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Based on Holdom, Ren, arXiv: 1512.05305, 1605.05006, 1612.04889

--- A novel horizonless 2-2-hole in 
Quadratic Gravity
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First direct detection 
of gravitational wave

Nice agreement with GR prediction 
for a binary black hole

• Inspiral: large mass and high compactness
• Merger: numerical relativity  
• Ringdown: dominant quasinormal mode

GW150914 

B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], 
PRL 116, no. 6, 061102 (2016); PRL 116, no. 22, 221101 (2016) 



! ISCO: accretion disk, inspiral phase terminates 

! Light ring: image of light ring, GW ringdown mode
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Does the event horizon exist? 
Observation evidence?

Information paradox?
! Drastic modification close to horizon in the effective theory: firewall, … 

! Maybe no event horizon formed: quantum gravity (fuzzball), quantum phase transition 
(gravastar), time-dependent dynamical effect (blackstar) …  

! Unrealistic or fine-tuned properties? Still need better candidates…  

Innermost stable 
circular orbit

(Schd: 6M)

Unstable 
light ring
(Schd: 3M)

• Display a ringdown stage at early time similar 
to a black hole, although quite different QNMs

• The initial ringdown can be reflected back after 
some time delay, e.g. echoes (modulation, distortion)

• Initial attempt to find echoes in aLIGO data
Abedi, Dykaar,  Afshordi, arXiv:1612.00266 [gr-qc].

radial infall of a particle 
into a wormhole
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Outline
! Asymptotically free quadratic gravity  

• A new perspective on quadratic gravity  

• Finding solutions in a classical theory that captures its main features

! A novel horizonless 2-2-hole
• Generic solutions in quadratic gravity as sourced by dense matter

• Exterior is the Schwarzschild (Schd) metric down to would-be horizon 
• An interior with a tiny proper volume, a seemingly innocuous timelike 

curvature singularity and a deep gravitational potential   

• Interesting implications: time delay, entropy…

! Summary
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Asymptotically free quadratic gravity



! Quadratic gravity is renormalizable and asymptotically free

! Standard picture: running couplings remain weak at the mass scale  

Stelle, PRD 16, 953 (1977)

An old candidate: Quadratic Gravity
Generalization 
with all quadratic 
curvature terms

Flat spacetime:                        ,        propagator softens UV divergencegµ⌫ = ⌘µ⌫ + hµ⌫ 1/k4

Spin-2 sector  h    
  propagator    hµ⌫
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Vacuum instability

Probability interpretation 
and unitarity problem

[Fradkin,  Tseytlin, NPB 201, 469 (1982); Avramidi, Barvinsky, PLB 159, 269 (1985)]

am > 0

M2
2 = 1

2f
2
2M2

But the perturbative spectrum suffers “the ghost problem” 
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HOWEVER,  note one caveat  

The ghost problem (based on tree-level propagator) is linked to the 
assumption of weak couplings, i.e. the perturbative analysis reflects 
the true physical spectrum for any relevant physical process.

SQQG =

Z
d

4
x

p
�g
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BUT when      is small,      get strong at some scale                 .                 
Perturbative poles fall into the nonperturbative region. 

M f2
i ⇤QQG > M

• Holdom, Ren, arXiv: 1512.05305, 1605.05006

• Donoghue, arXiv:1609.03523, 1609.03524

The theory may not have “the ghost problem” in the strong phase?
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A QCD analogy for Quadratic Gravity

QCD QQG                   e

UV behavior perturbative renormalizable, asymptotically free

Strong scale gauge coupling strong at      d          gravitational couplings strong at       d 

Nonperturb
ative effects

the transverse gluon removed 
from the physical spectrum and 
a mass gap developed as 
controlled by 

          : all perturbative poles removed 
from the physical spectrum and a mass 
gap now controlled by 

          : the massless graviton pole 
emerges as the only light state in the 
physical spectrum

IR effective 
description

color singlet states described 
by Chiral Lagrangian 

massless graviton described by GR with 
the derivative expansion,                d       

⇤QQG⇤QCD

mPl ⇠ ⇤QQG

Holdom, Ren, arXiv: 1512.05305, 1605.05006

* Conjecture led by an analogy between the full gluon propagator (lattice) and 
full graviton propagator, assuming the similarity of nonperturbative effects

M 6= 0

M = 0

M 6= 0

* conjecture

⇤QCD

(M . ⇤QQG)
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Asymptotically free Quadratic Gravity

What nontrivial curved background solution can we have? 

• Difference from the effective theory: no need to worry higher order terms when 
describing solutions with arbitrarily large curvatures 

• Solutions in CQG as a way to interpolate through the region with large quantum 
gravity effects (only a thin-shell in the solution of interest)

• The ghost instability is a defect of CQG, but does not afflict configurations in QQG 

As an approximation, find solutions in the Classical Quadratic Gravity 
that has the same limits in small and large curvatures

energy/curvature
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Asymptotically free Quadratic Gravity

What nontrivial curved background solution can we have? 

• Previous works treated this as a truncation and had problems with higher order 
terms when describing solutions with arbitrarily large curvatures. 

• A macroscopic large 2-2-hole, its exterior has small curvature (IR), while the majority 
of its interior has super-Planckian curvature (UV). 

As an approximation, find solutions in the Classical Quadratic Gravity 
that has the same limits in small and large curvatures

energy/curvature
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The Novel Horizonless 2-2-holes
Holdom, Ren, arXiv: 1612.04889 [gr-qc]



! Generic CQG               : five initial conditions for field equations (                        )

! Series expansion around the origin                       

! Linear approximation at large r (asymptotically-flatness)
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[Stelle, Gen. Rel. Grav. 9, 353 (1978); Holdom, Phys. Rev. D 66, 084010 (2002)]

Static spherically symmetric solutions

m2
2 = m2

Pl/2↵, m
2
0 = m2

Pl/6�

(↵ 6= 0,� 6= 0)

• Exponentially small corrections on the Schd metric (essentially invisible for               )       
• Generally nonzero for different matter sources           

mi ⇠ mPl

Lu,  Perkins, Pope, Stelle, Phys. Rev. D 92, no. 12, 124019 (2015)

• (2,2) is a brand new family

• Five free parameters: the most 
generic solutions, rich structure

• Mild effects from smooth matter  

• The subclass (2,2)   is the 
counterpart of the (0,0) family

E
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Search for asymptotically-flat solutions that couple to a thin-shell   

9

(M, `)

Question: which families of solution are actually realized as a 
response to matter distributions in the fully nonlinear theory? 

• When          ,  the regular (0,0) solutions approach the GR limit

• When          , (0,0) solutions can differ substantially from GR solutions

• When         , (2,2) solutions take over. They resemble the exterior Schd 
solutions very well, as dictated by the dynamics of gravity.

E

` � rH

` ⇠ rH

` . rH

• Easy to isolate the shell effects on metric functions
• Study (0,0) family and (2,2)  family (both with two free parameters)

• Still parameter counting not enough, numerical analysis essential!
E
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` � rH
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Metric 
functions
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M = 10
m0,2 = 1
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expansion



Metric 
functions
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Curvature 
invariant 
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pressure
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Shell 
energy 
density 

and 
pressure

Radial 
stability 

            

M = 10
m0,2 = 1

1 � c2s > c2s0
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General features of the 2-2-holes with large mass                    ?

Novel scaling for 2-2-holes interior

The 2-2-holes interior           is governed by a novel scaling wrt to its M. r . rH

M� ⇠ 1038mPl

Novel scaling Schd scaling 

metric 
function

curvature 
invariant  

AM (r) = %2A%M (r%)

BM (r) = %2B%M (r%)

AM (r) = A%M (r%)

BM (r) = B%M (r%)

IM (r) = I%M (r%) IM (r) = %2nI%M (r%) dim I(r) = 2n

For a given       , the interior solutions for     and       are related as below`/M M %M

• Interesting behavior:                ; shell quantities (      ) and radial proper 
distance independent of M (proper distance for                   is about     )  

• Given the   dependent solutions at one M, we know the 2-2-hole 
interior for all M.   

�, p ⇠ M0SCQG ⇠ TM

�L ⇠ `Pl for r/M 2 [0, 1.8]�L ⇠ `Pl for r/M 2 [0, 1.8]

`

A 2-2-hole = large curvature interior (novel scaling) + transition (numerical)  
                    + small curvature exterior (Schd scaling)
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• Extremely deep gravitational potential for astrophysical 2-2-holes (novel scaling)

• The absence of the centrifugal potential and any other light rings

• Ultra-high energy particle collider: super-Planckian       for generic kinematics      

• Trapping: internal collisions populate a large trapped phase space (orbits with large L/E)

e.g.                           for radial head-on collisions

12

Geodesics equations (equatorial plane): 

Escape angle (fraction):                                 (                 )

light ring

Point particles motion and trapping

Extremely small luminosity; accretion of matter may get efficiently absorbed.

for massive (massless) particles

�
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• Extremely deep gravitational potential for astrophysical 2-2-holes (novel scaling)

• The absence of the centrifugal potential and any other light rings

• Ultra-high energy particle collider: super-Planckian       for generic kinematics      

• Trapping: internal collisions produce particles with large L/E out of the escape cone  

Extremely small luminosity; accretion of matter may get efficiently absorbed.

e.g.                           for radial head-on collisions

12

Geodesics equations (equatorial plane): light ring

Point particles motion and trapping

for massive (massless) particles

A large trapped phase space is populated, with escape fraction ~ 1/M2



• The initial value problem of the wave equation is well-posed if “a boundary condition 
can be uniquely imposed”, i.e.     has a unique positive self-adjoint extension  

• For finite energy wave-packets, no ambiguity of the 
dynamics if only one solution has finite Sobolev 
norm around the origin  Ishibashi, Hosoya, PRD 60, 104028 (1999) 

• Near origin behaviors: the 2-2-singularity appears 
very mild; all the waves behave like the s-wave on a 
nonsingular spacetime. A Neumann boundary 
condition is imposed at the origin.

13

Geodesic incompleteness? (problem for point particle probes)

May not imply physical ambiguity considering physical probes? 

Timelike curvature singularity?

R. M. Wald, J. Math. Phys. 21, 2802 (1980); Ishibashi,  Wald, Class. Quant. Grav. 20, 3815 (2003); Horowitz, Marolf, PRD 52, 5670 (1995) 

KG equation:  

The 2-2-singularity appears regular as probed by finite energy wave-packets
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“A brick wall” and Entropy

Directly generalized to the 2-2-hole with now the brick wall replaced by the origin 
(with a Newnman boundary condition)

If consider the (negative Boulware) vacuum energy density, the 
two contributions in the stress tensor cancel if                     .T1 = 1/8⇡M

L

rH + h

 brick wall

The brick wall model: attribute the black hole entropy to the ordinary 
entropy of its thermal atmosphere located just outside the horizon. If                     
                   , recover the area law for           (proper length)     

• Artificial UV cutoff? Why d.o.f. localized outside the horizon?  

• Back-reaction from large local energy density?

T1 = 1/8⇡M h ⇠ `Pl

 [’t Hooft, NPB 256, 727 (1985)]

Mukohyama, Israel, PRD 58, 104005 (1998)

• Consider the case that the back-reaction is negligible,                        

• Both S and U are finite, and dominated by the interior contribution. Again the 
area law is recovered due to the novel scaling, with             . 

• The timelike singularity is covered by its own fireball          

S ⇠ SBH
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The time delay to probe internal structure
Time spacing 

between echoes of 
the initial ringdown

Extrapolation to astrophysical objects

• Interior: 
• Inner peak:               grows slower than   
• Outer peak (dominant): 

�t1/M ⇠ 2
p

a2/b2

�t2 ��t1 �t3

�t3/M ⇠ 4⌘ lnM

(similar time delay used in arXiv:1612.00266 [gr-qc].)



! With the new perspective on quadratic gravity, we find that sufficiently 
dense matter produces a novel horizonless 2-2-hole that closely matches 
the exterior Schd solution. As a generic static solution, it may then be the 
nearly black endpoint of gravitational collapse.

! The large curvature 2-2-hole interior has interesting features: a tiny 
volume, a novel scaling, a large trapped phase space, area law for the 
thermal entropy, a singularity covered by a fireball… 

! The 2-2-hole provides motivation for further study of the strong phase of 
quadratic gravity.  It may also serve as a benchmark to search for effects of 
large curvatures in gravitational wave signal. 

! Open questions…
• Quasinormal modes and the relation to echoes? Metric perturbations? 
• Rotating 2-2-holes, ergoregion instability? 
• Solutions with time dependence, endpoint of gravitational collapse?

Summary
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Thank You!



Search for asymptotically-flat solutions that couple to a thin-shell   
• The shell energy density implies that      has a jump of at the shell radius 
• Find A(r), B(r) for a pair of          by matching at           for                              (4)
• Shooting from the outside with small deviations from Schd metric (2) 
• Shooting from the inside using series expansions in (2,2)   family or (0,0) family (2)

17

(M, `)

r = ` A,A0, B0/B,B00/B

A00

         CQG  (half of the initial conditions and free parameters)� = 0

(M, `)

E

` < rH` ⇠ rH` > rH

Parameters counting not enough to determine the correct interior behaviors

Shooting and matching method



• Large radius dominant by light ring peak                       (shift of the peak from       ) 

• Small radius (interior): potential dominant by the l-independent term, i.e. S-wave

• A small negative potential with the depth and width independent of M (from the 
scaling behavior). Interestingly it is barely small enough so that there is no 
instability.   

18

Potential in scalar field equation
Scalar wave equation in tortoise coordinate                   :                     

         CQG  � = 0

(left to right)



         softened to a        pole (positive sign), 
i.e. the on-shell massless graviton

Assume the nonperturbative effects in quadratic gravity operate in 
a way similar to QCD 

Analogy based on full propagators 
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(          takes the same form of           as found from lattice QCD)F (k2)G(k2)

Gluon:

�G(k2)

k2

k2

m2
Pl/8⇡ = �1/G0(0) ⇠ ⇤2

QQG

Graviton:

the existence and the 
position of the poles 

are gauge independent

����
F (k2)

k2

����

�k2 [GeV2]

Lattice data in Landau gauge 

�1/k4 1/k2

(M = 0)


