the renormalization constants satisfy the
conditions

Zα(α, λ, x0) = 1; (Zφ)i
j(α, λ, x0) = δi

j; Zc(α, λ, x0) = 1. (12.45)

Thus, under the assumption that the NSVZ relation is valid for RGF defined in
terms of the bare couplings with the higher derivative regularization, the NSVZ
scheme is given by the boundary conditions (12.45). Again, it is easy to see that for
x0 = 0 in this scheme only powers of lnΛ/µ are included into the renormalization
constants, so that the NSVZ scheme coincides with HD + MSL. Certainly, it is also
assumed that ZV = Z

1/2
α Z−1

c due to the non-renormalization of the Vc̄c-vertices.
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12.4.6 Checking the new form of the NSVZ relation by explicit calculations

To check the above results, we consider terms quartic in the Yukawa couplings
[58] corresponding to the graphs presented in Fig. 12.1.

Fig. 12.1. The terms in the NSVZ relation which are investigated here are obtained from
these two graphs.

Attaching two external lines of the background gauge superfield gives a
large number of two- and three-loop diagrams contributing to the β-function. The
corresponding diagrams for the anomalous dimension are obtained by cutting
internal lines in the considered graphs. The result for the considered part of the
β-function defined in terms of the bare couplings can be presented as an integral
of double total derivatives,

∆β(α0, λ0)

α20
= −

2π

r
C(R)i

j d

d lnΛ

∫
d4k

(2π)4
d4q

(2π)4
λimn0 λ∗0jmn

∂

∂qµ

∂

∂qµ

×
( 1

k2Fk q2Fq (q+ k)2Fq+k

)
+
4π

r
C(R)i

j d

d lnΛ

∫
d4k

(2π)4
d4l

(2π)4
d4q

(2π)4

×

(
λiab0 λ∗0kabλ

kcd
0 λ∗0jcd

( ∂

∂kµ

∂

∂kµ
−

∂

∂qµ

∂

∂qµ

)
+ 2λiab0 λ∗0jacλ

cde
0 λ∗0bde

× ∂

∂qµ

∂

∂qµ

)
1

k2F2k q
2Fq (q+ k)2Fq+k l2Fl (l+ k)2Fl+k

. (12.46)

Taking one of loop integrals it is possible to relate this expression to the correspond-
ing contribution to the anomalous dimension of the matter superfield (defined in
terms of the bare couplings),

∆β(α0, λ0)

α20
= −

1

2πr
C(R)i

j∆γφ(λ0)j
i. (12.47)

This equation completely agrees with Eq. (12.44), so that the NSVZ relation is
satisfied for terms of the considered structure.

For F(k2/Λ2) = 1+ k2/Λ2 all loop integrals can be calculated,

∆γφ(α0, λ0)j
i =

1

4π2
λiab0 λ∗0jab −

1

16π4
λiab0 λ∗0jacλ

cde
0 λ∗0bde. (12.48)
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Scheme-dependent RGF defined in terms of the renormalized couplings have been
calculated in Ref. [58]. The contribution to the β-function depends on some finite
constants g1 and b2, which appear due to arbitrariness of choosing a subtraction
scheme,

γ̃φ(α, λ)j
i =

1

4π2
λiabλ∗jab −

1

16π4
λiabλ∗jacλ

cdeλ∗bde +O(α) +O(λ
6); (12.49)

β̃(α, λ)

α2
= −

1

2π

(
3C2 − T(R)

)
+

1

2πr
C(R)i

j
[
−

1

4π2
λiabλ∗jab +

1

16π4

×λiabλ∗kabλkcdλ∗jcd
(
b2 − g1

)
+

1

16π4
λiabλ∗jacλ

cdeλ∗bde

(
1+ 2b2 − 2g1

)]
+O(α) +O(λ6). (12.50)

We see that for an arbitrary values of g1 and b2 the NSVZ relation is not valid.
However, the values of g1 and b2 can be fixed by imposing the conditions (12.45).
In this case g1 = b2 = −x0, so that b2 − g1 = 0. Therefore, in this scheme

β̃(α, λ)

α2
= −

1

2π

(
3C2 − T(R)

)
−

1

2πr
C(R)i

jγ̃φ(α, λ)i
j +O(α) +O(λ6). (12.51)

This confirms the guess that Eq. (12.45) gives the NSVZ scheme in the non-Abelian
case.

Note that recently [59] the identity (12.44) has been completely checked in
the two-loop approximation in the case of using the non-invariant version of the
higher covariant derivative regularization supplemented by a special subtraction
procedure which restores the Slavnov–Taylor identities [60].

12.5 Conclusion

The β-function defined in terms of the bare coupling constant for N = 1

supersymmetric gauge theories regularized by higher derivatives is given by
integrals of double total derivatives. In some cases it has been proved in all
loops, but for general non-Abelian SYM theories at present there are only strong
evidences in favour of this. Such a structure of quantum corrections naturally
leads to the NSVZ relation for RGF defined in terms of the bare coupling constant,
which is obtained after taking the integral of the total derivative and is valid
independently of the subtraction scheme. Note that in the non-Abelian case an
important ingredient of the derivation is the finiteness of the three-point ghost-
gauge vertices, which allows rewriting the NSVZ equation in a different form.

The RGF defined in terms of the renormalized couplings satisfy the NSVZ
relation only in a certain (NSVZ) scheme, which is obtained with the higher
derivative regularization by minimal subtraction of logarithms. This means that
only powers of lnΛ/µ are included into various renormalization constants. This
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prescription can be also reformulated by imposing simple boundary conditions on
the renormalization constants.

All general statements considered here are confirmed by explicit perturbative
calculations. Note that some of them are made in the three-loop approximation
and are highly non-trivial.
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Discussion Section

The discussion section is reserved for those open problems presented and dis-
cussed during the workshop, that they might start new collaboration among
participants or at least stimulate participants to start to think about possible solu-
tions of particular open problems in a different way, or to invite new collaborators
on the problems. Since the time between the workshop and the deadline for con-
tributions for the proceedings is very short and includes for most of participants
also their holidays, it is not so easy to prepare there presentations or besides their
presentations at the workshop also the common contributions to the discussion
section.

However, the discussions, even if not presented as a contribution to this
section, influenced participants’ contributions, published in the main section.
Contributions in this section might not be written yet in a shape that look like a
normal paper, although they even might be very innovative and correspondingly
valuable.

As it is happening every year also this year quite a lot of started discussions
have not succeeded to appear in this proceedings. Organizers hope that they will
be developed enough to appear among the next year talks, or will just stimulate
the works of the participants.

There are two contributions in this section this year. One contribution is treat-
ing the fermionization of bosons of the Kalb-Ramond type boson fields to better
”understand why Nature” has decided to use fermions besides bosons. It is extend-
ing the old theorem of Aratyn and Nielsen. Another is proving that the symmetry
of the 4× 4 family matrix, predicted by the spin-charge-family theory of one of
the authors on the tree level, is keept in all orders of loop corrections, lowering
the number of free parameters of the mass matrices and enabling correspondingly
to predict the masses and the mixing matrix elements of the fourth family to the
observed three.

All discussion contributions are arranged alphabetically with respect to the
authors’ names.
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Ta razdelek je namenjen odprtim vprašanjem, o katerih smo med delavnico
izčrpno razpravljali. Problemi, o katerih smo razpravljali, bodo morda privedli do
novih sodelovanj med udeleženci, ali pa so pripravili udeležence, da razmislijo o
možnih rešitvah odprtih vprašanj na drugačne načine, ali pa bodo k sodelovanju
pritegnili katerega od udeležencev. Ker je čas med delavnico in rokom za oddajo
prispevkov zelo kratek, vmes pa so poletne počitnice, je zelo težko pripraviti
prispevek in še težje poleg prispevka, v katerem vsak udeleženec predstavi lastno
delo, pripraviti še prispevek k temu razdelku.

Tako se velik del diskusij ne bo pojavil v letošnjem zborniku. So pa gotovo
vplivale na prispevek marsikaterega udeleženca. Organizatorji upamo, da bodo
te diskusije do prihodnje delavnice dozorele do oblike, da jih bo mogoče na njej
predstavit.

Prispevki v tem razdelku niso nujno napisani v običajni obliki članka, kar pa
ne pomeni, da niso zelo inovativni in posledično dragoceni.

Letos sta v tem razdelku dva prispevka. Eden išče pot, kako bozone tipa Kalb-
Ramond ”predstaviti” kot fermione z namenom, da bi avtorja prispevka bolje
razumela, zakaj se je ”narava odločila” uporabiti poleg bozonov tudi fermione.
Prinaša posplošitev teorema Aratyna in Nielsena. Drugi prispevek dokazuje, da
se simetrija masne matrike 4× 4, ki jo napove teorija spina-nabojev-družin ene od
avtorjev prispevka, ohranja v popravkih v vseh redih ter tako omeji število prostih
parametrov masnih matrik vsakega člana družine, kar omogoči napovedi mase in
matričnih elementov četrte družine.

Prispevki v tej sekciji so, tako kot prispevki v glavnem delu, urejeni po abeced-
nem redu priimkov avtorjev.
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13 The Symmetry of 4× 4Mass Matrices Predicted
by the Spin-charge-family Theory —
SU(2)× SU(2)×U(1) — Remains in All Loop
Corrections
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Abstract. The spin-charge-family theory [1–11,14–22] predicts the existence of the fourth
family to the observed three. The 4 × 4 mass matrices manifest the symmetry SU(2) ×
SU(2) × U(1), determined on the tree level by the nonzero vacuum expectation values
of several scalar fields – the three singlets with the family members quantum numbers
(belonging to U(1)) and the two triplets with the family quantum numbers (belonging
to SU(2) × SU(2)) with the weak and the hyper charge of the standard model higgs field
(± 1

2
,∓ 1

2
, respectively). It is demonstrated, using the massless spinor basis, on several cases

that (why) the symmetry of 4× 4mass matrices remains the same in all loop corrections.

Povzetek. Teorija spinov-nabojev-družin [1–11,14–22] napove obstoj četrte družine k opazženim
trem. Masne matrike 4×4 kažejo simetrijo SU(2)×SU(2)×U(1), ki je na drevesnem nivoju
določena z neničelnimi vakuumskimi pričakovanimi vrednostmi več skalarnih polj — treh
singletov s kvantnimi števili družin (v U(1)) in dveh tripletov s kvantnimi števili družin (v
SU(2)× SU(2)), ki imajo šibki in hipernaboj higgsovega polja standardnega modela, (enak
± 1
2

in ∓ 1
2

). Avtorja pokažeta, da (zakaj) se v bazi brezmasnih spinorjev, v več primerih,
simetrija masnih matrik 4× 4 ohranja v vseh redih.

Keywords: Unifying theories, Beyond the standard model, Origin of families,
Origin of mass matrices of leptons and quarks, Properties of scalar fields, The
fourth family, Origin and properties of gauge bosons, Flavour symmetry, Kaluza-
Klein-like theories
PACS:12.15.Ff 12.60.-i 12.90.+b 11.10.Kk 11.30.Hv 12.15.-y 12.10.-g 11.30.-j 14.80.-j

13.1 Introduction

The spin-charge-family theory [1–11,14–22] predicts before the electroweak break
four - rather than the observed three - coupled massless families of quarks and
leptons.
? E-mail: albino@esfm.ipn.mx
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The 4× 4mass matrices of all the family members demonstrate in this theory
the same symmetry [1,5,4,19,20], determined by the scalar fields: the two triplets —
the gauge fields of the two family groups S̃U(2)×S̃U(2) operating among families
— and the three singlets — the gauge fields of the three charges (Q,Q ′ and Y ′)
distinguishing among family members. All these scalar fields carry the weak and
the hyper charge as does the scalar of the standard model: (±1

2
and ∓1

2
, respec-

tively) [1,4,22].
Although there is no direct observations of the fourth family quarks masses

below 1 TeV, while the fourth family quarks with masses above 1 TeV would
contribute according to the standard model (the standard model Yukawa couplings
of the quarks with the scalar higgs is proportional to mα4

v
, wheremα4 is the fourth

family member (α = u, d) mass and v the vacuum expectation value of the scalar)
to either the quark-gluon fusion production of the scalar field (the higgs) or to the
scalar field decay too much in comparison with the observations, the high energy
physicists do not expect the existence of the fourth family members at all [23,24].

One of the authors (N.S.M.B) discusses in Refs. ([1], Sect. 4.2.) that the standard
model estimation with one higgs scalar might not be the right way to evaluate
whether the fourth family, coupled to the observed three, does exist or not. The
ui-quarks and di-quarks of an ith family, namely, if they couple with the opposite
sign (with respect to the ”±” degree of freedom) to the scalar fields carrying the
family (Ã, i) quantum numbers and have the same masses, do not contribute
to either the quark-gluon fusion production of the scalar fields with the family
quantum numbers or to the decay of these scalars into two photons:

The strong influence of the scalar fields carrying the family members quantum
numbers to the masses of the lower (observed) three families manifests in the huge
differences in the masses of the family members, let say ui and di, i = (1, 2, 3),
and families (i). For the fourth family quarks, which are more and more decoupled
from the observed three families the higher are their masses [20,19], the influence
of the scalar fields carrying the family members quantum numbers on their masses
is expected to be much weaker. Correspondingly the u4 and d4 masses become
closer to each other the higher are their masses and the weaker are their couplings
(the mixing matrix elements) to the lower three families. For u4-quarks and d4-
quarks with the similar masses the observations might consequently not be in
contradiction with the spin-charge-family theory prediction that there exists the
fourth family coupled to the observed three ([26], which is in preparation).

We demonstrate in the main Sect. 13.2 why the symmetry, which the mass
matrices demonstrate on the tree level, keeps the same in all loop corrections.

We present shortly the spin-charge-family theory and its achievements so far in
Sect. 13.4. All the mathematical support appears in appendices.

Let be here stressed what supports the spin-charge-family theory to be the
right next step beyond the standard model. This theory can not only explain - while
starting from the very simple action in d ≥ (13+ 1), Eqs. (13.20) in App. 13.4, with
the massless fermions (with the spin of the two kinds γa and γ̃a , one kind taking
care of the spin and of the charges of the family members (Eq. (13.2)), the second
kind taking care of the families (Eqs. (13.19, 13.35))) coupled only to the gravity
(through the vielbeins and the two kinds of the corresponding spin connections



i
i

“proc17” — 2017/12/11 — 19:44 — page 219 — #233 i
i

i
i

i
i

13 The Symmetry of 4× 4Mass Matrices Predicted by. . . 219

fields ωabαfαc and ω̃abαfαc, the gauge fields of Sab and S̃ab (Eqs. (13.20)) - all
the assumptions of the standard model, but also answers several open questions
beyond the standard model. It offers the explanation for [4–6,1,7–11,14–22]:
a. the appearance of all the charges of the left and right handed family members
and for their families and their properties,
b. the appearance of all the corresponding vector and scalar gauge fields and their
properties (explaining the appearance of higgs and Yukawa couplings),
c. the appearance and properties of the dark matter,
d. the appearance of the matter/antimatter asymmetry in the universe.

The theory predicts for the low energy regime:
i. The existence of the fourth family to the observed three.
ii. The existence of twice two triplets and three singlets of scalars, all with the
properties of the higgs with respect to the weak and hyper charges, what explains
the origin of the Yukawa couplings.
iii. There are several other predictions, not directly connected with the topic of
this paper.

The fact that the fourth family quarks have not yet been observed - directly or
indirectly - pushes the fourth family quarks masses to values higher than 1 TeV.

Since the experimental accuracy of the (3× 3 submatrix of the 4× 4) mixing
matrices is not yet high enough [30], it is not possible to calculate the mixing
matrix elements among the fourth family and the observed three. Correspondingly
it is not possible to estimate masses of the fourth family members by fitting
the experimental data to the parameters of mass matrices, determined by the
symmetry predicted by the spin-charge-family [20,19].

But assuming the masses of the fourth family members the matrix elements
can be estimated from the existing 3× 3 subamtrix of the 4× 4matrix.

The more effort and work is put into the spin-charge-family theory, the more
explanations of the observed phenomena and the more predictions for the future
observations follow out of it. Offering the explanation for so many observed phe-
nomena - keeping in mind that all the explanations for the observed phenomena
originate in a simple starting action - qualifies the spin-charge-family theory as the
candidate for the next step beyond the standard model.

The reader is kindly asked to learn more about the spin-charge-family theory
in Refs. [2–4,1,5,6] and the references there in. We shall point out sections in these
references, which might be of particular help, when needed.

13.2 The symmetry of family members mass matrices keeps
unchanged in all orders of loop corrections

It is demonstrated in this main section that the symmetry S̃U(2)× S̃U(2)×U(1) of
the mass term, which manifests in the starting action 13.20 of the spin-charge-family
theory [4,1,5,6], remains unchanged in all orders of loop corrections. The massless
basis will be used for this purpose.

Let us rewrite formally the fermion part of the starting action, Eq. (13.20),
in the way that it manifests, Eq. (13.1), the kinetic and the interaction term in
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d = (3+1) (the first line,m = (0, 1, 2, 3)), the mass term (the second line, s = (7, 8))
and the rest (the third line, t = (5, 6, 9, 10, · · · , 14)).

Lf = ψ̄γm(pm −
∑
A,i

gAiτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (13.1)

where p0s = ps− 1
2
Ss
′s"ωs ′s"s−

1
2
S̃abω̃abs, p0t = pt− 1

2
St
′t"ωt ′t"t−

1
2
S̃abω̃abt

1,
with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers, presented on Table 13.3 of all the 2

7+1
2

−1 = 8 families, presented on Table 13.4.
The first line of Eq. (13.1) determines (in d = (3 + 1)) the kinematics and

dynamics of spinor (fermion) fields, coupled to the vector gauge fields. The gener-
ators τAi of the charge groups are expressible in terms of Sab through the complex
coefficients cAiab (the coefficients cAiab of τAi can be found in Eqs. (13.23, 13.24) 2,

τAi =
∑
a,b

cAiab S
ab , (13.2)

fulfilling the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (13.3)

They represent the colour (τ3i), the weak (τ1i) and the hyper (Y) charges, as well
as the SU(2)II (τ2i) and U(1)II (τ4) charges, the gauge fields of these last two
groups gain masses interacting with the condensate, Table 13.5. The condensate
leaves massless, besides the colour and gravity gauge fields, the weak and the
hyper charge vector gauge fields. The corresponding vector gauge fields AAim are
expressible with the spin connection fieldsωstm Eq. (13.29)

AAim =
∑
s,t

cAist ω
st
m . (13.4)

The scalar gauge fields of the charges, Eq. (13.30), are expressible with the spin
connections and vielbeins [2].

1 If there are no fermions present, then either ωabc or ω̃abc are expressible by vielbeins
fαa [[2,5], and the references therein]. We assume that there are spinor fields which
determine spin connection fields – ωabc and ω̃abc. In general one would have [6]:
p0a = fαap0α + 1

2E
{pα, Ef

α
a}−, p0α = pα − 1

2
Ss
′s"ωs ′s"α − 1

2
S̃abω̃abα. Since the term

1
2E

{pα, Ef
α
a}− does not influece the symmetry of mass matrices, we do not treat it in this

paper.
2 Before the electroweak break there are the conserved charges ~τ1, ~τ3 and Y := τ4 + τ23 ,

and the non conserved charge Y ′ := −τ4 tan2 ϑ2 + τ23 , where θ2 is the angle of the
break of SU(2)II from SU(2)I×SU(2)II×U(1)II to SU(2)I×U(1)I. After the electroweak
break the conserved charges are ~τ3 and Q := Y + τ13, the non conserved charge is
Q ′ := −Y tan2 ϑ1 + τ13, where θ1 is the electroweak angle.
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The groups SO(3, 1), SU(3), SU(2)I, SU(2)II and U(1)II determine spin and
charges of fermions, the groups S̃O(3, 1), S̃U(2)I, S̃U(2)II and Ũ(1)II determine
family quantum numbers 3.

The generators of these groups are expressible by ˜Sab

τ̃Ai =
∑
a,b

cAiab S̃
ab , (13.5)

fulfilling again the commutation relations

{τ̃Ai, τ̃Bj}− = iδABfAijkτ̃Ak , (13.6)

while

{τAi, τ̃Bj}− = 0 . (13.7)

The scalar gauge fields of the groups S̃U(2)I, S̃U(2)I and U(1) are presented
in Eq. (13.30), the application of the generators of ~̃τ1, Eq. (13.26), ~̃NL, Eq. (13.25),
which distinguish among families and are the same for all the family members,
are presented in Eq. (13.12). The application of the family members generators
Q, Y, τ4 and Y ′ on the family members of any family is presented on Table 13.1.

R QL,R Y τ4L,R Y ′ Q ′ L Y Y ′ Q ′

uiR
2
3

2
3

1
6

1
2
(1 − 1

3
tan2 θ2) − 2

3
tan2 θ1 uiL

1
6
− 1
6

tan2 θ2 1
2
(1 − 1

3
tan2 θ1)

diR − 1
3
− 1
3

1
6
− 1
2
(1 + 1

3
tan2 θ2) 1

3
tan2 θ1 diL

1
6
− 1
6

tan2 θ2 − 1
2
(1 + tan2 θ1)

νiR 0 0 − 1
2

1
2
(1 + tan2 θ2) 0 νiL − 1

2
1
2

tan2 θ2 1
2
(1 + tan2 θ1)

eR −1 −1 − 1
2

1
2
(−1 + tan2 θ2) tan2 θ1 eL − 1

2
1
2

tan2 θ2 − 1
2
(1 − tan2 θ1)

Table 13.1. The quantum numbersQ, Y, τ4, Y ′, Q ′, Eq. (13.28), of the members of one family
(anyone) [6]. Left and right handed members of any family have the same Q and τ4, the
right handed members have τ13 = 0 and τ23 = 1

2
, while the left handed members have

τ13 = 1
2

and τ23 = 0.

There are in the spin-charge-family theory 2
(1+7)
2

−1 = 8 families, which split in
two groups of four families, due to the break of the symmetry from S̃O(1, 7) into
S̃O(1, 3)×S̃O(4). Each of these two groups manifests S̃U(2)

S̃O(1,3)
×S̃U(2)

S̃O(4)
[6].

These decoupled twice four families are presented in Table 13.4
The lowest of the upper four families, forming neutral clusters with respect

to the electromagnetic and colour charges, is the candidate to forms the dark
matter [18].

We discuss in this paper symmetry properties of the lower four families,
presented in Table 13.4 in the first four lines. We repeat in Table 13.2 the represen-
tation and the family quantum numbers of the left and right handed members of
the lower four families. Since any of the family members (uiL,R, diL,R, νiL,R, eiL,R)

3 S̃U(3) do not contribute to the families at low energies [34].
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behave equivalently with respect to all the operators concerning the family groups
S̃U(2)

S̃O(1,3)
× S̃U(2)

S̃O(4)
, we use a common notation |ψi >.

The interaction, which is responsible for the appearance of masses of fermions,
is presented in in Eq. (13.1) in the second line

Lmass =
1

2

∑
+,−

{ψ†Lγ
0
78

(±) (−
∑
A

τAAA± −
∑
Ãi

τ̃AiAAi± )ψR}+ h.c. ,

τA = (Q,Q ′, Y ′) , τ̃Ai = ( ~̃NL, ~̃τ
1, τ̃4) ,

γ0
78

(±) = γ0 1
2
(γ7 ± i γ8) ,

AA± =
∑
st

cAstω
st
± , ωst± = ωst7 ∓ iωst8 ,

~̃AA± =
∑
ab

cAab ω̃
ab
± , ω̃ab± = ω̃ab7 ∓ i ω̃ab8 . (13.8)

In Eq. (13.8) the ps is left out since at low energies its contribution is negligible,
A determines operators, which distinguish among family members – (Q, Y, τ4),
the values are presented in Table 13.1 – (Ã, i) represent the family operators,
determined in Eqs. (13.25, 13.26, 13.27). The detailed explanation can be found in
Refs. [4,5,1].

Operators τAi are Hermitian, γ0
78

(±) = γ0
78

(∓). In what follows it is as-
sumed that the scalar fields AAis are Hermitian as well and consequently it follows
(AAi± )† = AAi∓ .

While the family operators τ̃1i and ÑiL commute with γ0
78

(±), the family

members operators (Y, Y ′, Q ′) do not, since S78 does not (S78γ0
78

(∓) = −γ0
78

(∓)
S78). However

[ψk†L γ
0
78

(∓) (Q,Q ′, Y ′)A(Q,Q ′,Y ′)
∓ ψlR]

† =

= ψl†R (Q,Q ′, Y ′)A
(Q,Q ′,Y ′)†
± γ0

78

(±) ψkL δk,l =

= ψl†R (QkR, Q
′k
R , Y

′k
R )A

(Q,Q ′,Y ′)
± ψkR δk,l , (13.9)

where (QkR, Q
′k
R , Y

′k
R ) denote the eigenvalues of the corresponding operators on

the spinor state ψkR. This means that we evaluate in both cases quantum numbers
of the right handed partners.

In Table 13.2 four families of spinors belonging to the group with the nonzero
values of ~̃NL and ~̃τ1 are presented in the technique 13.5. These are the lower four
families, presented in Table 13.4. There are indeed the four families of ψiuR and
ψiuL . All the 2

13+1
2

−1 members of the first family are represented in Table 13.3. The

scalar fields γ0
78

(∓) (Q,Q ′, Y ′) A(Q,Q ′,Y ′)
∓ are ”diagonal”; They transform a right

handed member of one family into the left handed member of the same family, or
they transform a left handed member of one family into the right handed member
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of the same family. These terms are different for different family members but the
same for all the families of the same family member.

We shall prove that the symmetry of mass term keep the same in all the orders of loop
corrections in the massless basis.

Since Q = (τ13 + τ23 + τ4) = (S56 + τ4), Y ′ = (−τ4 tan2 θ1 + τ23) and

Q ′ = (−(τ4 + τ23) tan2 θ1 + τ13), we can use as well the operators (γ0
78

(±) τ4A4±,

γ0
78

(±) τ23A23± , γ0
78

(±) τ13A13± ). In either case we denote the contributions of
these terms as −aα0

− aα0 =

= −
1

2
{ψi†L

∑
+,−

(γ0
78

(±) τ4A4±+γ0
78

(±) τ23A23± +γ0
78

(±) τ13A13± )ψjR}δ
ij+h.c.,

(13.10)

where α means that a particular family member ( α = (u, d, ν, e)) is studied. We
could make different superposition of these terms. Our proof does not depend on
this choice, although each family member has a different value for aα0 .

Transitions among families for any family member are caused by (ÑiL and τ̃1i), which
manifest the symmetry S̃UNL(2)× S̃Uτ1(2).

τ̃13 τ̃23 Ñ3L Ñ
3
R τ̃4

ψ1
uc1
R

03

(+i)
12

[+] |
56

[+]
78

(+) || · · · ψ1
uc1
L

−
03

[−i]
12

[+] |
56

[+]
78

[−] || · · · − 1
2

0 − 1
2

0 − 1
2

ψ2
uc1
R

03

[+i]
12

(+) |
56

[+]
78

(+) || . . . ψ2
uc1
L

−
03

(−i)
12

(+) |
56

[+]
78

[−] || · · · − 1
2

0 1
2

0 − 1
2

ψ3
uc1
R

03

(+i)
12

[+] |
56

(+)
78

[+] || · · · ψ3
uc1
L

−
03

[−i]
12

[+] |
56

(+)
78

(−) || · · · 1
2

0 − 1
2

0 − 1
2

ψ4
uc1
R

03

[+i]
12

(+) |
56

(+)
78

[+] || · · · ψ4
uc1
L

−
03

(−i)
12

(+) |
56

(+)
78

(−) || · · · 1
2

0 1
2

0 − 1
2

Table 13.2. Four families of the right handed uc1R and of the left handed uc1L quarks with
spin 1

2
and the colour charge (τ33 = 1/2, τ38 = 1/(2

√
3) (the definition of the operators

is presented in Eqs. (13.23,13.24) are presented (1st and 7th line in Table 13.3). A few
examples how to calculate the application of the operators on the states written as products
of nilpotents and projectors on the vacuum state can be found in Sect. 13.5. The spin and
charges, which distinguish among family members, are not shown in this table, since they
commute with ÑiL, τ̃1i and τ̃4, and are correspondingly the same for all the families.
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224 N.S. Mankoč Borštnik and A. Hernández-Galeana

i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
[−] -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

11 dc2
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

12 dc2
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] 1 − 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

13 dc2
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

14 dc2
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

15 uc2
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

16 uc2
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
[−] -1 − 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

17 uc3
R

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 dc3
R

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 dc3
L

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 dc3
L

−
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 uc3
L

−
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

24 uc3
L

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
(+) -1 − 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

25 νR

03
(+i)

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) 1 − 1

2
0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

30 eL −
03

(+i)
12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

31 νL −
03

[−i]
12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 1

2
1
2

0 0 0 − 1
2

− 1
2

0

32 νL

03
(+i)

12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
(+) -1 − 1

2
1
2

0 0 0 − 1
2

− 1
2

0

33 d̄c̄1
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

−
03

[−i]
12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

−
03

(+i)
12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) -1 − 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) 1 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

−
03

[−i]
12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
(+)

13 14
(+) 1 − 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) 1 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

40 ūc̄1
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
(+)

13 14
(+) 1 − 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) -1 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

42 d̄c̄2
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) -1 − 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

43 ūc̄2
L

−
03

[−i]
12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) -1 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

44 ūc̄2
L

−
03

(+i)
12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) -1 − 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

45 d̄c̄2
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) 1 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

46 d̄c̄2
R

−
03

[−i]
12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
[−]

13 14
(+) 1 − 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

47 ūc̄2
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) 1 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

48 ūc̄2
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
[−]

13 14
(+) 1 − 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

49 d̄c̄3
L

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] -1 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

50 d̄c̄3
L

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] -1 − 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

51 ūc̄3
L

−
03

[−i]
12
[+] |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] -1 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

52 ūc̄3
L

−
03

(+i)
12
(−) |

56
(−)

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] -1 − 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

53 d̄c̄3
R

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] 1 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

54 d̄c̄3
R

−
03

[−i]
12
(−) |

56
[+]

78
[−] ||

9 10
(+)

11 12
(+)

13 14
[−] 1 − 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

55 ūc̄3
R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] 1 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

56 ūc̄3
R

03
[−i]

12
(−) |

56
(−)

78
(+) ||

9 10
(+)

11 12
(+)

13 14
[−] 1 − 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

57 ēL

03
[−i]

12
[+] |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
(−) |

56
[+]

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] -1 − 1

2
0 1

2
0 0 1

2
1 1

59 ν̄L −
03

[−i]
12
[+] |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] -1 1

2
0 − 1

2
0 0 1

2
0 0

60 ν̄L −
03

(+i)
12
(−) |

56
(−)

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] -1 − 1

2
0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
[+] |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] 1 1

2
− 1
2

0 0 0 1
2

1
2

0

62 ν̄R −
03

[−i]
12
(−) |

56
(−)

78
(+) ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
− 1
2

0 0 0 1
2

1
2

0

63 ēR

03
(+i)

12
[+] |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 1

2
1
2

0 0 0 1
2

1
2

1

64 ēR

03
[−i]

12
(−) |

56
[+]

78
[−] ||

9 10
[−]

11 12
[−]

13 14
[−] 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 13.3. The left handed (Γ(13,1) = −1, Eq. (13.38)) multiplet of spinors — the members of the fundamental representation of theSO(13, 1)

group, manifesting the subgroup SO(7, 1) of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons — is presented in the

massless basis using the technique presented in App. 13.5. It contains the left handed (Γ(3,1) = −1) weak (SU(2)I ) charged (τ13 = ± 1
2

, Eq. (13.23)),

and SU(2)II chargeless (τ23 = 0, Eq. (13.23)) quarks and leptons and the right handed (Γ(3,1) = 1, Sect. 13.5) weak (SU(2)I ) chargeless and

SU(2)II charged (τ23 = ± 1
2

) quarks and leptons, both with the spin S12 up and down (± 1
2

, respectively). Quarks distinguish from leptons only

in the SU(3) × U(1) part: Quarks are triplets of three colours (ci = (τ33, τ38) = [( 1
2
, 1
2
√
3

), (− 1
2
, 1
2
√
3

), (0,− 1√
3

)], Eq. (13.24))

carrying the ”fermion charge” (τ4 = 1
6

, Eq. (13.24)). The colourless leptons carry the ”fermion charge” (τ4 = − 1
2

). The same multiplet contains also the left
handed weak (SU(2)I) chargeless and SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I ) charged and SU(2)II
chargeless anti-quarks and anti-leptons. Anti-quarks distinguish from anti-leptons again only in theSU(3)×U(1) part: Anti-quarks are anti-triplets, carrying

the ”fermion charge” (τ4 = − 1
6

). The anti-colourless anti-leptons carry the ”fermion charge” (τ4 = 1
2

). Y = (τ23 + τ4) is the hyper charge, the

electromagnetic charge isQ = (τ13 +Y). The states of opposite charges (anti-particle states) are reachable from the particle states (besides bySab ) also by
the application of the discrete symmetry operatorCN PN , presented in Refs. [41,42] and in Sect. 13.5. The vacuum state, on which the nilpotents and projectors
operate, is not shown. The reader can find this Weyl representation also in Refs. [5,14,15,4] and in the references therein.

Taking into account Table 13.3 and Eqs. (13.34, 13.43) one easily finds what

do operators γ0
78

(±) do on the left handed and the right handed members of any
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family i = (1, 2, 3, 4).

γ0
78

(−) |ψiuR,νR > = −|ψiuL,νL > ,

γ0
78

(+) |ψiuL,νL > = |ψiuR,νR > ,

γ0
78

(+) |ψidR,eR > = |ψidL,eL > ,

γ0
78

(−) |ψidL,eL > = |ψidR,eR > . (13.11)

We need to know also what do operators (τ̃1± = τ̃11 ± i τ̃12, τ̃13) and (Ñ±L =

Ñ1L ± i Ñ2L, Ñ3L) do when operating on any member (uL,R, νL,R, dL,R, eL,R) of a
particular family ψi, i = (1, 2, 3, 4).

Taking into account, Eqs. (13.32, 13.33, 13.43, 13.45, 13.36, 13.25, 13.26),

Ñ±L = −

03

(̃∓i)
12

(̃±) , τ̃1± = (∓)
56

(̃±)
78

(̃∓) ,

Ñ3L =
1

2
(S̃12 + i S̃03) , τ̃13 =

1

2
(S̃56 − S̃78) ,

ab

(̃−k)
ab

(k) = −i ηaa
ab

[k] ,

ab

(̃k)
ab

(k)= 0 ,

ab

(̃k)
ab

[k] = i
ab

(k) ,

ab

(̃k)
ab

[−k]= 0 ,

ab

(̃k) =
1

2
(γ̃a +

ηaa

ik
γ̃b) ,

ab

[̃k] =
1

2
(1+

i

k
γ̃aγ̃b) , (13.12)

one finds

Ñ+
L |ψ1 > = |ψ2 > , Ñ+

L |ψ2 >= 0 ,

Ñ−
L |ψ2 > = |ψ1 > , Ñ−

L |ψ1 >= 0 ,

Ñ+
L |ψ3 > = |ψ4 > , Ñ+

L |ψ4 >= 0 ,

Ñ−
L |ψ4 > = |ψ3 > , Ñ−

L |ψ3 >= 0 ,

τ̃1+ |ψ1 > = |ψ3 > , τ̃1+ |ψ3 >= 0 ,

τ̃1− |ψ3 > = |ψ1 > , τ̃1− |ψ1 >= 0 ,

τ̃1− |ψ4 > = |ψ2 > , τ̃1− |ψ2 >= 0 ,

τ̃1+ |ψ2 > = |ψ4 > , τ̃1+ |ψ4 >= 0 ,

Ñ3L |ψ
1 > = −

1

2
|ψ1 > , Ñ3L |ψ

2 >= +
1

2
|ψ2 > ,

Ñ3L |ψ
3 > = −

1

2
|ψ3 > , Ñ3L |ψ

4 >= +
1

2
|ψ4 > ,

τ̃13 |ψ1 > = −
1

2
|ψ1 > , τ̃13 |ψ2 >= −

1

2
|ψ2 > ,

τ̃13 |ψ3 > = +
1

2
|ψ3 > , τ̃13 |ψ4 >= +

1

2
|ψ4 > . (13.13)

Let the scalars (Ã
NL±
(±) , ÃNL3(±) , Ã

1±
(±), Ã

13
(±)) be the scalar gauge fields of the operators

(Ñ±L , Ñ3L, τ̃1±, τ̃13), respectively. Here Ã(±) = Ã7 ∓ i Ã8 for all the scalar gauge
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fields, while Ã
NL±
(±) = 1

2
(ÃNL1(±) ∓i Ã

NL2
(±) ), respectively, and Ã

1±
(±) =

1
2
(Ã11(±)∓i Ã

1
(±)),

respectively. All these fields can be expressed by ω̃abc, as presented in Eq. (13.30).
We are prepared now to calculate the mass matrix elements for any of the

family members. Let us notice that the operators γ0
78

(∓), as well as the operators
of spin and charges, distinguish between |ψiL > and |ψiR >. Correspondingly all
the diagrams must have an odd number of contribution.

We use the massless basis |ψiL,R >. We shall simplify the calculation by making
a choice of the 1√

2
(|ψiL > +|ψiR >), keeping in mind that we must have an odd

number of contributions
We can calculate the mass matrix for any family member using Eqs. (13.13). Be-

low we present the mass matrix on the tree level, where (ã1, ã2, aα) represent the
vacuum expectation values of 1

2
1√
2
(Ã1̃3(+)+Ã

1̃3
(−)),

1
2
1√
2
(ÃÑL3(+) +ÃÑL3(−) ), 1√

2
(Aα(+)+

Aα(−)), respectively and where toAα(±) the sum of τ4αA4(±), τ
13αA13(±) and τ23αA23(±),

Eq. (13.10), is contributing.

We use the notation < Ã
ÑL± >= 1√

2
(< Ã

ÑL±
(+) > + < Ã

ÑL±
(−) >) and <

Ã
1̃±
>= 1√

2
(< Ã

1̃±
(+) > + < Ã

1̃±
(−) >), since we use the basis 1√

2
(|ψiL > +|ψiR >).

On the tree level is the contribution to the matrix elements < ψ1|..|ψ4 >,
< ψ2|..|ψ3 >,< ψ3|..|ψ2 > and< ψ4|..|ψ1 > equal to zero. One can come, however,
from < ψ1|..|ψ4 > in three steps (not two, due to the left right jumps in each step):

< ψ4|
∑

+,− τ̃
1̃±
Ã
1̃± ∑

k |ψ
k >< ψk|

∑
+,− Ñ

±
L Ã

ÑL± |ψ4 > < ψ4| (ã1 + ã2 +

aα)|ψ4 >, there are all together six such terms, since the diagonal term appears also
at the beginning as (−ã1− ã2+aα) and in the middle as (ã1− ã2+aα), and since

the operators
∑

+,− τ̃
1̃±
Ã
1̃± and

∑
+,− Ñ

±
L Ã

ÑL± appear in the opposite order
as well. Summing all this six terms for each of four matrix elements (< 1|..|4 >,
< 2|..|3 >, < 3|..|2 >, < 4|..|1 >) we find:

< 1|..|4 > = 6aα < Ã1̃� >< ÃÑL� > ,

< 2|..|3 > = 6aα < Ã1̃� >< ÃÑL� > ,

< 3|..|2 > = 6aα < Ã1̃� >< ÃÑL� > ,

< 4|..|1 > = 6aα < Ã1̃� >< ÃÑL� > . (13.14)

These matrix elements are presented in Eq. (13.15).

αM(o) = −ã1−ã2+a
α <ÃÑL�> <Ã1̃�> 6aα<Ã1̃�ÃÑL�>

<ÃÑL�> −ã1+ã2+a
α 6aα<Ã1̃�ÃÑL�> <Ã1̃�>

<Ã1̃�> 6aα<Ã1̃�ÃÑL�>b ã1−ã2+a
α <ÃÑL�>

6aα<Ã1̃�ÃÑL�> <Ã1̃�> <ÃÑL�> ã1+ã2+a
α


(13.15)

One notices that the diagonal terms have on the tree level the symmetry <
ψ1|..|ψ1 > + < ψ4|..|ψ4 >= aα = < ψ2|..|ψ2 > + < ψ3|..|ψ3 > and that in
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the off diagonal elements in next order to zero the contribution of the fields,
which depend on particular family member α = (u, d, ν, e) enter. We also notice
that < ψi|..|ψj >†=< ψj|..|ψi >. In the case that < Ã1̃� >=< Ã1̃� >= e and
< ÃÑL� >=< ÃÑL� >= d, which would mean that all the matrix elements are
real, the mass matrix simplifies to

Mα
(o) =


−ã1 − ã2 + a

α d e 6aαed

d −ã1 + ã2 + a
α 6aαed e

e 6aαed ã1 − ã2 + a
α d

6aαed e d ã1 + ã2 + a
α

 .

(13.16)

13.2.1 Mass matrices beyond the tree level

To make a proof that the symmetry S̃U(2)× S̃U(2) × U(1) of the mass matrix,
presented in Eq. (13.15), is kept in all orders of loop corrections, we need to proof
only that at each order the matrix element, let say, < 1|..|2 > (in Eq. (13.15) this
matrix element is equal to < ÃÑL� >) remains equal to < 3|..|4 > in all orders,
while < 2|..|1 > remains to be equal to < 1|..|2 >†=< 4|..|3 > (=< ÃÑL� >). These
should be done for all the matrix elements appearing in Eq. (13.15.

a. It is not difficult to see that each of the diagonal terms (τ̃1̃3 < Ã1̃3 >,
Ñ3L < Ã

ÑL3 >, τA < AA >, with τA = τ4, τ13, τ23) have the property that the
sum of the contributions x+ xxx+ xxxxx+ ... (in all orders) keeps the symmetry
of the tree level. Let us check for τ̃1̃3 < Ã1̃3 >. One obtains for each of the four
families i = [1, 2, 3, 4] the values [−ã1(1+(−ã1)2+(−ã1)4+. . . ),−ã1(1+(−ã1)2+

(−ã1)4+. . . ), ã1(1+(ã1)2+(ã1)4+. . . ), ã1(1+(ã1)2+(ã1)4+. . . )], which we call
[−ã1, −ã1, ã1, ã1] for the four families i = [1, 2, 3, 4], respectively. Correspondingly
one finds for the same kind of diagrams for Ñ3L < Ã

ÑL3 > the four values [−ã2,
ã2, −ã2, ã2] for the four families i = [1, 2, 3, 4], respectively. While for τAAA we
obtain, when summing over the diagrams x+ xxx+ xxxxx+ ..., the same value aα

for a particular family member α = (u, d, ν, e) all four families. Family members
properties enter in the left/right basis 1√

2
(|ψiL > +|ψiR > into the mass matrix only

through aα.
One reproduces that the sum of < 1|..|1 > + < 4|..|4 >=< 2|..|2 > + < 3|..|3 >

Correspondingly it is not difficult to see that all the matrix elements, not
only diagonal but also off diagonal, keep the symmetry of the mass matrix of
Eq. (13.15) in all orders of corrections, provided that the matrix elements of the
kind αã1 + βã2 + aα — or of the kind in the αã1 + βã2 + aα — appears in
the diagrams in first power only. Here (α,β) are ±1, they are determined by
the eigenvalues of the operators τ̃1̃3 (for ã1) and Ñ3L (for ã2), respectively, on a
particular family, Eq. (13.13).
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b. Let us add to the diagonal terms the loop corrections. Let us evaluate,
using the massless basis |ψi >= 1√

2
(|ψiL > +|ψiR >), the contribution:

< ψi|
∑

−,+,�,�,j

γ0
78

(±) [Ñ
±
L Ã

ÑL± + τ̃
1±
Ã
1̃±

]|ψj >

< ψj|
∑
−,+

γ0
78

(±) [Ñ3LÃ
ÑL3 + τ̃13Ã1̃3 +

∑
A

τAAA]|ψj >

< ψj|
∑

−,+,�,�

γ0
78

(±) [Ñ
∓
L Ã

ÑL∓ + τ̃
1∓
Ã
1̃∓

]|ψi > . (13.17)

One finds for i = [1, 2, 3, 4] the values [Ã1̃�Ã1̃�(ã1−ã2+aα) +ÃÑL�ÃÑL�(−ã1+
ã2+aα), Ã1̃�Ã1̃�(ã1+ã2+aα) +ÃÑL�ÃÑL�(−ã1−ã2+aα), Ã1̃�Ã1̃�(−ã1−ã2+
aα) +ÃÑL�ÃÑL�(+ã1+ ã2+aα), Ã1̃�Ã1̃�(−ã1+ ã2+aα) +ÃÑL�ÃÑL�(+ã1−
ã2 + aα)], respectively, which again has the symmetry of the tree level state
< 1| . . . |1 > + < 4| . . . |4 >=< 2| . . . |2 > + < 3| . . . |3 >.

One can make three such loops, or any kind of loops in any order of loop
corrections with one (αã1 + βã2 + aα) and the symmetry of tree level state
< 1| . . . |1 > + < 4| . . . |4 >=< 2| . . . |2 > + < 3| . . . |3 > is manifested.

c. Let us look at the loop corrections to the off diagonal terms < 1| . . . |2 >,<
1| . . . |3 >,< 2| . . . |4 >,< 3| . . . |4 >, as well as their complex conjugate values.

Let us evaluate, using the massless basis |ψi >= 1√
2
(|ψiL > +|ψiR >), the

contribution:

< ψ4|
∑

−,+,�,�,j,k

γ0
78

(±) [Ñ
±
L Ã

ÑL± + τ̃
1±
Ã
1̃±

]|ψj >

< ψj|
∑
−,+

γ0
78

(±) [Ñ
±
L Ã

ÑL± + τ̃
1±
Ã
1̃±

]|ψk >

< ψk|
∑

−,+,�,�

γ0
78

(±) [Ñ
∓
L Ã

ÑL∓ + τ̃
1∓
Ã
1̃∓

]|ψ2 >

+ < ψ4|
∑

−,+,�,�,j

γ0
78

(±) [Ñ3LÃ
ÑL3 + τ̃13Ã1̃3 +

∑
A

τAAA]|ψ4 >

< ψ4|
∑

−,+,�,�

γ0
78

(±) [Ñ
∓
L Ã

ÑL∓ + τ̃
1∓
Ã
1̃∓

]|ψj >

< ψj|
∑

−,+,�,�

γ0
78

(±) [Ñ3LÃ
ÑL3 + τ̃13Ã1̃3 +

∑
A

τAAA]|ψ2 > . (13.18)

One obtains for this term < 4|...|2 >= < Ã1̃� > {ÃÑL�ÃÑL� + |ÃÑL3|2 +

|Ã1̃3|2 + |τAAA|2}, which is equal to the equivalent loop correction term for the
matrix element < 3|...|1 >.

Checking the loop corrections for the off diagonal elements < 1| . . . |2 >

,< 1| . . . |3 >,< 2| . . . |4 >,< 3| . . . |4 > in all loop corrections one finds that the
symmetry of these off diagonal terms is kept in all orders.
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d. There are still the terms < 1| . . . |4 >,< 2| . . . |3 >,< 3| . . . |2 > and
< 4| . . . |1 > to be checked in loop corrections. Adding loop corrections in the
way we did in c. we find that also these matrix elements keep the symmetry of
Eq. (13.15).

13.3 Conclusions

We demonstrate in this contribution on several cases that the matrix elements of
mass matrices 4 × 4, predicted by the spin-charge-family theory for each family
member α = (u, d, ν, e) to have the symmetry S̃U(2) ˜SO(4)1+3

× S̃U(2) ˜SO(4)"weak"
×

U(1) on the tree level, keeps this symmetry in all loop corrections. The first to
groups concern the family groups, the last one concern the family members group.

The only dependence of the mass matrix on the family member (α = (u, d, ν, e))
quantum numbers is on the tree level through the vacuum expectation values

of the operators γ0
78

(±) QAQ± , γ0
78

(±) Q ′AQ
′

± and γ0
78

(±) τ4A4±, appearing on
a tree level in the diagonal terms of the mass matrix only and are the same for
each of four families — I4×4a

α, I is the unite matrix. In the loop corrections these
operators enter into all the off diagonal matrix elements, causing the difference in
the masses of the family members. The right handed neutrino, which is the regular
member of the four families, Table 13.3, has the nonzero value of the operator
τ4A4± only (while the family part of the mass matrix is on the tree level the same
for all the members).

We demonstrate on several cases, why does the symmetry of the mass matrix,
which shows up on the tree level, remain in the loop corrections in all orders.

Although we are not (yet) able to calculate these matrix elements, the pre-
dicted symmetry will enable to predict masses of the fourth family (to the ob-
served three), since the 3× 3 submatrix of the 4× 4matrix determines 4× 4matrix
uniquely [19,4]. We only must wait for accurate enough data for mixing matrices
of quarks and leptons to predict, using the symmetry of mass matrices predicted
by the spin-charge-family, the masses of the fourth family quarks and leptons.

13.4 APPENDIX: Short presentation of the spin-charge-family
theory

This subsection follows similar sections in Refs. [1,4–7].
The spin-charge-family theory [1–11,14–22] assumes:

A. A simple action (Eq. (13.20)) in an even dimensional space (d = 2n, d > 5), d
is chosen to be (13+ 1). This choice makes that the action manifests in d = (3+ 1)

in the low energy regime all the observed degrees of freedom, explaining all the
assumptions of the standard model, as well as other observed phenomena.

There are two kinds of the Clifford algebra objects, γa’s and γ̃a’s in this theory
with the properties.

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 . (13.19)
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Fermions interact with the vielbeins fαa and the two kinds of the spin-connection
fields -ωabα and ω̃abα - the gauge fields of Sab = i

4
(γa γb − γb γa) and S̃ab =

i
4
(γ̃a γ̃b − γ̃b γ̃a), respectively.

The action

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (13.20)

in which p0a = fαa p0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃ab ω̃abα,

and
R =

1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c.,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c.

4, introduces two kinds of the Clifford algebra objects, γa and γ̃a, {γa, γb}+ =

2ηab = {γ̃a, γ̃b}+. fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote
flat indices, Greek letters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) de-
note the corresponding indices in (0, 1, 2, 3), while (s, t, ..) and (σ, τ, ..) denote the
corresponding indices in d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (13.21)

E = det(eaα).
B. The spin-charge-family theory assumes in addition that the manifoldM(13+1)

breaks first into M(7+1) × M(6) (which manifests as SO(7, 1) ×SU(3) ×U(1)),
affecting both internal degrees of freedom - the one represented by γa and the one
represented by γ̃a. Since the left handed (with respect toM(7+1)) spinors couple
differently to scalar (with respect toM(7+1)) fields than the right handed ones, the
break can leave massless and mass protected 2((7+1)/2−1) families [34]. The rest of
families get heavy masses 5.
C. There is additional breaking of symmetry: The manifold M(7+1) breaks
further intoM(3+1)×M(4).
D. There is a scalar condensate (Table 13.5) of two right handed neutrinos with
the family quantum numbers of the upper four families, bringing masses of the
scale ∝ 1016 GeV or higher to all the vector and scalar gauge fields, which interact
with the condensate [5].
E. There are the scalar fields with the space index (7, 8) carrying the weak (τ1i)
and the hyper charges (Y = τ23+τ4, τ1i and τ2i are generators of the subgroups of

4 Whenever two indexes are equal the summation over these two is meant.
5 A toy model [34,35] was studied in d = (5 + 1) with the same action as in Eq. (13.20).

The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, although not yet proved how does it really work, is
made in the d = (13 + 1) case. This study is in progress.
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SO(4), τ4 and τ3i are the generators of U(1)II and SU(3), respectively, which are
subgroups of SO(6)), which with their nonzero vacuum expectation values change
the properties of the vacuum and break the weak charge and the hyper charge.
Interacting with fermions and with the weak and hyper bosons, they bring masses
to heavy bosons and to twice four groups of families. Carrying no electromagnetic
(Q = τ13 + Y) and colour (τ3i) charges and no SO(3, 1) spin, the scalar fields leave
the electromagnetic, colour and gravity fields in d = (3+ 1) massless.

The assumed actionA and the assumpions offer the explanation for the origin
and all the properties o. of the observed fermions:

o.i. of the family members, on Table 13.3 the family members, belonging to
one Weyl (fundamental) representation of massless spinors of the group SO(13, 1)
are presented in the ”technique” [9–11,14–16,12,13] and analyzed with respect to
the subgroups SO(3, 1), SU(2)I, SU(2)II, SU(3), U(1)II), Eqs. (13.22, 13.23, 13.24),
with the generators τAi =

∑
s,t c

Ai
st S

st,
o.ii.of the families analyzed with respect to the subgroups S̃O(3, 1), S̃U(2)I,

S̃U(2)II, Ũ(1)II), with the generators τ̃Ai =
∑
ab c

Ai
ab S̃

st, Eqs. (13.25, 13.26,
13.27), are presented on Table 13.4, all the families are singlets with respect to
S̃U(3),

oo.i. of the observed vector gauge fields of the charges

SU(2)I, SU(2)II, SU(3), U(1)II)

discussed in Refs. ([1,4,2], and the references therein), all the vector gauge fields
are the superposition of theωstm, AAim =

∑
s,t c

Ai
stωstm, Eq. vect

oo.ii. of the Higgs’s scalar and of the Yukawa couplings, explainable with the
scalar fields with the space index (7, 8), there are two groups of two triplets, which
are scalar gauge fields of the charges τ̃Ai, expressible with the superposition of
the ω̃abs,AAim =

∑
a,b c

Ai
abωabs and three singlets, the gauge fields ofQ,Q ′, S ′,

Eqs. (13.28), all with the weak and the hyper charges as assumed by the standard
model for the Higgs’s scalars,

oo.iii. of the scalar fields explaining the origin of the matter-antimatter asym-
metry, Ref. [5],

oo.iv. of the appearance of the dark matter, there are two decoupled groups
of four families, carrying family charges ( ~̃NL, ~̃τ1) and ( ~̃NR, ~̃τ2), Eqs. (13.25, 13.26),
both groups carry also the family members charges (Q,Q ′, Y ′), Eq. (13.28).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with Sab (= i

2
(γaγb − γbγa), {Sab, Scd}− = −i(ηadSbc + ηbcSad − ηacSbd −

ηbdSac)) for the spin

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (13.22)
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for the weak charge, SU(2)I, and the second SU(2)II, these two groups are the
invariant subgroups of SO(4),

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (13.23)

for the colour charge SU(3) and for the ”fermion charge” U(1)II, these two groups
are subgroups of SO(6),

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) , (13.24)

τ4 is the ”fermion charge”, while the hyper charge Y = τ23 + τ4.
The generators of the family quantum numbers are the superposition of

the generators S̃ab (S̃ab = i
4
{γ̃a, γ̃b}−, {S̃ab, S̃cd}− = −i(ηadS̃bc + ηbcS̃ad −

ηacS̃bd − ηbdS̃ac), {S̃ab, Scd}− = 0. One correspondingly finds the generators of
the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (13.25)

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (13.26)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4),
are the subgroups of S̃O(7, 1). One finds for the infinitesimal generator τ̃4 of Ũ(1)
originating in S̃O(6) the expression

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) . (13.27)

The operators for the charges Y and Q of the standard model, together with
Q ′ and Y ′, and the corresponding operators of the family charges Ỹ, Ỹ ′, Q̃, Q̃ ′ are
defined as follows:

Y := τ4 + τ23 , Y ′ := −τ4 tan2 ϑ2 + τ23 , Q := τ13 + Y , Q ′ := −Y tan2 ϑ1 + τ13 ,

Ỹ := τ̃4 + τ̃23 , Ỹ ′ := −τ̃4 tan2 ϑ2 + τ̃23 , Q̃ := Ỹ + τ̃13 , Q̃ ′ = −Ỹ tan2 ϑ1 + τ̃13 .

(13.28)
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The families split into two groups of four families, each manifesting the

S̃U(2)× S̃U(2)×U(1),

with the generators of of the infinitesimal transformations ( ~̃NL, ~̃τ1, Q,Q ′, Y ′) and
( ~̃NR, ~̃τ2, Q,Q ′, Y ′), respectively. The generators ofU(1) group (Q,Q ′, Y ′), Eq. 13.28,
distinguish among family members and are the same for both groups of four
families, presented on Table 13.4, taken from Ref. [4].

The vector gauge fields of the charges ~τ1, ~τ2, ~τ3 and τ4 follow from the
requirement

∑
Ai τ

AiAAim =
∑
s,t

1
2
Sstωstm and the requirement that τAi =∑

a,b cAiab S
ab, Eq. (13.2), fulfilling the commutation relations {τAi, τBj}− =

iδABfAijkτAk, Eq. (13.3). Correspondingly we find AAim =
∑
s,t cAist ω

st
m,

Eq. (13.4), with (s, t) either in (5, 6, 7, 8) or in (9, . . . , 14).
The explicit expressions for these vector gauge fields in terms ofωstm are as

follows

~A1m = (ω58m −ω67m,ω57m +ω68m,ω56m −ω78m) ,

~A2m = (ω58m +ω67m,ω57m −ω68m,ω56m +ω78m) ,

AQm = ω56m − (ω9 10m +ω11 12m +ω13 14m) ,

AYm = (ω56m +ω78m) − (ω9 10m +ω11 12m +ω13 14m) ,

~A3m = (ω9 12m −ω10 11m,ω9 11m +ω10 12m,ω9 10m −ω11 12m,

ω9 14m −ω10 13m,ω9 13m +ω10 14m,ω11 14m −ω12 13m,

ω11 13m +ω12 14m,
1√
3
(ω9 10m +ω11 12m − 2ω13 14m)) ,

A4m = (ω9 10m +ω11 12m +ω13 14m) . (13.29)

Allωstm vector gauge fields are real fields. Here the fields contain the coupling
constants which are not necessarily the same for all of them. In the case that the
coupling constants would be the same, than the angles θ22 and θ21 would be equal
to one, which is not the case (at least sin21 ≈ 0.22.)

One obtains in a similar way the scalar gauge fields, which determine mass
matrices of family members. They carry the space index s = (7, 8).

~̃A1s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃A2s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃ANLs = (ω̃23s + iω̃01s, ω̃31s + iω̃02s, ω̃12s + ω̃03s) ,

~̃ANRs = (ω̃23s − iω̃01s, ω̃31s − iω̃02s, ω̃12s − iω̃03s) ,

AQs = ω56s − (ω9 10s +ω11 12s +ω13 14s) ,

AYs = (ω56s +ω78s) − (ω9 10s +ω11 12s +ω13 14s)

A4s = −(ω9 10s +ω11 12s +ω13 14s) . (13.30)

All ωsts ′ , ω̃sts ′ , (s, t, s ′) = (5, ·, 14), ω̃i,j,s ′ and i ω̃0,s ′ , (i, j) = (1, 2, 3) scalar
gauge fields are real fields.
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The theory predicts, due to commutation relations of generators of the in-
finitesimal transformations of the family groups, S̃U(2)I ×S̃U(2)I and S̃U(2)II
×S̃U(2)II, the first one with the generators ~̃NL and ~̃τ1, and the second one with
the generators ~̃NR and ~̃τ2, Eqs. (13.25,13.26), two groups of four families.

The theory offers (so far) several predictions:
i. several new scalars, those coupled to the lower group of four families —

two triplets and three singlets, the superposition of (~̃A1s , ~̃ANLs and AQs , AYs , A4s ,
Eq. (13.30) — some of them to be observed at the LHC ([1,5,4],

ii. the fourth family to the observed three to be observed at the LHC ([1,5,4]
and the references therein),

iii. new nuclear force among nucleons built from the quarks of the upper four
families.

The theory offers also the explanation for several phenomena, like it is the
”miraculous” cancellation of thestandard model triangle anomalies [3].

The breaks of the symmetries, manifesting in Eqs. (13.22, 13.25, 13.23, 13.26,
13.24, 13.27), are in the spin-charge-family theory caused by the scalar condensate of
the two right handed neutrinos belonging to one group of four families, Table 13.5,
and by the nonzero vacuum expectation values of the scalar fields carrying the
space index (7, 8) (Refs. [4,1] and the references therein). The space breaks first to
SO(7, 1) ×SU(3)×U(1)II and then further to SO(3, 1)× SU(2)I ×U(1)I ×SU(3)×
U(1)II, what explains the connections between the weak and the hyper charges
and the handedness of spinors [3].

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 13.5. This table is taken from [5]. The condensate of the two right handed neutrinos
νR, with the VIIIth family quantum numbers, coupled to spin zero and belonging to a
triplet with respect to the generators τ2i, is presented together with its two partners. The
right handed neutrino has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1, τ̃4 = −1,
Ñ3R = 1, Ñ3L = 0, Ỹ = 0, Q̃ = 0. The τ̃31 = 0. The family quantum numbers are presented in
Table 13.4.

The stable of the upper four families is the candidate for the dark matter, the
fourth of the lower four families is predicted to be measured at the LHC.

13.5 APPENDIX: Short presentation of spinor
technique [1,4,10,12,13]

This appendix is a short review (taken from [4]) of the technique [10,40,12,13], initi-
ated and developed in Ref. [10] by one of the authors (N.S.M.B.), while proposing
the spin-charge-family theory [2,4,5,7,8,1,14,15,9–11,16–22]. All the internal degrees
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of freedom of spinors, with family quantum numbers included, are describable
with two kinds of the Clifford algebra objects, besides with γa’s, used in this
theory to describe spins and all the charges of fermions, also with γ̃a’s, used in
this theory to describe families of spinors:

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (13.31)

We assume the “Hermiticity” property for γa’s (and γ̃a’s) γa† = ηaaγa (and
γ̃a† = ηaaγ̃a), in order that γa (and γ̃a) are compatible with (13.31) and formally
unitary, i.e. γa † γa = I (and γ̃a †γ̃a = I). One correspondingly finds that (Sab)† =
ηaaηbbSab (and (S̃ab)† = ηaaηbbS̃ab).

Spinor states are represented as products of nilpotents and projectors, formed
as odd and even objects of γa’s, respectively, chosen to be the eigenstates of a
Cartan subalgebra of the Lorentz groups defined by γa’s

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (13.32)

where k2 = ηaaηbb. We further have [4]

γa
ab

(k): =
1

2
(γaγa +

ηaa

ik
γaγb) = ηaa

ab

[−k] ,

γa
ab

[k]: =
1

2
(γa +

i

k
γaγaγb) =

ab

(−k) ,

γ̃a
ab

(k): = −i
1

2
(γa +

ηaa

ik
γb)γa = −iηaa

ab

[k] ,

γ̃a
ab

[k]: = i
1

2
(1+

i

k
γaγb)γa = −i

ab

(k) ,

(13.33)

where we assume that all the operators apply on the vacuum state |ψ0〉. We define

a vacuum state |ψ0 > so that one finds <
ab

(k)

†
ab

(k) >= 1 , <
ab

[k]

†
ab

[k] >= 1.

We recognize that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .

(13.34)

The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) , (13.35)

{Sab, S̃cd}− = 0 , {Sab, Scd}− = i(ηadSbc+ηbcSad−ηacSbd−ηbdSac) , {S̃ab, S̃cd}−
= i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) .
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One can easily check that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigen-
states” of Sab and S̃ab

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (13.36)

where the vacuum state |ψ0〉 is meant to stay on the right hand sides of projectors

and nilpotents. This means that multiplication of nilpotents
ab

(k) and projectors
ab

[k] by Sab get the same objects back multiplied by the constant 1
2
k, while S̃ab

multiply
ab

(k) by k
2

and
ab

[k] by (−k
2
) (rather than by k

2
). This also means that when

ab

(k) and
ab

[k] act from the left hand side on a vacuum state |ψ0〉 the obtained states
are the eigenvectors of Sab.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with nilpotents and
projectors of Eq. (13.32), the technique offers an elegant way to see all the quantum
numbers of states with respect to the two Lorentz groups, as well as transformation
properties of the states under the application of any Clifford algebra object.

Recognizing from Eq.(13.35) that the two Clifford algebra objects (Sab, Scd)
with all indexes different commute (and equivalently for (S̃ab, S̃cd)), we select
the Cartan subalgebra of the algebra of the two groups, which form equivalent
representations with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 . (13.37)

The choice of the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group — the handedness Γ ({Γ, Sab}− = 0)
(as well as Γ̃ ) in any d = 2n

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ̃ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγ̃a), if d = 2n . (13.38)

We understand the product of γa’s in the ascending order with respect to the index
a: γ0γ1 · · ·γd. It follows from the Hermiticity properties of γa for any choice of
the signature ηaa that Γ † = Γ, Γ2 = I.( Equivalent relations are valid for Γ̃ .) We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) (while for d odd it commutes with γa ({γa, Γ }− = 0)).

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd 6. For
d even we simply make a starting state as a product of d/2, let us say, only

6 For d odd the basic states are products of (d − 1)/2 nilpotents and a factor (1± Γ).
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nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eqs.(13.37,
13.35)), applying it on an (unimportant) vacuum state. Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left hand side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

...
0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] |ψ0 >
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

... (13.39)

All the states have the same handedness Γ , since {Γ, Sab}− = 0. States, belonging
to one multiplet with respect to the group SO(q, d− q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We could make
a choice of the simplest one, taking all phases equal to one. (In order to have the
usual transformation properties for spinors under the rotation of spin and under
CN PN ,some of the states must be multiplied by (−1).)

The above representation demonstrates that for d even all the states of one
irreducible Weyl representation of a definite handedness follow from a starting

state, which is, for example, a product of nilpotents
ab

(kab), by transforming all

possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness.

We shall speak about left handedness when Γ = −1 and about right handed-
ness when Γ = 1.

While Sab, which do not belong to the Cartan subalgebra (Eq. (13.37)), gen-
erate all the states of one representation, S̃ab, which do not belong to the Cartan
subalgebra (Eq. (13.37)), generate the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (13.37)) of the algebra Sab

and S̃ab: (S03, S12, S56, S78, S9 10, S11 12, S13 14 ), (S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12,
S̃13 14 ), a left handed (Γ (13,1) = −1) eigenstate of all the members of the Cartan
subalgebra, representing a weak chargeless uR-quark with spin up, hyper charge
(2/3) and colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ0〉 . (13.40)
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This state is an eigenstate of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (13.37)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (13.37)),
generate families from the starting uR quark, transforming the uR quark from
Eq. (13.40) to the uR of another family, keeping all of the properties with respect
to Sab unchanged. In particular, S̃01 applied on a right handed uR-quark from
Eq. (13.40) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)= −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) .

(13.41)

One can find both states in Table 13.4, the first uR as uR8 in the eighth line of this
table, the second one as uR7 in the seventh line of this table.

Below some useful relations follow. From Eq.(13.34) one has

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (13.42)

We conclude from the above equation that S̃ab generate the equivalent representa-
tions with respect to Sab and opposite.

We recognize in Eq. (13.43) the demonstration of the nilpotent and the projec-

tor character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively.

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(13.43)

Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) ,

ab
˜[±i]= 1

2
(1± γ̃aγ̃b),

ab
˜[±1]= 1

2
(1± iγ̃aγ̃b).
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one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 .

(13.44)

Below some more useful relations [14] are presented:

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (13.45)

In Table 13.4 [4] the eight families of the first member in Table 13.3 (member
number 1) of the eight-plet of quarks and the 25th member in Table 13.3 of the
eight-plet of leptons are presented as an example. The eight families of the right
handed u1R quark are presented in the left column of Table 13.4 [4]. In the right
column of the same table the equivalent eight-plet of the right handed neutrinos
ν1R are presented. All the other members of any of the eight families of quarks or
leptons follow from any member of a particular family by the application of the
operators N±R,L and τ(2,1)±, Eq. (13.45) on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8), the two groups of four families become massive. The lowest
of the two groups of four families contains the observed three, while the fourth
remains to be measured. The lowest of the upper four families is the candidate for
the dark matter [1].
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p.113 -142, [arxiv:1312.1542].
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12. N.S. Mankoč Borštnik, H.B.F. Nielsen, J. of Math. Phys. 43, 5782 (2002) [hep-th/0111257].
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Abstract. We investigate bosonization/fermionization for free massless fermions being
equivalent to free massless bosons with the purpose of checking and correcting the old
rule by Aratyn and one of us (H.B.F.N.) for the number of boson species relative to the
number of fermion species which is required to have bosonization possible. An important
application of such a counting of degrees of freedom relation would be to invoke restric-
tions on the number of families that could be possible under the assumption, that all the
fermions in nature are the result of fermionizing a system of boson species. Since a theory
of fundamental fermions can be accused for not being properly local because of having
anticommutativity at space like distances rather than commutation as is more physically
reasonable to require, it is in fact called for to have all fermions arising from fermionization
of bosons. To make a realistic scenario with the fermions all coming from fermionizing
some bosons we should still have at least some not fermionized bosons and we are driven
towards that being a gravitational field, that is not fermionized. Essentially we reach the
spin-charge-families theory by one of us (N.S.M.B.) with the detail that the number of
fermion components and therefore of families get determined from what possibilities for
fermionization will finally turn out to exist. The spin-charge-family theory has long be
plagued by predicting 4 families rather than the phenomenologically more favoured 3.
Unfortunately we do not yet understand well enough the unphysical negative norm square
components in the system of bosons that can fermionize in higher dimensions because we
have no working high dimensional case of fermionization. But suspecting they involve
gauge fields with complicated unphysical state systems the corrections from such states
could putatively improve the family number prediction.

Povzetek. Avtorja diskutirata bozonizacijo/fermionizacijo za proste brezmasne fermione,
ki jih obravnavata kot ekvivalentne prostim brezmasnim bozonom. Namen je preveriti
in popraviti staro pravilo Aratyna in H.B.F.N. za število vrst bozonov glede na število
vrst fermionov kot pogoj za obstoj fermionizacije bozonov. Pomembna uporaba takega
pravila bi bil pogoj na število možnih družin, če privzamemo, da so vsi fermioni v naravi
rezultat fermionizacije vrst bozonov. Teoriji fermionov kot fundamentalnih delcev lahko
očitamo, da nima pravilne lokalnosti, ker zahtevamo za fermione antikomutativnost, ne
pa komutativnosti. Temu očitku bi se lahko izognili, če vsi fermioni izhajajo iz fermion-
izacije bozonov. Za realističen opis v modelu, v katerem fermione dobimo s fermionizacijo
bozonov, mora vsaj nekaj bozonov ostati nefermioniziranih. Avtorja predlagata, da so ti
nefermionizirani bozoni gravitacijska polja. Želita na ta način reproducirati teorijo Spina-
nabojev-družin enega od avtorjev (S.N.M.B.), kjer bi število fermionskih komponent in

? H.B.F. Nielsen presented the talk.
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število družin določale možnosti za fermionizacijo. Teorija spina-nabojev-družin napove
4 družine, namesto doslej opaženih 3. Avtorja še ne razumeta dovolj dobro nefizikalnih
komponent z negativnim kvadratom norm v sistemu bozonov, ki se fermionizira v višjih di-
menzijah, ker jima fermionizacije v višjih dimenzijah še ni uspelo zares izpeljati. Domnevata,
da bodo spoznanja o vlogi nefizikalnih stanj pomagala pri napovedi števila družin.

Keywords: Fermionization, Bosonization, Number of families

14.1 Introduction

One of the general requirements for quantum field theories is microcausality [1,2],
the requirement of causality, which in its form as suggested from tensor product
deduction says, that for two relative to each other spacelikely placed events x1
and x2 in Minkowski space-time a couple of quantum field operators O1 and O2
taken at these events will commute

{O1(x1),O2(x2)}− = 0 for spacelike x1 − x2. (14.1)

This is so for the O1 and O2 being boson fields, but if they are both fermion
fields, one would have instead to let them anticommute

{O1(x1),O2(x2)}+ = 0 for spacelike x1 − x2. (14.2)

Such anticommutation is, however, from the tensor product way of arguing for
the relation completely wrong. We could therefore claim that it is not truly allowed
to have fermions in the usual way, because it leads to a “crazy” locality axiom. It is
one of the purposes of the present proceedings article to suggest to investigate the
consequences of such an attitude, that fermions as fundamental particles are not
good, but that one should rather seek to obtain fermions, not as fundamental, but
rather only by fermionization of some boson fields instead. But then it becomes
very important what combinations - what systems - of fermions can be obtained
from appropriate bosonic models. For the existence of quite nontrivial restrictions
on the number of fermions, we can expect to be obtainable by fermionization
from a system bosons, the theorem [3] by Aratyn and one of us (H.B.F.N.) is
quite suggestive. In fact this theorem tells, that the ratio between the number
of fermion spin components for all the species (families) counted together and
the corresponding number of boson spin components counted together must be
2
dspatial

2
dspatial−1

. A priori this theorem seems to enforce that in say the experimental
number of dimensions, dspatial = 3 and 1 time, the collective number of fermions
components must be divisible by 23 = 8. If we count the components as real fields
a Weyl fermion has 2*2 = 4 such real components, and thus the number of Weyl
fermions must be divisible by 8/4 =2.

Let us immediately include the remark, that although we shall below mainly
go for the presumably simplest case of non-interacting massless bosons - presum-
ably Kalb-Ramond fields - being fermionized into also free massless fermions, that
does NOT mean that we seriously suggest Nature to have no interactions. Rather
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the hope is that gravitational degrees of freedom couple in a way specified alone
by the flow of energy and momentum, so that we can hope that having a free
theory it should be very easy and almost unique how to add a gravitational inter-
action. Let us say, that by the spin-charge-family theory by one of us, the interacting
fields are the gravitational ones (vielbeins and spin connections) [5–7] only, but in
d > (1+ 3), fermions manifesting in (1+ 3) as spins and all the observed charges,
as well as families, gravity manifesting all the observed gauge fields as well as the
scalar fields, explaining higgs and the Yukawa couplings.

In analogy to, how one sometimes says that the electromagnetic interaction
is added to a system of particles or fields with a global charge is “minimally
coupled”, if one essentially just replace the derivatives by the corresponding
covariant ones, we shall imagine that our free theory, which has energy and
momentum as global charges could be made to contain gravity by some sort
of “minimal coupling”. To introduce other extra interactions than just gravity is,
however, expected to be much more complicated: Especially higher order Kalb-
Ramond fields couple naturally to strings and branes, which in any case would
tend to have disappeared in the present status of the universe. So effectively
to day the Kalb-Ramond fields [13] should be free except for their “minimal
coupling to gravity”. This would mean that allowing such a “later” rather trivial
inclusion of gravity, which should be relatively easy, would make our at first free
model be precisely the since long beloved model of one of us, the-spin-charge-
family theory [5–7]. Fundamentally we have thus in our picture some series of
Kalb-Ramond fields together with gravity coupling to them in the minimal way.
Then we fermionize only this series of Kalb-Ramond fields, but keep bosonic the
gravitational field, which probably cannot be fermionized even, if we wanted to.
The resulting theory thus becomes precisely of similar type as the one by one of
us, the spin-charge-family theory.

Now, however, the Kalb-Ramond fields are plagued by a lot of gauge sym-
metry and “unphysical” degrees of freedom, some of which even show up with
even negative norm squared inner products. In principle these unphysical degrees
of freedom must also somehow be treated in the fermionization procedure. Es-
pecially, if we want to use our theorem of counting degrees of freedom under
bosonization [3], we should have such a theorem allowed to be used also when
the “unphysical” d.o.f. are present.

In fact it is the main new point in the present article, that we put forward a
slightly more complicated Aratyn-Nielsen-theorem - an extended Aratyn-Nielsen
theorem -, allowing for theories with negative norm squared normalizations.

It is the true motivation of the present work, that once when we shall find some
genuinely working case(s) of theories that bosonize/fermionize into each other in
high dimensions, they will almost certainly turn out to involve gauge theories on
the bosonic side. That is to say it will be combinations of various Kalb-Ramond
fields [13] (among which we can formally count also electromagnetic fields and
even a scalar field), and such Kalb-Ramond fields often have lots of negative norm
square components. Thus once we know what is the boson theory that can be
fermionized we need an extended Aratyn-Nielsen theorem to calculate the correct
number of fermion components matching the fermionization correspondance.
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Well really, if we know it well, we can just read off how many fermion components
there are. It is namely this number of fermion components, that translates into the
number of families, on which they are to be distributed. It means that knowing
the detailed form of the boson system and the rule - the extended Aratyn-Nielsen
theorem - for translating the number of boson components into the number of
fermion components is crucial for obtaining the correct number of families. Will
so to speak the number of fermion-families remain 4 as claimed by one of us in
her model, which has reminiscent of being a fermionization, or will it be corrected
somehow from the true bosonization requirement including the negative norm
square components for the bosons? The reliability of the model would of course -
according to the judgement of one of us (H.B.F.N.) - be much bigger, if it turned
out that the true prediction were 3 families rather than the 4 as usually claimed,
except, of course, if the fourth family, predicted by the spin-charge-family theory,
will be measured.

With the old Aratyn-Nielsen theorem (the unextended version) it does crudely
not look promising to get the number 3 rather than 4 as H.B.F.N would hope
phenomenologically in as far this version implies that the number of fermion
components is divisible by a rather high power of the number 2. Such a number-
theoretic property of the number of families seems a priori to favor 4 much over
3.

The works of major importance for the present talk are:

• Aratyn & Nielsen We made a theorem [3] about the ratio of the number of
bosons needed to represent a number of fermions based on statistical mechan-
ics in the free case, under the provision that a bosonization exists.

• Kovner & Kurzepa They[8,9] present an explicit bosonization of two complex
fermion fields in 2+1 dimensions being equivalent to QED3 meaning 2+1
dimensional quantum electrodynamics.

• Mankoč-Borštnik [5–7] The spin-charge-family unification theory explains the
number of families from the number of fermion components appeared in this
theory.

In the next section 14.2 we put forward the main hope or point of view of our
application of bosonization to make prediction of the number of families. In section
14.3 we give a loose argument for what we think should our picture for nature to
cope with the investigations in the present article. Then we shall in section 14.4
and 14.5 review both Kalb Ramond fields and and our old Aratyn-Nielsen theorem
about the number fermion components needed to make an equivalent theory with
a number of boson components. In section 14.6 we look at the problem, that the
components of a Kalb-Ramond field with an index being 0 are on the one hand
to be a conjugate momentum to the other components and on the the other hand,
if we use Lorentz invariance, have to lead to states with negative norm square.
The latter is of course simply a reflection of the signature of the Minkowski metric
tensor. It is for the application on such negative norm square components - the
components with an index 0 - that our extension of our Aratyn-Nielsen theorem
to negative norm square components become relevant.

In section 14.8 we review the work by Kovner and Kurzepa[8], who proposed
a concrete bosonization including explicit expressions for the fermion fields in
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terms of the boson fields - actually simply electrodynamics - in the case of 2 space
dimensions and one time, 1+ 2. Next in 14.9 we seek to check our Aratyn-Nielsen
theorem on this special case of 1+2 both by counting the particle species including
spin states 14.10 and by counting the fields 14.11.

Towards the end, section 14.12, we seek to reduce away some of the degrees
of freedom from the Kovner and Kurzepa model to obtain a reduced case with
fewer particles on which we - if it is also a case of bosonization - would be again
able to check our counting theorem (Aratyn-Nielsen).

14.2 Hope

Use of Bosonization/Fermionization Justifying Number of Families
The governing philosophy and motivation for the present study is:

• Fermions do NOT exist fundamentally (because they do not have proper
causal/local property) .

• Some boson degrees of freedom are rewritten by bosonization (better fermion-
ization) to fermionic ones, which then make up the fermions in the world,
we see. (but some other boson degrees of freedom, hopefully gravity, are not
bosonized).

• We work here only with an at first free theory - for our presentation, it might
be best if only bosonization worked for FREE theories in higher dimensions -
i.e. free bosons can be rewritten as free fermions.

• We though suggest - hope- that exterior to both bosons and/or fermions, we
can add a GRAVITATIONAL theory. So fundamentally: gravity with matter
bosons. It gets rewritten to fermions in a gravitational field, just similar to the
theory [5–7] of one of us called spin-charge-family unification theory.

Let us be more specific about the dream or hope behind the present project:
By using say ideas from the below discussed paper by Kovner and Kurzepa [8]

or by our own earlier article in last years Bled Proceedings about bosonization,
we hope to find at least a case of fermionizing some series of Kalb-Ramond fields
(i.e. Boson fields) - and electrodynamics is of course considered here a special
Kalb-Ramond one - into some system of fermions. Presumably it is easiest - and
perhaps only possible - for free theories or only theories interacting in a very
special way. We therefore are most eagerly going for such a free and even massless
case.

But now if indeed we can find such a case, or if exists, then it is very likely
that we can extend it to interact with gravity in a minimal way. In fact we all the
time require our hoped for fermionization cases to have the same energy and
momentum for the bosonic and the fermionic theories that shall be equivalent.
Thus the fermionization procedure, if it exist at all, is compatible with energy and
momentum.

If we therefore let our boson-theory interact with gravity, that couples to the
energy and momentum - specifically to the energy momentum tensor Tµν(x) -
we have some hope that this coupling of the boson fields to gravity will simply
transfer to a coupling of the fermionized theory, too.
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As procedure we might have in mind writing the free massless fermionization
procedure in arbitrary coordinates. That should of course be possible, but although
the theory would now look as a gravitational theory, it would only have been
derived for the case of the gravitational fields having zero curvature, i.e. for the
Riemann tensor being zero all over. However, if the fermionization procedure
could be described by a local expression for the Kalb-Ramond fields - or other
boson fields - expressed in terms of fermion currents or the like, then the corre-
spondence would in that formulation be local and lead to the energy momentum
tensor being also related in such simple local way. I.e. we would have in this
speculation

Tµν(x)|boson = Tµν(x)|fermion. (14.3)

Here of course the two energy momentum tensors are the ones in respectively the
fermion and the boson theory being equivalent by the dream for fermionization.

It is further our hope for further calculation that we may argue that in general
it is very difficult to have interaction with Kalb-Ramond fields except for

• The appropriate branes,
• Some general gauge-theory coupling to the charges (think of global ones)

conserved by the Kalb-Ramond- theory in question. But since the always
conserved global charges are the energy and momentum this suggests the
coupling to gravitational field.

We thus want to say that this starting form fundamental Klab-Ramond fields
supposedly difficult to make interact points towards a theory at the end with
gravity as the only interaction. Gravity namely is suggested to be hard to exclude
as possibility even for otherwise difficult to make interact Kalb-Ramond fields.

If we manage to fermionize the Kalb-Ramond fields as just suggested, we
therefore tend to end up with the spin-charge-family unification model of one of
us in the sense that we get ONLY gravity interaction, and otherwise a free theory.

But it shall of course be understood here that we only fermionize some of
the boson fields in as far as we leave the assumed fundamental gravity field non
fermionized.

14.3 Guiding and Motivation

The reader might ask why we choose - and suppose Nature to choose - these
Kalb-Ramond-type fields which are to be explained a bit more below in section
(14.5). Let us therefore put forward a few wish-thinking arguments for our bosonic
fundamental model:

• We have no way to make fermionization/bosonization conserving angular-
momentum truly (at the same time keeping the spin statistics theorem): The
bosons namely necessarily can only produce Fock space states with integer
angular momentum, but the fermion sates should for an odd number of
fermions in the the Fock state have half integer angular momentum. So clearly
fermionization/bosonization conserving angular momentum is impossible!
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• The trick to overcome this angular-momentum-problem is to reinterprete a spin
1/2 index on the fermions as a family index instead. That is to say we accept at first
that the fermions come out of the fermionization with bosonic integer spin
index combination, and then seek to reinterprete part of the spin polarisation
information as instead being a family information.

• In fact we shall be inspired by the spin-charge-family unification model to go
for that the fermions come out from the fermionization at first with two spinor
indices, so that they have indeed formally at this tage integer spin. Then we
make the interpretation that one of these spinor indices is indeed a family index.
That of course means, that we let one of the two indices be taken as a scalar
index i.e. being not transformed under Lorentz transformations.

• So we decide to go for a system of fermions at the “first interpretation” being
a two-spinor-indexed field. But now such a field Bαβ, where α and β are the
spinor indices, is indeed a Clifford algebra element, or we could say a Dirac
matrix (or a Weyl matrix only if we use only the Weyl components). In any
case we can expand it on antisymmetrized products of gamma-matrices:

Bαβ =
(
a1 + aµγ

µ + · · ·+ aµν...ργµγν · · ·γρ + . . .

+ a0,1,...,(d−1)γ
0γ1 · · ·γ(d−1)

)
αβ
, (14.4)

and thus the boson fields suggested to by fermionization leading to such
fermion fields should be a series of antisymmetric tensor fields of all the
different orders from the scalar a and the d-vector aµ all the way up to the
maximal antisymmetric order tensor a0,1,...,(d−1).

• With random coefficients on a Lagrange-density expansion for a theory with
boson fields, which have d-vectorial indices one unavoidably loose the bottom
in the Hamiltonian as one can see from e.g. just a term like

c ∗ (∂µ · · ·∂νaρ...τ)2 . (14.5)

Think for instance on the terms for which the series of the derivative indices
are spatial so that we have to do with a potential energy term. If the coefficient
c is adjusted to let the contribution with the indices on aρ...τ being spatial
to the Hamiltonian be positive, then the contributions with a 0 among these
indices will from Lorentz invariance have to be of the wrong sign. So it is at
best exceedingly hard to organize a positive definite Hamiltonian density.
Consider only the free part - meaning bilinear part in the field aρ...τ - in
the Lagrangian. For simplicity let us consider the situation of a field aρ...τ
being constant as function of the time coordinate x0, and that the number of
derivatives acting on the field is so low that some of the indices- say ρ - on the
aρ...τ has to be contracted with another one or the same index on this field
in order to cope with Lorentz invariance. Then if this (sum of) squares of the
field in some combination shall get a for the hamiltonian positive contribution
from a spatial value of the index ρ, it will get the opposite sign for ρ = 0. So it
looks that we cannot avoid the Hamiltonian having both signs for a “free term”
in the Lagrangian, unless all the indices on aρ...τ are in the term contracted
with derivatives. But with the antisymmetry this would be zero for more than
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one index on aρ...τ. So indeed it seems that unless one gets the fields restricted
in some way, so that these fields or their conjugate variables are somehow
not allowed to take independent values, then the Hamiltonian will loose its
bottom and (presumably infinite) negative energy values will be allowed.

• We are thus driven towards theories with constraints!
• Such constraints are typically obtained by means of some gauge symmetry,

and thus we are driven towards theories with gauge symmetry, if we want
to uphold a positive definite Hamiltonian for the by the constraints allowed
states of the field and its conjugate momenta.

• The obvious candidate for such a gauge theory with antisymmetrised tensor
fields is of course the Kalb-Ramond fields. (Personally we suspect, that we can
show that ONLY Kalb-Ramond-fields will solve this problem of positivity by
providing enough constraints.)
• Thus it seems that it is very hard to hope for our to be used fermionization

unless we make use of presumably a whole series of Kalb-Ramond fields!

14.4 Review

In theoretical condensed matter physics and particle physics, Bosonization/fermio-
nization is a mathematical procedure by which a system of possibly interacting
fermions in (1+1) dimensions can be transformed to a system of massless, non-
interacting bosons. In the present article we shall dream about extending such
bosonization to higher dimensions, and we shall be most interested in the case
when even the fermions do not interact. The method of bosonization was conceived
independently by particle physicists Sidney Coleman and Stanley Mandelstam;
and condensed matter physicists Daniel Mattis and Alan Luther in 1975. [4]
The progress to higher dimensions has been less developed [11] than the 1+1
dimensional case, but there has been some works also on higher dimensions.
especially we shall below review a bit a work[8] by Kovner and Kurzepa for the
next to simplest case, namely 2+1 dimensions. There has also been developments
based on Chern-Simon type action[11], but we suspect that the type of bosonization
we are hoping for in the present article should rather be of the Kovner Kurzepa
type than of the Chern-Simon one, although we have difficulty in explaining
rationally why we believe so.

When we have such transformation and thus two equivalent theories, one
with fermions and one with bosons, one will of course expect that the number of
degrees of freedom should in some way be the same for the boson and for the
fermion theory. Otherwise of course they could not be equivalent. In the most
studied case of 1+1 dimensions it has turned out in the cases known that there are
two fermion components per boson component. This ratio is in accord with the
theorem by Aratyn and one of us [3] - which we call the Aratyn-Nielsen theorem
- in as far as this theorem predicts the ratio to be 2

dspatial

2
dspatial−1

where dspatial is
the dimension of space ( not including time) so that we talk about the dimension
dspatial + 1. In fact of course for the case 1+1 we have thus dspatial = 1 and
the fraction predicted becomes 21

21−1
= 2 times as many fermion components as

boson components. This is really assuming that a “component” corresponds to a
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polarization state of a particle. What we - one of us and Aratyn - really derived
was that for a theory with massless interacting there ahd to be the mentioned ratio
between the number of polarization states for the fermion(s) relative to that for the
bosons. It were namely the contributions of such polarization states to the average
energy in a Boltzmann distribution calculation that was used to derive the theorem.
Although derived for this non-interacting massless case there could be reasons
to believe that by taking a couple of limits in an imagined case of interacting
and perhaps massive bosonization it could be argued, that the theorem of ours
would have to hold anyway. For instance going to a very small distance scale
approximation an approximately massless theory would arrive and the theorem
should be applicable even if there is a mass. Since we are concerned in this theorem
really with a counting of degrees of freedom a very general validity is in fact, what
would be expected. As already said, we are, however, in the present article more
concentrating on the generalization to include some unphysical degrees of freedom
with possibly wrong signature,

14.5 AratynN

Aratyn-Nielsen Theorem for massless free Bosonization
If there exist two free massless quantum field theories respectively with

Boson, and Fermion particles and they are equivalent w.r.t. to the number of states
of given momenta and energies, then the two theories must have the same average
energy densities for a given temperature T , or simply same average energies, if we
take them with the same infrared cut off(a quantisation volume V):

< Uboson > = < Ufermion > where (14.6)

< Uboson > =
∑
~p

E(~p)

1− exp (E(~p)/T)
(14.7)

< Ufermion > =
∑
~p

E(~p)

1+ exp (E(~p)/T)
. (14.8)

(14.9)

Here ~p runs through the by the infrared cut off allowed momentum eigenstates,
and E(~p) are the corresponding single particle energies. Of course the single
particle energy for a mass-less theory is

E(~p) = |~p|, (14.10)

when c=1, and in dspatial dimensions and with an infrared cut off spatial volume
V the sum gets replaced in the continuum limit by the integral∑

~p

...→ ∫ ∑
components

...
V

(2π)dspatial
, (14.11)

where
∑
components ... stands for the sum over the different polarization com-

ponents of the particles in question. So effectively in the simplest case of all the
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particles having the same “spin”/the same set of components we have the replace-
ment ∑

components

...→ Nfamilies ∗Nc... (14.12)

where Nc is the number of components for each particle and Nfamilies is the
number of families. Some formulas for deriving Aratyn-Nielsen

< Uboson > =
∑
~p

E(~p)

1− exp (E(~p)/T)
(14.13)

= ‘‘Nfamilies ∗N ′′c ∗ V/(2π)dspatial ∗ (14.14)∫
O(dspatial)|~p|

dspatialE(~p)
∑

n=0,1,...

exp (nE(~p)/Td|~p|

(14.15)

Simple Aratyn-Nielsen Relation For a given temperature must the average
energies of respectively the boson and the with it equivalent fermion theories

Our Realization Suggestion

• Fermions
For the fermions we shall use the needed number of say Weyl fermions, i.e.
we must adjust the number of families hoping that we get an integer number.
• Bosons

For the bosons we let the number 2dspatial − 1 suggest that we take a series
of all Kalb-Ramond fields, one combination of fields for each value of the
number p of indices on the “potential field” Aab...k (where then there are just
p symbols in the chain ab...k). At first we take these symbols a, b, ..., k to be
only spatial coordinate numbers.

Free Kalb-Ramond A Kalb-Ramond field[13] with p indices on the “po-
tential” and p+1 indices on the strength

Fµνρ...τ(x) = ∂[µAνρ...τ](x), (14.16)

where [...] means antisymmetrizing, and the “potential” Aνρ...τ is antisymmetric
in its p indices νρ...τ, is defined to have an action invariant under the gauge
transformation:

Aνρ...τ(x)→ Aνρ...τ(x) + ∂[νλρ...τ](x) (14.17)

for any arbitrary antisymmetric gauge function λρ...τ(x) with p− 1 indices.
Free Kalb-Ramond Action:
Note that the strength Fµνρ...τ = ∂[µAνρ...τ] is gauge invariant, and that thus

we could have a gauge invariant Lagrangian density as a square of this field
strength

L(x) = Fµν...τFµ ′ν ′...τ ′gµµ
′
∗ gνν

′
∗ ... ∗ gττ

′
. (14.18)
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Then the conjugate momentum of the potential becomes(formally):

Πνρ...τ = ΠAνµ...τ =
∂L

∂(∂0Aνρ...τ)

= F0νρ...τ. (14.19)

A Lorentz gauge choice:

∂µAνρ...τg
µν = 0, (14.20)

allows to write the Lagrange density instead as

Lmodified(x) = 1/2 ∗ ∂µAµν...τ∂µ ′Aµ ′ν ′...τ ′ ∗ gµµ
′
gνν

′
· · ·gττ

′
, (14.21)

which leads to the very simple equations of motion letting each component of the
“potential” Aνρ...τ independently obey the Dalambertian equation of motion

gµµ
′
∂µ∂µ ′Aνρ...τ = 0. (14.22)

Lorentz Invariance Requires Indefinite Inner Product!:
Lorentz invariant norm square for the states generated by the creation oper-

ators a†νρ...τ(p), i.e. a†νρ...τ(p)|0 >, must have different sign of the norm square
depending on whether there is an even (i.e. no) 0’s among the indices or whether
there is an odd number (i.e. 1). A priori we are tempted to take

< 0|aνρ...τ(p)a
†
νρ...τ(p)|0 > > 0 for no 0 among the indices,

< 0|aνρ...τ(p)a
†
νρ...τ(p)|0 > < 0 for one 0 among the indices,

(14.23)

14.6 Time-index

Problem with Components with the time index 0:
But full Kalb-Ramond fields require also components a 0 among the in-

dices.(This is the main new thing in the present article to treat this problem of the
components with one 0 among the indices.)

Remember about these components with a 0 index:

• Using a usual Minkowskian metric tensor gµν in constructing an inner product
between Kalb-Ramond fields, say

gµνgρσ · · ·gτκAµρ...τ(potentially an ∂0)Aνσ...κ, (14.24)

we get the opposite signature (=sign of the square norm) depending on
whether there is a 0 or not!
This means that if particles produced by the components without the 0 in-
dex have normal positive norm square, then those produced by the ones
with the 0 have negative norm-square!
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Good Luck We Removed the Kalb-Ramond A with p = 0 Indices! We could
namely not have replaced on A one among its indices by a 0 because it has no
indices. So we would not have known what to do for the fields Awith 0 indices.

We correspondingly also have to leave out the Kalb-Ramond-field with p =

dspatial + 1 indices, because for that there would be no components without an
index 0.

For the unexceptional index numbers p = 1, 2, ..., dspatial there are some
components both with and without the 0.

For the two exceptions p = 0 and d = dspatial + 1 we have chosen not
to have a Kalb-Ramond-field in our scheme, using it to get the −1 in the from
Aratyn-Nielsen required 2dspatial − 1.

Simplest (Naive) Norm Square Assignment
Note that for each Kalb-Ramond-field we can choose an overall extra sign on

the inner product, because we simply can define the overall inner product with an
extra minus sign, if we so choose. But the simplest choice is to just let the particles
corresponding to fields with only spatial indices (i.e. all p indices different from 0)
to have positive norm square, while then those with one 0 have negative norm
square.

This simple rule would lead to equally many components/particles with
positive as with negative norm square, so that dreaming about imposing a con-
straint that removes equally many negative and positive norm square at a time
would leave us with nothing.

Numbers of Components with and without 0. An of course totally antisym-
metric field Aµν...τ with p indices has

# components
KR pindices =

(
d

p

)
=

(
dspatial + 1

p

)
# no 0 components

KR pindices =

(
dspatial

p

)
=

(
d− 1

p

)
# cmps. with 0 & p-1 non-0

KR pindices =

(
dspatial

p− 1

)
=

(
d− 1

p− 1

)
.

and so one must have as is easily checked(
d

p

)
=

(
d− 1

p

)
+

(
d− 1

p− 1

)
corresponding to

“All components” = “Without 0” + “With 0”

Using ONLY the Components WITHOUT 0 would fit 2dspatial Nicely !
Having decided to leave out the number of indices p values p = 0 and p = d the
number of components without any component indices being 0 just makes up

# without 0 for all p = 1, 2, ..., d− 1 =
∑

p=1,2,...,d−1

(
d− 1

p

)
= 2d−1 − 1

so these “only with spatial indices components” could elegantly correspond to
2d−1 = 2dspatial fermion components.



i
i

“proc17” — 2017/12/11 — 19:44 — page 256 — #270 i
i

i
i

i
i
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But problem: Kalb- Ramond fields need also the component with an index
being 0.

Using ONLY the Components WITH 0 could also fit 2dspatial Nicely ! Hav-
ing decided to leave out the number of indices p values p = 0 and p = d the
number of components with the 0 just makes up

# with 0 for all p = 1, 2, ..., d− 1 =
∑

p=1,2,...,d−1

(
d− 1

p− 1

)
= 2d−1 − 1

also, so these “only with 0 index components” could elegantly correspond to 2d−1

= 2dspatial fermion components, also!
But problem: Kalb- Ramond fields need also the components without an

index being 0, and these with 0 usually come with wrong norm square.
The Trick Suggested is to use for Some KR-fields Opposite Hilbert Norm

Square
In other words we shall look along the chain of all the allowed p-values

p = 1, 2, ..., d− 1; and for each of these p-values we can choose whether

• Normal: The states associated with the polarization components without the
0 among the indices shall be of positive norm square, as usual, and then from
Lorentz invariance essentially the ones with the 0 shall have negative norm
square, or

• Opposite The states with 0 shall have positive norm square, while the com-
ponents without 0 negative norma square.

Our proposal: Choose so that we get the largest number of positive norm square
components. How to get Maximal Number of Positive over Negative Norm
Square Single Boson States

For each value of p (=the number of indices on the Kalb Ramond “potential”)
p = 1, 2, ..., dspace decided to be used in the bosonization ansatz a priori, we
investigate whether the number of (independent) components with or without a
0 is the bigger:

# no 0 components
KR pindices =

(
dspatial

p

)
=

(
d− 1

p

)
# cmps. with 0 & p-1 non-0

KR pindices =

(
dspatial

p− 1

)
=

(
d− 1

p− 1

)
.

So if there are most components without 0, i.e. if
(
dspatial
p−1

)
<
(
dspatial

p

)
, then we

give the particle states corresponding to the without 0 “potentials” have positive
norm square. And opposite if

(
dspatial
p−1

)
>
(
dspatial

p

)
.

But if there are most components with 0, i.e. if
(
dspatial
p−1

)
>
(
dspatial

p

)
, then

we give the particle states corresponding to the with 0 “potentials” have positive
norm square.

To Maximize Positive Norm Square we Choose:
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• When p < d
2

, choose without 0 positive norm squared, while “with 0” nega-
tive;

• but when p > d
2

, choose with 0 positive norm squared, while “without 0”
negative;

For e.g. p < d/2 the excess of positive norm square “components ” over the
negative norm ones becomes:(

dspace

p

)
−

(
dspace

p− 1

)
=

(
dspace

p

)
(1−

p

dspace − p+ 1
)

=
dspace!(dspace + 1− 2p)

(dspace − p+ 1)!p!
=

(d− 1)!(d− 2p)

(d− p)!p!
, (14.25)

However, for p > d/2 the excess is(
dspace

p− 1

)
−

(
dspace

p

)
=

(
dspace

p− 1

)
(1−

dspace − p+ 1

p
)

=
dspace!(2p− dspace − 1)

(dspace − p+ 1)!p!
=

(d− 1)!(2p− d)

(d− p)!p!
, (14.26)

Adding up Positive Norm Square over Negative Excess:
The sums over p “ telescopes” from each of the two cases of p bigger or smaller

than d/2, and gives by symmetry the same excess of positive over negative norm
square states, namely for each for say d even (i.e. dspace odd)(

d− 1

d/2− 1

)
− 1 =

(d− 1)!

(d/2− 1)!(d/2+ 1)!
− 1, (14.27)

where we used that the middle value p = d/2 contribution vanishes. Including as
we shall both “sides” smaller than d/2 and also bigger than d/2 we get the double
of this.

Example Excesses States for even d for Bosons

Excess(d = 2) = 2(

(
2− 1

2/2− 1

)
− 1) = 0

Excess(d = 4) = 2(

(
4− 1

4/2− 1

)
− 1) = 2

Excess(d = 6) = 2(

(
6− 1

6/3− 1

)
− 1) = 18

Excess(d = 14) = 2(

(
14− 1

14/2− 1

)
− 1) (14.28)

Contribution from a Negative Norm square Component
One shall count the Hilbert space states with the negative norm square into

the Boltzmann weighted averaging with a minus extra.
This extra minus for a negative norm square boson functions accidentally

just like the fermi-statistics versus bose statistics. And thus e.g. a small p timelike
polarization contributes to the average energy just like a fermion, though with an
over all minus sign.
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14.7 Extension of Our Theorem on Counting

It is a major purpose of the present talk to present an extension of the Aratyn-
Nielsen theorem[3] on the numbers of bosons versus fermions in a bosonization to
include the just above discussed negative norm square states associated with the
Kalb-Ramond components having an index 0. Since such states obtaining at first
negative norm squares are seemingly enforced by Lorentz invariance, it seems to
be important to extend our Aratyn-Nielsen theorem to the case, where some of
the components of the fields are quantized with a negative norm square.

We take such a negative norm square mode to mean, that whenever there in
a Fock space state is an odd number of particles with the component in question,
then such a Fock-space basis vector is in the “Hilbert norm” given a negative norm
square. Of course that means that strictly speaking our Fock space is no longer
a genuine Hilbert space, but rather just an (infinite dimensional) space with an
indefinite inner product, |, giving the inner product between two Focks, |a > and
|b > say, as < b|a >. But now the point is just that we have no sign restriction on
< a|a >; it can easily be negative.

The in usual Hilbert spaces used expansion on an orthonormal basis

1 =
∑
a

|a >< a| (usual), (14.29)

cannot now be applied. Now we rather have to use

1 =
∑
a

(−1)Nneg(a)|a >< a| (with negative norm square also), (14.30)

where Nneg(a) denotes the number of particles in the various negative norm
square single particle states together. If for instance a basis state |a > for the Fock
space has 3 particle in the states with 0 index all together (and we have used the
choice of letting the components with a 0-index be the ones with negative norm,
rather than the more complicated possibilities discussed above), Nneg(a) = 3

and thus such a state would come with a minus sign in the expansion of the unit
operator 1.

Let us now calculate the average energy for a system described by a Fock
space with only one single particle state present, so it really is the system with
only one single particle state, that may be filled or empty according the rule for
it being bosonic or fermionic and having negative or positive norm square. For
this purpose we have to think about how one shall define the concept of a trace -
which goes into the average procedure to provide us with such a an average of the
energy, and we claim that we must indeed in the case with negative norm square
states take the trace definition:

Tr(O) =
∑
a

(−1)Nneg(a) < a|O|a > . (14.31)



i
i

“proc17” — 2017/12/11 — 19:44 — page 259 — #273 i
i

i
i

i
i

14 Fermionization, Number of Families 259

With this definition we easily check some usual rule for traces:

Tr(OP) =
∑
a

(−1)Nneg(a) < a|OP|a > (14.32)

=
∑
a

∑
b

(−1)Nneg(a) < a|O|b >< b|(−1)Nneg(b)P|a > (14.33)

= Tr(PO). (14.34)

Using this definition of the trace Tr we can then put in the quite analogous
way to the usual case for Boltzmann distribution in quantum mechanics

< E > =
Tr(exp(−H/T)H)
Tr(exp(−H/T))

, (14.35)

where the Boltzmann-Constant k has been absorbed into the temperature T , and
where now we use in the case of negative norm square the expression (14.31).
Let us enumerate the single particle states with the letter n and denote the single
particle energy of the state n as En. Then the free HamiltonianH is given by means
of the number operators

Nn = a†nan (14.36)

as
H =

∑
n

EnNn =
∑
n

Ena
†
nan, (14.37)

and we immediately see that

< EnNn > |bosonpos. =

∑
Nn=0,1,...

EnNn exp(−EnNn/T)∑
Nn=0,1,2,...

exp(−EnNn/T)

=
−
d
(

1
1−exp(−En/T)

)
d(1/T)

1
1−exp(−En/T)

=
En

exp(En/T) − 1
(boson; pos. norm sq.) (14.38)

< EnNn > |bosonneg. =

∑
Nn=0,1,...

(−1)NnEnNn exp(−EnNn/T)∑
Nn

(−1)Nn exp(−EnNn/T)

=
−
d
(

1
1+exp(−En/T)

)
d(1/T)

1
1+exp(−En/T)

= −
En

exp(En/T) + 1
(boson; neg. norm sq.) (14.39)

< EnNn > |fermionpos. =

∑
Nn=0,1

EnNn exp(−EnNn/T)∑
Nn=0,1

exp(−EnNn/T)

=
−
d(1+exp(−En/T))

d(1/T)

1+ exp(−En/T)
=

En

exp(En/T) + 1
(fermion; pos. norm sq.) (14.40)

< EnNn > |fermionneg. =

∑
Nn=0,1

(−1)NnEnNn exp(−EnNn/T)∑
Nn=0,1

(−1)Nn exp(−EnNn/T)

=
−
d(1−exp(−En/T))

d(1/T)

1− exp(−En/T)
= −

En

exp(En/T) − 1
(fermion; neg. norm sq.) (14.41)
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We notice that - by accident - the contribution from a negative norm square
fermion mode happens to be just the opposite of that of a positive norm square
boson mode with the same energy En. And also the positive fermion mode contri-
bution is just minus one time the negative boson contribution. Thus we can get
the requirement for the theory of fermions and that of bosons to provide the same
average energy: ∑

E ′nsfor (pos.)fermions
plus neg. bosons

En

exp(En/T) + 1
=

∑
E ′nsfor (pos.)bosons
plus neg. fermions

. (14.42)

14.7.1 Free Massless

The simplest case to consider is the one in which both the fermions and the bosons
- on their respective sides of the identification of the theories - are supposed to
be both free and massless relativistic particles. In this case - which is the one we
shall keep to in the present article - we introduce for definiteness an infra red
cut off so that we get discretized momentum eigenstates, and the above n now
really becomes a pair of a discretized momentum ~p and an index denoting the
component, which means typically the vector or spinor index including also the
family index, all put together say to t, standing for the word “total component”,
meaning that both family and genuine component is included. The number of
possible values for this total component enumeration is of course for what we
are indeed obtaining restrictions for. Let us therefore immediately define the four
numbers

Nt ferm pos. = Nfamilies ferm pos. ∗Nc ferm pos,

Nt ferm neg. = Nfamilies ferm neg. ∗Nc ferm neg.,

Nt boson pos. = Nfamilies boson pos. ∗Nc boson pos,

Nt boson neg. = Nfamilies boson neg. ∗Nc boson neg.,

to denote the total numbers of components of the respective types of particles w.r.t.
statistics and normsquare sign.

One technique for calculating the integrals over the momentum space consists
in first Taylor expanding the expressions to be integrated

En

exp(En/T) − 1
=

En

exp(En/T)
∗ (1+ exp(−En/T) + exp(−2En/T) + ...)

= En

 ∑
j=1,2,...

exp(−jEn/T)

 (14.43)

En

exp(En/T) + 1
=

En

exp(En/T)
∗ (1− exp(−En/T) + exp(−2En/T) − ...)

= En

 ∑
j=1,2,...

(−1)j−1 exp(−jEn/T)

 , (14.44)
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and then using ∑
~l∈integer lattice

exp(−j|~l ∗ 2π/L|) =
∫

exp(−j|~x2π/L|)ddspatial~x (14.45)

=

(
L

2π ∗ j

)dspatial ∫
exp(−|~x|)ddspatial~x (14.46)

=

(
L

2π ∗ j

)dspatial
O(dspatial − 1)

∫∞
0

exp(−x)xdspatialdx (14.47)

=

(
L

2π ∗ j

)dspatial
O(dspatial − 1)/dspatial!. (14.48)

Here we denoted the surface area of the unit sphere in dspatial dimensions by
O(dspatial − 1) because this surface then has the dimension dspatial − 1. In fact

O(dsurface) =
2πdsurface/2

Γ(dsurface/2)
. (14.49)

We then finally shall use

ζ(dspatial) =
∑

j=0,1,2,...

1

jdspatial
. (14.50)

ζ(dspatial)

(
1−

1

2dspatial

)
=

∑
j=0,1,2,...

(−1)j

jdspatial
. (14.51)

When we compare the different expressions for bosons versus for fermions,
most factors drop out and the only important factor is the factor

(
1− 1

2
dspatial

)
.

It is then easy to see that we obtain the extended Aratyn-Nielsen theorem:

Nt ferm pos. +Nt boson neg. =
2dspatial

2dspatial − 1
∗ (Nt boson pos. +Nt ferm neg.).

(14.52)

14.7.2 Properties and Examples

Let us first of all call attention to that this extended Aratyn-Nielsen theorem like
the original one has the property of “additivity” meaning that if we have two
cases of functioning bosonization - i.e. two cases of a system of fermions being
equivalent to a system of bosons - and thus by combining them formally a system
with both sets of bosons making up its set of bosons and similarly construct a set
of fermions by combing the fermions then the combined system will automatically
- just algebraically - come to obey the requirement from our theorem.

Let us also remark that the old Aratyn-Nielsen theorem[3] just is the special
case, in which there are no negative norm square components.

In the Bled workshop in 2015 [12] we presented speculations, that one could
make a free massless case of bosonization/fermionization in an arbitrary num-
ber of dimensions. This attempt were indeed already strongly inspired from our
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theorem and counted just 2dspatial − 1 boson particle components and 2dspatial
fermionic components. There were no negative norm square components and the
there suggested case of bosonization should thus be an example on the use of
the “old” Aratyn-Nielsen theorem. The ratio of the number 2dspatial of fermion
components equivalent to 2dspatial − 1 bosonic components is namely of course
just equal to 2

dspatial

2
dspatial−1

as it should according to our theorem(s). The special
feature of that proposal [12] was that we imagined having chosen such infrared
cut off periodicity or antiperiodicity conditions, that these (anti)periodicity condi-
tions specified the components of the fields. Indeed there were just one fermion
component for each combination of a choice of periodicity versus antiperiodicity
for each of the dspatial spatial dimensions. That makes up of course 2dspatial
combinations of periodicity antiperiodicity choices and thus so many fermion
components. Similarly almost all such combinations gave rise to a boson compo-
nent, except that we deleted so to speak the boson components, that should have
corresponded to being periodic in all dspatial coordinates (taken with infrared
cut off). Thus there were just 2dspatial − 1 boson components in the in this Bled
proceeding speculated case of bosonization.

14.7.3 A speculative semi-trivial example

Starting from the example[12] we would now highly suggestively - but really a bit
speculatively - construct a not completely trivial although not so very physically
interesting at first example with negative norm square components. Since we have
anyway broken in this model full rotational invariance, it is no longer a catastrophe
to treat one of coordinate axis - say x1 in a different way from the other ones.

We modify the model in the 2015 Bled proceedings by:

• On the fermionic side we take all the components specified by having odd
momentum along say the x1-axis or equivalently have antiperiodic boundary
condition in x1 to have negative norm square. They make up just half - and
thus 2dspatial−1 - of all the fermionic components.

• On the bosonic side we also change the norm-square to be negative for the
components antiperiodic in the x1-coordinate. This is for even more than half
of the components in as far as it is again for 2dspatial−1, but now only out of
the 2dspatial − 1 bosonic components.

Both of these two modifications have in the Fock-space the same effect in as far
as they both just lead to shifting the norm square form positive to negative for all
the states with the total p1-momentum odd. So the two modifications suggested
for respectively the bosons and the fermions seem to be the same one in the Fock
space. At least speculatively then we expect, that the modified model will have
functioning bosonization - provided we trust that the original model from the Bled
2015 proceeding were indeed consistently a case of bosonization.

Now we want to test, if this suggestive speculative case of bosonization will
obey our extended Aratyn-Nielsen requirement(14.52):

We have in this modified model/case of bosonization:
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• We are left with 2dspatial−1 − 1 bosonic positive norm square components, i.e.
Nt boson pos. = 2

dspatial−1 − 1.
• While 2dspatial−1 of the bosonic components were made to have negative

norm squared. So Nt boson neg. = 2dspatial−1.
• Of the fermionic components 2dspatial−1 remained of positive norm-square;

so Nt ferm pos. = 2
dspatial−1.

• Also 2dspatial−1 components had the odd momentum in the x1-direction and
were made to have negative norm square. So Nt ferm neg. = 2

dspatial−1.

Inserting these numbers of components into (14.52) is easily seen to make it
satisfied. The point really is, that we made the same number of boson components
and of fermion components negative norm square. This sign of norm square in our
formula makes them move from one side to the other, but since the two groups
were of the same number at the end nothing were changed and the formula still
satisfied.

14.8 Kovner...

Kovner and Kurzepa made 2+1 The article by these authors [8] contains
the expression

ψα(x) = kΛVα(x)Φ(x)Uα(x) (14.53)

for the fermion fields expressed in terms of the boson fields in their fermionization
in 2+1 dimensions. Here the expressions Vα(x), Φ(x), and Uα(x) are exponentials
of integrals over the boson field, which are indeed electromagnetic fields in 2+1
dimensions. The variants of expressions are denoted by the index α, which takes
two values. There are thus (a priori) two complex fermion fields defined here.

14.9 Match?

Does the Kovner Kurzepa Bosonization Match with the Aratyn-
Nielsen Counting Rule?

First look at number of hermitean counted fields: Kovner and Kurzepa
gets two complex meaning 4 real fermion fields Reψ1(x), Imψ1(x), Reψ2(x),
and Imψ2(x) out of the for the construction relevant boson-fields A1(x), A2(x),
∂iEi = ∂1E1 + ∂2E2. This looks agreeing with the Aratyn Nielsen prediction that
the ratio shall be

#bosons
#fermions

=
2ds − 1

2ds
=
22 − 1

22
for the spatial dimension beingds = d− 1 = 2

(14.54)
Four real fermion fields bosonize to three real boson-fields! o.k.

What about the conjugate momenta to the fields? While the fermion fields
are normally each others conjugate variables(fields) in as far as they anticommute
with each other having only no-zero anticommutators with themselves, the boson-
fields typically are taken each to have associated an extra field - its conjugate -
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with which it does not commute, while of course any variable must commute with
itself. But a field, that depends on an x-point or on a momentum, need NOT to
commute with itself, though.

But then the question: Shall we for bosons somehow also count the conjugate
momentum fields, when we shall compare the number of fermion and boson
fields equivalent through bosonization ? For the fermions the conjugate fields
are unavoidable already included into the set of fields describing the fermions,
because the it is the field in question itself, but for bosons we could easily get the
number of fields doubled, if we include for each field also its conjugate.

Conjugate Momentum Fields NOT to be Included in Counting.
Let us argue that it is enough in the counting to count the number of fields,

from which you by Fourier resolution can extract the annihilation and creation
operators needed to annihilate or create the particles, the species of which are to
be counted:

• Normally we could extract the conjugate field by differentiating w.r.t. to time
the field because usually you can replace the fields and their conjugate by the
fields and their time derivatives.

• Using equations of motion these time derivatives can in turn be obtained by
some way - also some sort of differentiation - from the field itself.

• Thus at the end the information on the conjugate is extractable from the field
itself!

Further Support for NOT including also Conjugate Momentum Fields
We could very easily construct linear (or more complicated) combinations of

boson fields and their conjugate fields. Such combinations would like the fermion
fields typically not commute/anticommute with themselves.

So provided we can extra the particle creation and annihilation operators
from the combined field we would have no rule to tell that we should include
more. Thus we would need only the combined field, and with that rule have quite
analogy to the fermion case.

Meaning of NOT Counting also the Conjugate Field
InQED3 sayA1(x) andA2(x) would be enough to represent both longitudinal

and transversely polarized photons. It would NOT be needed also to have the
essentially conjugate electric fields E1(x) and E2(x).

The field ∂iEi is in fact the conjugate A0 so that we - having the symmetry
between a field and its conjugate, it being conjugate of its conjugate - can consider
that timelike photons are described by this ∂iEi field combination.

14.10 Particles

But in terms of Particles, How??
Usually one thinks of electrodynamics in 2+1 dimensions as having only one

particle polarisation, since there is only one transversely polarisation for a photon.
So seemingly only one component of boson. This transversely polarized photon is
even its own antiparticle, so even the anti-particle is not new.
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On the contrary the fermions after the fermionization counts two complex
fields meaning two different fermion components (ψ1 and ψ2) each with an a
priori different antiparticle in as far as the fields ψ1 and ψ2 both are complex(non-
Hermitean). That seems NOT to match!

Where have the two missing photon-polarizations gone?
Suggestion for How 3 photons.
To count independently both Ai (i=1,2.) as real fields, we need to consider it

that we have not only the transverse photon, but also a longitudinal photon !
The third of the real fields ∂iEi = div~E is actually the conjugate variable to

the time component A0(x) of the fourcomponent photon field. So if we take it that
conjugate or not does not matter it could correspond to the timelike polarized
photon.

This would mean that we could hope for interpreting the three photon polar-
izations as being

• 1) The transverse photon.
• 2) The longitudinal photon.
• 3) The time-like photon.

But the time like photon has wrong signature ?!
Better Suggestion for the 3 particles ?
To avoid the problem with the ltime-like photon form Lorentz invariance

having the signature with negative norm square states we can instead take a further
scalar. If so we could have 3 bosons corresponding to the four (real) fermions.

In any case if we want a fermion system with positive definite Hilbert space
we better have the bosons also give positive definite Hilbert space if they shall
match in their Hilbert spaces.

14.11 Fields

How to count Hermitean Boson fields ?
To exercise we shall for the moment even begin with a 1+1 dimensional

only right moving Hermitean field constructed as a superposition of momentum
state creation a†(p) and annihilation operators a(p) for say a series discretized
momentum values, which we for “elegance”( and later interest) shall take to be
odd integers in some unit:

φ(x) =
∑

p odd,p>0

√
pa(p) exp (ipx) +

∑
p odd,p<0

√
|p|a†(|p|) exp (ipx)

=
∑
p odd

√
|p|a(p), (14.55)

where we have put
a(p) = a†(−p) for all the odd p (14.56)
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Properties of the Hermitean field A Hermitean field of the form (in 1+1
dimension say)

φ(x) =
∑

p odd,p>0

√
pa(p) exp (ipx) +

∑
p odd,p<0

√
|p|a†(|p|) exp (ipx)

=
∑
p odd

√
|p|a(p) (14.57)

obeys

φ(x)† = φ(x) (Hermiticity) and (14.58)

[φ(x), φ(y)] =
∑
p odd

∑
p ′ odd

√
|p|
√
|p ′|[a(p), a(p ′)] exp (ipx+ ip ′y) (14.59)

=
∑
p odd

p exp (ip(x− y)) = 2π
d

id(x− y)
δ(x− y) (14.60)

= −i2π∂δ(x− y) (local commutation rule). (14.61)

14.12 New

New, Reduce the Kovner Kurzepa model.
We claim, that in a way the Kovner and Kurzepa bosonization in 2 + 1 dimen-

sions has included a kind of “funny extra bosonic degree of freedom” the charge
density compared to our own plan of doing a completely free model.

Really we want to say: In a truly free electrodynamics “free QED3” (in 2 +1
dimensions) the divergence of the electric field is zero:

∂iEi ≈ 0 (on physical states). (14.62)

When we use ≈ instead of = it is because we may need the divergence ∂iEi as an
operator even though we may take it to be zero on the “physical states”.

Reduction of Kovner Kurzepa model w.r.t. degrees of freedom
Inserting formally our claim of a constraint equation

∂iEi ≈ 0 (on physical states). (14.63)

into the expressions of Kovner and Kurzepa

V1(x) = −i exp (
i

2e

∫
(θ(x− y) − π)∂iEi) (14.64)

U1(x) = exp (−
i

2e
θ(y− x)∂iEi) (14.65)

we get

V1(x) ≈ −i (14.66)

U1(x) ≈ 1. (14.67)
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Using the constraint equation formally on Kovner and Kurzepa In Kovner and
Kurzepa one finds

ψα(x) = kΛVα(x)Φ(x)Uα(x) (14.68)

Φ(x) = exp (ie

∫
ei(y− x)Ai(y)d

2y);ei(y− x) =
yi − xi
(y− x)2

(14.69)

V1(x) = −i exp (
i

2e

∫
(θ(x− y) − π)∂iEi);V2(x) = −iV†1(x) (14.70)

U1(x) = exp (−
i

2e
θ(y− x)∂iEi);U2(x) = V

†
1(x) (14.71)

and thus with the constraint formally included

ψ2(x) ≈ iψ1(x) (14.72)

Our Constraint would Spoil Rotation Symmetry A constraint equation

ψ2(x) ≈ iψ1(x) (14.73)

would not be consistent with the rotation symmetry and the transformation prop-
erty for the fermion field suggested in Kovner and Kurzepa

ψ1 → exp (iφ/2)ψ1;ψ2 → exp (−iφ/2)ψ2. (14.74)

So including the constraint would make the bosonization/fermionization become
non-rotational invariant. But it is our philosophy not to take that as a so serious
problem, because it is in any case impossible to get in a rotational invariant way
spin 1/2 fermions from a purely bosonic theory with only integer spin!

Rotation symmetry broken in reduced model!

14.13 Conclusion

We have extended the previous “Aratyn-Nielsen-thorem” relating the number
of degrees of freedom / number of components / number of particle (orthogo-
nal) polarizations for a set of bosons that by bosonization/fermionization is in
correspondance with each other. The extension consists in also allowing negative
norm square single particle states. We only considered yet the case of massless
noninteracting both bosons and fermions, but expect that by thinking of the limit
of small distances the relation of the theorem would also have to hold for massive
particles. If there existed a common for both bosons and fermions weak interaction
limit you would also expect that the noninteraction assumption could be avoided.

The main result is the relation (14.52):

Nt ferm pos. +Nt boson neg. =
2dspatial

2dspatial − 1
∗ (Nt boson pos. +Nt ferm neg.),

where the “normal” boson and fermion component numbers are denoted with
Nt boson pos. and Nt ferm pos. respectively for bosons and for fermions, and
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where the corresponding numbers of components with negative norm square
are Nt boson neg. and Nt ferm neg..

We have also looked at some examples where one might apply and test our
theorem, but the problem is that we do not know the higher dimensional examples
so well. Basically the dimension limit where the examples basically stop is not
high. Googling you find mainly at most 2+1. The case 3+1 is very rare.

14.13.1 Outlook Dream

Our motivation, which has not quite ran out to be realized yet is that we shall
find in literature or develop bosonization case(s) for the dimensions of interest as
dimension of the space time, such as the experimental dimension 3+1 or the in
the spin-charge-family theory practical starting dimension 13 +1. That is to say
we hope to find a set of boson fields that is equivalent to a set of fermion fields
in the bosonization way. If we have a valid theorem as the one we just extended
we strictly speaking only need to know one side, i.e. either the bosons or the
fermions, because then we can calculate the number of components for the other
side. Without the “extension ” of our theorem it looks that the number of fermion
components must always be a number divisible by 2dspatial , which e.g. for the
case of the experimental dimension is 23 = 8. It makes it especially difficult to
avoid the number of families being even, because if we think of Weyl fermions at
least and even count real components so that we get twice as many as if we used
complex components, we still need a multiplum of 2 families of Weyl particle. With
Dirac fermions we could use up a factor 2 more and we would get no prediction
than just the number of families being integer. But in the Standard model we
know that we have the weak interactions and the components put together to
Dirac fermions have separate gauge quantum numbers are are hardly suitable for
coming from the same fermionization.

With an extended theorem relating the two sides fermions and bosons, how-
ever, the situation gets less clear and the hope for even getting somehow a phe-
nomenologically good number is not excluded yet.
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6. N. Mankoč Borštnik, ”Spin connection as a superpartner of a vielbein”, Phys. Lett. B
292 (1992) 25-29.
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Abstract. Being a unique multi-functional complex of science and education online, Virtual
Institute of Astroparticle Physics (VIA) operates on website http://viavca.in2p3.fr/site.html.
It supports presentation online for the most interesting theoretical and experimental results,
participation online in conferences and meetings, various forms of collaborative scientific
work as well as programs of education at distance, combining online videoconferences with
extensive library of records of previous meetings and Discussions on Forum. Since 2014
VIA online lectures combined with individual work on Forum acquired the form of Open
Online Courses. Aimed to individual work with students it is not Massive, but the account
for the number of visits to VIA site converts VIA in a specific tool for MOOC activity. VIA
sessions are now a traditional part of Bled Workshops’ programme. At XX Bled Workshop
it provided a world-wide discussion of the open questions of physics beyond the standard
model, supporting world-wide propagation of the main ideas, presented at this meeting.

Povzetek. Virtual Institute of Astroparticle Physics (VIA) je večnamensko spletišče za
znanost in izobraževanje na naslovu http://viavca.in2p3.fr/site.html. Podpira neposredne
predstavitve najbolj zanimivih teoretičnih in eksperimentalnih rezultatov, sodelovanje v
neposrednih konferencah in srečanjih, podporo za različne oblike znanstvenega sodelo-
vanja, programe za izobraževanje na daljavo, pri čemer ponuja kombinacije videokon-
ferenc z obširno knjižnico zapisov prejšnjih srečanj in diskusije na Forumu. Po letu 2014
so predavanja VIA na daljavo, kombinirana z individualnim delom na forumu, dobila
obliko odprtih tečajev na daljavo. Ker cilja na individualno delo s posameznimi študenti,
ni množicna, vendar je, glede na število obiskov spletišča VIA, le to postalo orodje za
množične aktivnosti učenja na daljavo (MOOC). Seje VIA so postale tradicionalen del pro-
grama te blejske delavnice. Na letošni (jubilejni) dvajseti delavnici so omogočila diskusije o
odprtih vprašanjih fizike onkraj standardnih modelov za udeležence iz vseh koncev sveta
in razširjanje idej, predstavljenih na delavnici, po vsem svetu.

Keywords: Astroparticle physics, Physics beyond the Standard model, E-learning,
E-science, MOOC
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15.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks
(like ASPERA/ApPEC [1,2]) and national centers. The exciting progress in these
studies will have impact on the knowledge on the structure of microworld and
Universe in their fundamental relationship and on the basic, still unknown, physi-
cal laws of Nature (see e.g. [3,4] for review). The progress of precision cosmology
and experimental probes of the new physics at the LHC and in nonaccelerator
experiments, as well as the extension of various indirect studies of physics beyond
the Standard model involve with necessity their nontrivial links. Virtual Institute
of Astroparticle Physics (VIA) [5] was organized with the aim to play the role of
an unifying and coordinating plarform for such studies.

Starting from the January of 2008 the activity of the Institute takes place on
its website [6] in a form of regular weekly videoconferences with VIA lectures,
covering all the theoretical and experimental activities in astroparticle physics
and related topics. The library of records of these lectures, talks and their pre-
sentations was accomplished by multi-lingual Forum. Since 2008 there were 180
VIA online lectures, VIA has supported distant presentations of 92 speakers at
23 Conferences and provided transmission of talks at 61 APC Colloquiums.

In 2008 VIA complex was effectively used for the first time for participation
at distance in XI Bled Workshop [7]. Since then VIA videoconferences became a
natural part of Bled Workshops’ programs, opening the virtual room of discus-
sions to the world-wide audience. Its progress was presented in [8–15]. Here the
current state-of-art of VIA complex, integrated since 2009 in the structure of APC
Laboratory, is presented in order to clarify the way in which discussion of open
questions beyond the standard model at the XX Bled Workshop were presented
with the of VIA facility to the world-wide audience.

15.2 VIA structure and its activity

15.2.1 VIA activity

The structure of VIA complex is illustrated by the Fig. 15.1. The home page, pre-
sented on this figure, contains the information on the coming and records of the
latest VIA events. The menu links to directories (along the upper line from left
to right): with general information on VIA (About VIA), entrance to VIA virtual
rooms (Rooms), the library of records and presentations (Previous) of VIA Lectures
(Previous→ Lectures), records of online transmissions of Conferences(Previous→
Conferences), APC Colloquiums (Previous→ APC Colloquiums), APC Seminars
(Previous → APC Seminars) and Events (Previous → Events), Calender of the
past and future VIA events (All events) and VIA Forum (Forum). In the upper
right angle there are links to Google search engine (Search in site) and to contact
information (Contacts). The announcement of the next VIA lecture and VIA online
transmission of APC Colloquium occupy the main part of the homepage with
the record of the most recent VIA events below. In the announced time of the
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Fig. 15.1. The home page of VIA site

event (VIA lecture or transmitted APC Colloquium) it is sufficient to click on ”to
participate” on the announcement and to Enter as Guest (printing your name) in
the corresponding Virtual room. The Calender shows the program of future VIA
lectures and events. The right column on the VIA homepage lists the announce-
ments of the regularly up-dated hot news of Astroparticle physics and related
areas.
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In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
are available on VIA site [16].

Since 2011 VIA facility was used for the tasks of the Paris Center of Cos-
mological Physics (PCCP), chaired by G. Smoot, for the public programme ”The
two infinities” conveyed by J.L.Robert and for effective support a participation
at distance at meetings of the Double Chooz collaboration. In the latter case, the
experimentalists, being at shift, took part in the collaboration meeting in such a
virtual way.

The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal video and audio equipments. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [17]).

In 2012 VIA facility, regularly used for programs of VIA lectures and transmis-
sion of APC Colloquiums, has extended its applications to support M.Khlopov’s
talk at distance at Astrophysics seminar in Moscow, videoconference in PCCP,
participation at distance in APC-Hamburg-Oxford network meeting as well as to
provide online transmissions from the lectures at Science Festival 2012 in Univer-
sity Paris7. VIA communication has effectively resolved the problem of referee’s
attendance at the defence of PhD thesis by Mariana Vargas in APC. The referees
made their reports and participated in discussion in the regime of VIA videoconfer-
ence. In 2012 VIA facility was first used for online transmissions from the Science
Festival in the University Paris 7. This tradition was continued in 2013, when
the transmissions of meetings at Journes nationales du Dveloppement Logiciel
(JDEV2013) at Ecole Politechnique (Paris) were organized [19].

In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which
the first hand information on the first results of AMS02 experiment was presented
[18].

In 2014 the 100th anniversary of one of the foundators of Cosmoparticle
physics, Ya. B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could
contribute the programme of the ”Subatomic particles, Nucleons, Atoms, Universe:
Processes and Structure International conference in honor of Ya. B. Zeldovich 100th
Anniversary” (Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe
as a laboratory of elementary particles” [20] and the programme of ”Conference
YaB-100, dedicated to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow,
Russia) by his talk ”Cosmology and particle physics” [21].

In 2015 VIA facility supported the talk at distance at All Moscow Astrophysi-
cal seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
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by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all the
presentations at this Section were given at distance (by Rita Bernabei from Rome,
Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain and by
Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its work was
chaired by M.Khlopov from Paris [26]. In the end of 2015 M. Khlopov gave his
distant talk ”Dark atoms of dark matter” at the Conference ”Progress of Russian
Astronomy in 2015”, held in Sternberg Astronomical Institute of Moscow State
University.

In 2016 distant online talks at St. Petersburg Workshop ”Dark Ages and White
Nights (Spectroscopy of the CMB)” by Khatri Rishi (TIFR, India) ”The information
hidden in the CMB spectral distortions in Planck data and beyond”, E. Kholupenko
(Ioffe Institute, Russia) ”On recombination dynamics of hydrogen and helium”,
Jens Chluba (Jodrell Bank Centre for Astrophysics, UK) ”Primordial recombination
lines of hydrogen and helium”, M. Yu. Khlopov (APC and MEPHI, France and
Russia)”Nonstandard cosmological scenarios” and P. de Bernardis (La Sapienca
University, Italy) ”Balloon techniques for CMB spectrum research” were given
with the use of VIA system [27]. At the defense of PhD thesis by F. Gregis VIA
facility made possible for his referee in California not only to attend at distance at
the presentation of the thesis but also to take part in its successive jury evaluation.

The discussion of questions that were put forward in the interactive VIA
events is continued and extended on VIA Forum. Presently activated in English,
French and Russian with trivial extension to other languages, the Forum represents
a first step on the way to multi-lingual character of VIA complex and its activity.
Discussions in English on Forum are arranged along the following directions:
beyond the standard model, astroparticle physics, cosmology, gravitational wave
experiments, astrophysics, neutrinos. After each VIA lecture its pdf presentation
together with link to its record and information on the discussion during it are
put in the corresponding post, which offers a platform to continue discussion in
replies to this post.

15.2.2 VIA e-learning, OOC and MOOC

One of the interesting forms of VIA activity is the educational work at distance. For
the last eight years M. Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures
and their ppt presentations are put in the corresponding directory of the Forum
[22]. Having attended the VIA course of lectures in order to be admitted to exam
students should put on Forum a post with their small thesis. In this thesis students
are proposed to chose some BSM model and to analyze its cosmological conse-
quences. The list of possible topics for such thesis is proposed to students, but
they are also invited to chose themselves any topic of their own on possible links
between cosmology and particle physics. Professor’s comments and proposed
corrections are put in a Post reply so that students should continuously present on
Forum improved versions of work until it is accepted as satisfactory. Then they are
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admitted to pass their exam. The record of videoconference with their oral exam
is also put in the corresponding directory of Forum. Such procedure provides
completely transparent way of evaluation of students’ knowledge.

Since 2014 the second semester of this course is given in English and converted
in an Open Online Course. It was aimed to develop VIA system as a possible
accomplishment for Massive Online Open Courses (MOOC) activity [23]. In 2016
not only students from Moscow, but also from France and Sri Lanka attended this
course. In 2017 students from Moscow were accompanied by participants from
France, Italy, Sri Lanka and India [24]. The students pretending to evaluation of
their knowledge must write their small thesis, present it and being admitted to
exam pass it in English. The restricted number of online connections to video-
conferences with VIA lectures is compensated by the wide-world access to their
records on VIA Forum and in the context of MOOC VIA Forum and videoconfer-
encing system can be used for individual online work with advanced participants.
Indeed Google analytics shows that since 2008 VIA site was visited by more than
226 thousand visitors from 152 countries, covering all the continents by its ge-
ography (Fig. 15.2). According to this statistics more than half of these visitors
continued to enter VIA site after the first visit. Still the form of individual educa-

Fig. 15.2. Geography of VIA site visits according to Google statistics

tional work makes VIA facility most appropriate for PhD courses and it is planned
to be involved in the International PhD program on Fundamental Physics to be in
operation on the basis of Russian-French collaborative agreement. In 2017 the test
for the ability of VIA to support fully distant education and evaluation of students
(as well as for work on PhD thesis and its distant defense) was undertaken. Steve
Branchu from France, who attended the Open Online Course and presented on
Forum his small thesis has passed exam at distance. The whole procedure, start-
ing from a stochastic choice of number of examination ticket, answers to ticket
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questions, discussion by professors in the absence of student and announcement
of result of exam to him was recorded and put on VIA Forum [25].

15.2.3 Organisation of VIA events and meetings

First tests of VIA system, described in [5,7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages are: relatively easy use for participants, a possi-
bility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format.

Initially the amount of connections to the virtual room at VIA lectures and
discussions usually didn’t exceed 20. However, the sensational character of the
exciting news on superluminal propagation of neutrinos acquired the number
of participants, exceeding this allowed upper limit at the talk ”OPERA versus
Maxwell and Einstein” given by John Ellis from CERN. The complete record of
this talk and is available on VIA website [28]. For the first time the problem of
necessity in extension of this limit was put forward and it was resolved by creation
of a virtual ”infinity room”, which can host any reasonable amount of participants.
Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduces the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.

The ppt or pdf file of presentation is uploaded in the system in advance
and then demonstrated in the central window. Video images of presenter and
participants appear in the right window, while in the lower left window the
list of all the attendees is given. To protect the quality of sound and record, the
participants are required to switch out their microphones during presentation and
to use the upper left Chat window for immediate comments and urgent questions.
The Chat window can be also used by participants, having no microphone, for
questions and comments during Discussion. The interactive form of VIA lectures
provides oral discussion, comments and questions during the lecture. Participant
should use in this case a ”raise hand” option, so that presenter gets signal to switch
out his microphone and let the participant to speak. In the end of presentation
the central window can be used for a whiteboard utility as well as the whole
structure of windows can be changed, e.g. by making full screen the window with
the images of participants of discussion.

Regular activity of VIA as a part of APC includes online transmissions of
all the APC Colloquiums and of some topical APC Seminars, which may be of
interest for a wide audience. Online transmissions are arranged in the manner,
most convenient for presenters, prepared to give their talk in the conference
room in a normal way, projecting slides from their laptop on the screen. Having
uploaded in advance these slides in the VIA system, VIA operator, sitting in the
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conference room, changes them following presenter, directing simultaneously
webcam on the presenter and the audience.

15.3 VIA Sessions at XX Bled Workshop

VIA sessions of XX Bled Workshop have developed from the first experience at
XI Bled Workshop [7] and their more regular practice at XII, XIII, XIV, XV, XVI,
XVII, XVIII and XIX Bled Workshops [8–15]. They became a regular part of the
Bled Workshop’s program.

In the course of XX Bled Workshop meeting the list of open questions was
stipulated, which was proposed for wide discussion with the use of VIA facility.
The list of these questions was put on VIA Forum (see [29]) and all the participants
of VIA sessions were invited to address them during VIA discussions. During
the XX Bled Workshop the announcement of VIA sessions was put on VIA home
page, giving an open access to the videoconferences at VIA sessions. Though the
experience of previous Workshops principally confirmed a possibility to provide
effective interactive online VIA videoconferences even in the absence of any special
equipment and qualified personnel at place, VIA Sessions were directed at XX
Workshop by M.Khlopov at place. Only laptop with microphone and webcam
together with WiFi Internet connection was proved to support not only attendance,
but also VIA presentations and discussions.

In the framework of the program of XX Bled Workshop, M. Khlopov, gave
his part of talk ”Search for double charged particles as direct test for Dark Atom
Constituents” (Fig. 15.3), being at Bled, while his co-author Yu.Smirnov continued
the talk from Moscow. VIA session also included talk of distant participants of the
Workshop A.Djouadi ”A deeper probe of new physics scenarii at the LHC” (Fig.
15.4). It provided an additional demonstration of the ability of VIA to support the
creative non-formal atmosphere of Bled Workshops (see records in [30]).

The talk ”Do no observations so far of the fourth family quarks speak against
the spin-charge-family theory?” by Norma Mankoc-Borstnik (Fig. 15.5) was given
at Bled, inviting distant participants to join the discussion.

The records of all these lectures and discussions can be found in VIA library
[30].

15.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
in different scientific fields and parts of the world, the first-hand information on
the newest scientific results, as well as support for various educational programs at
distance. This activity would easily allow finding mutual interest and organizing
task forces for different scientific topics of astroparticle physics and related topics.
It can help in the elaboration of strategy of experimental particle, nuclear, astro-
physical and cosmological studies as well as in proper analysis of experimental
data. It can provide young talented people from all over the world to get the
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Fig. 15.3. VIA talk ”Search for double charged particles as direct test for Dark Atom Con-
stituents” was started by M.Khlopov in Bled and continued by Yu.Smirnov from Moscow
at XX Bled Workshop

Fig. 15.4. VIA talk from Paris by A.Djouadi ”A deeper probe of new physics scenarii at the
LHC” at XX Bled Workshop

highest level education, come in direct interactive contact with the world known
scientists and to find their place in the fundamental research. These educational
aspects of VIA activity is now being evolved in a specific tool for International
PhD programme for Fundamental physics. VIA applications can go far beyond
the particular tasks of astroparticle physics and give rise to an interactive system
of mass media communications.

VIA sessions became a natural part of a program of Bled Workshops, main-
taining the platform of discussions of physics beyond the Standard Model for
distant participants from all the world. This discussion can continue in posts and
post replies on VIA Forum. The experience of VIA applications at Bled Workshops
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Fig. 15.5. VIA talk ”Spin-charge-family theory explains all the assumptions of the standard
model, offers explanation for the dark matter, for the matter/antimatter asymmetry, explains
miraculous triangle anomaly cancellation,...making several predictions” by N. Mankoc-
Borstnik at XX Bled Workshop

plays important role in the development of VIA facility as an effective tool of
e-science and e-learning.
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