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Figure 1: Renormalisation of the SM gauge couplings g1 =
p
5/3gY , g2, g3, of the top, bottom

and ⌧ couplings (yt, yb, y⌧), of the Higgs quartic coupling � and of the Higgs mass parameter m.
All parameters are defined in the ms scheme. We include two-loop thresholds at the weak scale
and three-loop RG equations. The thickness indicates the ±1� uncertainties in Mt,Mh,↵3.

Planck mass, we find the following values of the SM parameters:

g1(MPl) = 0.6168 (56a)
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All Yukawa couplings, other than the one of the top quark, are very small. This is the well-
known flavour problem of the SM, which will not be investigated in this paper.

The three gauge couplings and the top Yukawa coupling remain perturbative and are fairly
weak at high energy, becoming roughly equal in the vicinity of the Planck mass. The near
equality of the gauge couplings may be viewed as an indicator of an underlying grand unification
even within the simple SM, once we allow for threshold corrections of the order of 10% around
a scale of about 1016 GeV (of course, in the spirit of this paper, we are disregarding the acute
naturalness problem). It is amusing to note that the ordering of the coupling constants at
low energy is completely overturned at high energy. The (properly normalised) hypercharge

15
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• can extend up to MPl (@ Mh ~ 125 GeV) 

• breakdown in transplanckian regime 
(Landau pole/ triviality problem in 
Abelian hypercharge & Higgs-Yukawa) 

• fails to include quantum gravity 

• 19 free parameters
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highly successful effective field theory!
new physics (quantum gravity?!) required beyond MPl  !

• can extend up to MPl (@ Mh ~ 125 GeV) 

• breakdown in transplanckian regime 
(Landau pole/ triviality problem in 
Abelian hypercharge & Higgs-Yukawa) 

• fails to include quantum gravity 

• 19 free parameters

{ 1/ke+(k)

Quantum fluctuations  
generate running  
(scale-dependent)  

couplings

⌫e

e

u

d

c
s

t

b

µ

⌫µ ⌫⌧

⌧

g�

W± Z

H

Standard Model

Quantum Field Theory 
Framework



What are the fundamental building blocks of our universe?

 10-18 m

10-10 m

10-15 m

Gravity = Spacetime geometry

⌫e

e

u

d

c
s

t

b

µ

⌫µ ⌫⌧

⌧

g�

W± Z

H

Standard Model

u
u
d

 10-35 m

Matter

General Relativity:

Matter curves spacetime &

spacetime curvature tells matter how to move

Rµ⌫ � 1

2
gµ⌫R = 8⇡GN Tµ⌫

Quantum Field Theory 
Framework



 10-18 m

10-10 m

10-15 m

⌫e

e

u

d

c
s

t

b

µ

⌫µ ⌫⌧

⌧

g�

W± Z

H

Standard Model

u
u
d

Quantum properties

 10-35 m

Rµ⌫ � 1

2
gµ⌫R = 8⇡GN Tµ⌫

What are the fundamental building blocks of our universe?

Gravity = Spacetime geometry Matter

General Relativity:

Matter curves spacetime &

spacetime curvature tells matter how to move

Quantum Field Theory 
Framework



 10-18 m

10-10 m

10-15 m

⌫e

e

u

d

c
s

t

b

µ

⌫µ ⌫⌧

⌧

g�

W± Z

H

Standard Model

u
u
d

Quantum properties

 10-35 m

Quantum properties

Rµ⌫ � 1

2
gµ⌫R = 8⇡GN Tµ⌫

What are the fundamental building blocks of our universe?

Gravity = Spacetime geometry Matter

General Relativity:

Matter curves spacetime &

spacetime curvature tells matter how to move

string theory 
supergravity 
asymptotically safe gravity 
loop quantum gravity 
causal sets 
non-commutative spacetime 

!
- local QFT framework 

- works for all other forces 
- degrees of freedom: metric 

- good description of gravity 
at low energies

! could induce predictive  
UV completion of SM

Quantum Field Theory 
Framework
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asymptotically safe beyond MPl
[Weinberg ’76, ’79; Reuter ’96]
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quark+ gluon fluctuations 
(universal @ 1loop)

metric fluctuations
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Which microscopic action?
microscopic regime 
in fundamental theory 
(viable w/o ``new physics”): 
scale- invariance

[Codello, Percacci, Rahmede ’08]
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Quantum fluctuations of gravity drive  
running gravitational couplings
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Vacuum stability and the Higgs Boson

1. Extrapolating the SM to Very High Scales and the Higgs Potential Instability

The main result of the first run of the LHC was the discovery of the Higgs boson, with mass
MH ' 126 GeV [1], which further study has shown to be compatible with the properties expected
for a Standard Model (SM) Higgs, although there is still room for some deviation in its properties
[2]. Besides this great success, no trace of physics beyond the SM (BSM) has been found, and this
typically translates into bounds on the mass scale of different BSM scenarios, supersymmetric or
otherwise, of order the TeV [3]. If one is willing to hold on to the paradigm of naturalness, the
hierarchy problem that afflicts the breaking of the electroweak (EW) symmetry would imply that
BSM physics should be around the corner, probably on the reach of the LHC. In this talk I take a
different attitude: I disregard naturalness as a requisite for the physics associated to the breaking of
the EW symmetry and I explore the possibility that the scale of new physics, L, could be as large
as the Planck scale, MPl .

From that perspective, we have now in our hands a quantum field theory, the SM, that should
then describe physics in the huge range from MW to MPl . All the model parameters have been
determined experimentally, the last of them being the Higgs quartic coupling, fixed in this model
by our knowledge of the Higgs mass. Fig. 1, left plot, shows the running of the most important SM
couplings extrapolated to very high energy scales using renormalization group (RG) techniques. It
shows the three SU(3)C ⇥ SU(2)L ⇥U(1)Y gauge couplings getting closer in the ultraviolet (UV)
but failing to unify precisely. It also shows how the top Yukawa coupling gets weaker in the UV
(due to as effects, see below). The Higgs quartic coupling is also shown: it starts small at the EW
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Figure 1: Left: Evolution of SM couplings from the EW scale to MPl. Right: Zoom on the evolution of the
Higgs quartic, l (µ), for Mh = 125.7 GeV, with uncertainties in the top mass, as and Mh as indicated. (Plots
taken from [9]).
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as the Planck scale, MPl .

From that perspective, we have now in our hands a quantum field theory, the SM, that should
then describe physics in the huge range from MW to MPl . All the model parameters have been
determined experimentally, the last of them being the Higgs quartic coupling, fixed in this model
by our knowledge of the Higgs mass. Fig. 1, left plot, shows the running of the most important SM
couplings extrapolated to very high energy scales using renormalization group (RG) techniques. It
shows the three SU(3)C ⇥ SU(2)L ⇥U(1)Y gauge couplings getting closer in the ultraviolet (UV)
but failing to unify precisely. It also shows how the top Yukawa coupling gets weaker in the UV
(due to as effects, see below). The Higgs quartic coupling is also shown: it starts small at the EW
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Figure 1: Left: Evolution of SM couplings from the EW scale to MPl. Right: Zoom on the evolution of the
Higgs quartic, l (µ), for Mh = 125.7 GeV, with uncertainties in the top mass, as and Mh as indicated. (Plots
taken from [9]).
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Quantum-gravity induced UV completion for the SM

results within simple truncations

! convergence of results in extended truncations: 
stay tuned… 



• asymptotic freedom in all gauge couplings 
(incl. Abelian hypercharge) 

power-law running towards free fixed point 

within simple truncations:

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]

• asymptotic safety in top Yukawa coupling 
with Mt >> Mb fixed uniquely 

 [AE, Held, Pawlowski ’16; AE, Held 05/17, 07/17]

Quantum-gravity induced UV completion for the SM

10 1011 1021 1031 1041 1051
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RG scale k in GeV

S
M
an
d
gr
av
ity
co
up
lin
gs

λ4

g1

g2

yb

yt

1

4
GN

10-2Λ

g3

1018 1019 1020 1021
-0.2

0.0

0.2

0.4

0.6

0.8

RG scale k in GeV

SM
an
d
gr
av
ity
co
up
lin
gs

λ4

g1
g2

yb

yt

1

4
GN

10-2Λ

g3

Mt ⇡ 170GeV fixed uniquely

Standard Model: Mt is a free parameter



• asymptotic freedom in all gauge couplings 
(incl. Abelian hypercharge) 

power-law running towards free fixed point 

within simple truncations:

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]

• asymptotic safety in top Yukawa coupling 
with Mt >> Mb fixed uniquely 

 [AE, Held, Pawlowski ’16; AE, Held 05/17, 07/17]

Quantum-gravity induced UV completion for the SM

10 1011 1021 1031 1041 1051
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RG scale k in GeV

S
M
an
d
gr
av
ity
co
up
lin
gs

λ4

g1

g2

yb

yt

1

4
GN

10-2Λ

g3

1018 1019 1020 1021
-0.2

0.0

0.2

0.4

0.6

0.8

RG scale k in GeV

SM
an
d
gr
av
ity
co
up
lin
gs

λ4

g1
g2

yb

yt

1

4
GN

10-2Λ

g3

Mt ⇡ 170GeV fixed uniquely

Standard Model: Mt is a free parameter



Gauge-gravity interplay

�g1 =
g31

16⇡2

41

10
�Gg1 f(⇤) �g3 = � g33

16⇡2
7�Gg3 f(⇤)

Abelian gauge theory: Non- Abelian gauge theory:

screening  
-> triviality problem

antiscreening  
-> asymptotic freedom

1011 1021 1031 1041 1051 1061
0.0

0.5

1.0

1.5

2.0

k/GeV

ru
nn
in
g
co
up
lin
gs

Abelian coupling w/o gravity

1011 1021 1031 1041 1051 1061 1071
0.0

0.2

0.4

0.6

0.8

k/GeV

ru
nn
in
g
co
up
lin
gs

non-Abelian coupling w/o gravity



Gauge-gravity interplay

�g3 = � g33
16⇡2

7�Gg3 f(⇤)

Non- Abelian gauge theory:

antiscreening  
-> asymptotic freedom

�g1 =
g31

16⇡2

41

10
�Gg1 f(⇤)

Abelian gauge theory:

screening  
-> triviality problem

switch on gravity: 
metric fluctuations 
in Einstein-Hilbert 
approximation: 
parameterized by G, ⇤

gauge-group-independent contribution

1011 1021 1031 1041 1051 1061
0.0

0.5

1.0

1.5

2.0

k/GeV

ru
nn
in
g
co
up
lin
gs

Abelian coupling w/o gravity

1011 1021 1031 1041 1051 1061 1071
0.0

0.2

0.4

0.6

0.8

k/GeV

ru
nn
in
g
co
up
lin
gs

non-Abelian coupling w/o gravity

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]



1011 1021 1031 1041 1051 1061
0.0

0.5

1.0

1.5

k/GeV

ru
nn
in
g
co
up
lin
gs

Abelian coupling w/o gravity

Abelian coupling with gravity

Newton coupling

Gauge-gravity interplay

�g3 = � g33
16⇡2

7�Gg3 f(⇤)

Non- Abelian gauge theory:

�g1 =
g31

16⇡2

41

10
�Gg1 f(⇤)

Abelian gauge theory:

beyond the Planck scale: 
power-law running towards asymptotic freedom

switch on gravity: 
metric fluctuations 
in Einstein-Hilbert 
approximation: 
parameterized by G, ⇤

gauge-group-independent contribution

1011 1021 1031 1041 1051 1061 1071
0.0

0.2

0.4

0.6

0.8

k/GeV

ru
nn
in
g
co
up
lin
gs

non-Abelian coupling w/o gravity

non-Abelian coupling with gravity

Newton coupling

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]



1011 1021 1031 1041 1051 1061
0.0

0.5

1.0

1.5

k/GeV

ru
nn
in
g
co
up
lin
gs

Abelian coupling w/o gravity

Abelian coupling with gravity

Newton coupling

Gauge-gravity interplay

�g3 = � g33
16⇡2

7�Gg3 f(⇤)

Non- Abelian gauge theory:

�g1 =
g31

16⇡2

41

10
�Gg1 f(⇤)

Abelian gauge theory:

at the Planck scale: 
smooth transition from classical to quantum gravity

switch on gravity: 
metric fluctuations 
in Einstein-Hilbert 
approximation: 
parameterized by G, ⇤

gauge-group-independent contribution

1011 1021 1031 1041 1051 1061 1071
0.0

0.2

0.4

0.6

0.8

k/GeV

ru
nn
in
g
co
up
lin
gs

non-Abelian coupling w/o gravity

non-Abelian coupling with gravity

Newton coupling

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]



Gauge-gravity interplay

�g3 = � g33
16⇡2

7�Gg3 f(⇤)

Non- Abelian gauge theory:

�g1 =
g31

16⇡2

41

10
�Gg1 f(⇤)

Abelian gauge theory:

at the Planck scale: 
smooth transition from classical to quantum gravity

switch on gravity: 
metric fluctuations 
in Einstein-Hilbert 
approximation: 
parameterized by G, ⇤

gauge-group-independent contribution

1017 1018 1019 1020 1021
0.0

0.2

0.4

0.6

0.8

k/GeV

ru
nn
in
g
co
up
lin
gs

1017 1018 1019 1020 1021
0.0

0.2

0.4

0.6

0.8

k/GeV

ru
nn
in
g
co
up
lin
gs

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]

=> asymptotic freedom in all gauge couplings
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Top mass from asymptotic safety - the full picture
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• asymptotic freedom in all gauge couplings 
(incl. Abelian hypercharge) 

power-law running towards free fixed point 

within simple truncations:

[Daum, Harst, Reuter ’10; Folkerts, Litim, Pawlowski ’11; Harst, Reuter ’11, 

Christiansen, AE ’17, AE, Versteegen ’17]

• asymptotic safety in top Yukawa coupling 
with Mt >> Mb fixed uniquely:  

 [AE, Held, Pawlowski ’16; AE, Held 05/17, 07/17]

• Higgs mass: 
fixed uniquely 
here: simple truncation w. stable vacuum 

outlook: vacuum stability from asymptotic safety? 
 

 [Shaposhnikov, Wetterich ’09]

Mt ⇡ 170GeV

Mh & 130GeV
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Learning about the dark sector from asymptotic safety

dark sector might only couple gravitationally

direct detection very challenging!

asymptotic safety: ALL degrees of freedom affect G⇤, ⇤⇤

! top-mass value depends on dark sector!

SM + 3 Weyl fermions + 1 scalar  
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only gravitationally coupled

toy examples: convergence in fixed-point results: to be tested!
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Mt ⇡ 170GeV Mt ⇡ 190GeV

outlook: constrain dark sector by matching top-mass value from AS to measured value…
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Conclusions
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GN · k2
⇤ · k�2

� · k2

microscopically: 
quantum scale- invariance

macroscopically: 
predictions for irrelevant couplings

potential consequences: 
UV completion for Standard Model 

with fewer free parameters: 
top-mass value explained, 

mass-difference to bottom generated
outlook:  - quantitative convergence 

   - what about the other parameters of the SM? 
   - global stability of Higgs potential & link to Higgs inflation


