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Why modify gravity?

Why modify gravity? 
- cosmological constant problems,
- non-renormalizability problem,
- benchmarks for testing General Relativity
- theoretical curiosity.

Many ways to modify gravity: 
- f(R), scalar-tensor theories,
- Galileons, Horndeski (and beyond) theory, KGB, Fab-four, 
- higher-dimensions, 
- DGP, 
- Horava, Khronometric
- massive gravity

- Most general scalar-tensor theory leading to equations of motions 
with no more than 2 derivatives;

- Cancellation of Lambda (Fab-Four), Self-tuning, Self-acceleration;
- Vainshtein mechanism



Scalar-tensor theories



Linear theory 
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Canonical kinetic term + quadratic mass:

Linear partial differential equation of second order (one degree of freedom).  
Need to specify two conditions, � and �̇



Non-linearity in potential term
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Canonical kinetic term + arbitrary potential:

Non-linear partial differential equation of second order (inflationary models, 
quintessence). 
However, because the kinetic term is canonical, the characteristic structure 
is the same.



Non-linearity in kinetic term
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Non-linear kinetic term?

- General Relativity
- QCD
- Hydrodynamics
- ...

S =

Z
d

4
x K(X)k-essence:

Armendariz-Picon, Damour, Mukhanov’99



Pure k-essence
k-essence as perfect fluid
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that no causal paradoxes arise in the cases studied in our previous works [27, 28, 26]

and [29].

Section 4 is devoted to the Cauchy problem for k-essence equation of motion. We

investigate under which restrictions on the initial conditions the Cauchy problem is well

posed.

In section 5 we study the Cauchy problem for small perturbations in the “ new aether”

rest frame and in the fast moving spacecraft.

Section 6 is devoted to the Chronology Protection Conjecture, which is used to avoid

the CCCs in gedanken experiments considered in [8].

In section 7 we discuss the universal role of the gravitational metric. Namely, we show

that for the physically justified k-essence theories the boundary of the smooth field config-

uration localized in Minkowski vacuum, can propagate only with the speed not exceeding

the speed of light. In agreement with this result we derive that exact solitary waves in

purely kinetic k-essence propagate in vacuum with the speed of light.

Our main conclusions are summarized in section 8.

All derivations of more technical nature the reader can find in appendices. In ap-

pendix A we derive characteristics of the equation of motion and discuss local causality.

Appendices B and C are devoted to the derivation of the generally covariant action for

perturbations. In appendix D we show how the action derived in appendix B is related

to the action for cosmological perturbations from [28, 34]. In appendix E we consider the

connection between k-essence and hydrodynamics. The derivation of Green functions is

given in appendix F.

2. Equations of motion and emergent geometry

Let us consider the k-essence scalar field φ with the action:

Sφ =

∫

d4x
√
−gL (X,φ) , (2.1)

where

X =
1

2
gµν∇µφ∇νφ,

is the canonical kinetic term and by ∇µ we always denote the covariant derivative associated

with metric gµν . We would like to stress that this action is explicitly generally covariant and

Lorentz invariant. The variation of action (2.1) with respect to gµν gives us the following

energy-momentum tensor for the scalar field:

Tµν ≡
2√
−g

δSφ

δgµν
= L,X∇µφ∇νφ− gµνL, (2.2)

where (. . .),X is the partial derivative with respect to X. The Null Energy Condition

(NEC) Tµνnµnν ≥ 0 (where nµ is a null vector: gµνnµnν = 0) is satisfied provided L,X ≥ 0.

Because violation of this condition would imply the unbounded from below Hamiltonian

and hence signifies the inherent instability of the system [35] we consider only the theories

with L,X ≥ 0.
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2. Model

Let us consider a scalar field with the action

Sφ =

∫
d4x

√
−gp(X), (2.1)

where the Lagrangian density is given by

p(X) = α2

[√
1 +

2X

α2
− 1

]
− Λ. (2.2)

It depends only on X ≡ 1
2∇µφ∇µφ, and α and Λ are free parameters of the theory.

Throughout the paper ∇µ denotes the covariant derivative and we use the natural units in

which G = ! = c = 1. The kinetic part of the action is the same as in [7] and for small

derivatives, that is, in the limit 2X ≪ α2, it describes the usual massless free scalar field.

One can prove that the theory, described by (2.2) is ghost-free.

The equation of motion for the scalar field is

Gµν∇µ∇νφ = 0, (2.3)

where the induced metric Gµν is given by

Gµν ≡ p,Xgµν + p,XX∇µφ∇νφ, (2.4)

and p,X ≡ ∂p/∂X. This equation is hyperbolic and its solutions are stable with respect to

high frequency perturbations provided (1+ 2Xp,XX/p,X) > 0 [6, 10, 11]. This condition is

always satisfied in the model under consideration. It is well known that, if ∇νφ is timelike

(that is, X > 0 in our convention), then the field described by (2.2) is formally equivalent

to a perfect fluid with the energy density ε(X) = 2Xp,X(X)−p(X), the pressure p = p(X)

and the four-velocity

uµ =
∇µφ√

2X
. (2.5)

The effective sound speed of perturbations is given by

c2
s ≡ ∂p

∂ε
= 1 +

2X

α2
. (2.6)

and for X > 0 it always exceeds the speed of light. For the further considerations it occurs

to be convenient to express the energy density and pressure in terms of this speed of sound,

namely,

ε = α2(1 − c−1
s ) + Λ, p = α2(cs − 1) − Λ. (2.7)

It is easy to see that the Null Energy Condition is valid and hence the black hole area

theorem [15] holds.
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that no causal paradoxes arise in the cases studied in our previous works [27, 28, 26]

and [29].

Section 4 is devoted to the Cauchy problem for k-essence equation of motion. We

investigate under which restrictions on the initial conditions the Cauchy problem is well

posed.

In section 5 we study the Cauchy problem for small perturbations in the “ new aether”

rest frame and in the fast moving spacecraft.

Section 6 is devoted to the Chronology Protection Conjecture, which is used to avoid

the CCCs in gedanken experiments considered in [8].
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Our main conclusions are summarized in section 8.
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pure kinetic k-essence is perfect fluid !

Definitions:

Stress tensor:

(gradient of 
scalar field is 
timelike)



Even more non-linear?

u
xx

u
yy
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xy

Monge-Ampere equaiton

Monge-Ampère equation

- to find a surface with a prescribed Gaussian curvature 
- optimizing transportation costs
-...

Monge‘1784, Ampère‘1820

First galileon in history



Even more non-linear?
galileons, Horndeski

The most generic scalar-tensor theory in 4D, whose equations of 
motion contain no more than second derivatives 

Horndeski‘1974

? Horndeski theory

Why no more than 2 derivatives in EOMs?



Ostrogradski ghost

S =

Z
L(q, q̇)dt ! dL
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dt
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Z
L(q, q̇, q̈)dt ! dL

dq
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+

d2

dt2
dL

dq̈
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- Generically Hamiltonian is unbounded from below.

- New propagating degree of freedom appear. It is a ghost. 

- Avoiding the theorem ?

Ostrogradski‘1850



Even more non-linear?
Universal equations

“Universal field equations” Fairlie et al‘1991



Galileons: flat case
first non-standard term

DGP: brane model of gravity

Particular limit of the theory (decoupling limit) gives scalar field Lagrangian,

Monge-Ampère type 

direct coupling to 
matter

Luty et al’03

Dvali et al’00



Galileons: flat case
generalisation

Generalization of DGP scalar: 
- direct coupling to matter
- Galilean symmetry
- up to second order derivatives in EOM

Nicolis et al’09



Galileons: flat case
equations of motion

Equations of motion (in flat space-time)

E1 = 1

E2 = ��

E3 = (��)2 � (⇥µ⇥��)
2
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3 + 3
�
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Nonlinear second-order equations of motion !
No additional degree of freedom => no Ostrogradski ghost



Galileons: covariant case

Deffayet et al’09
+ many other works

Covariant Galileon: adding non-minimal scalar-matter coupling to flat Galileon.

Most general galileon Shift-symmetric action:



Beyond Horndeski

2

extended John and Paul satisfy the properties of self-tuning, as we show explicitly by writing down
their contributions to the cosmological equations of motion, assuming spacetime homogeneity and
isotropy. Remarkably, the stealth black hole solutions discovered in [15] remain valid with the
extended John Lagrangian.

Our plan is the following. In the next section, we show explicitly how the extended John
and Paul Lagrangians can be expressed as combinations of Horndeski Lagrangians and the terms
beyond Horndeski presented in [4]. We then write the corresponding equations of motion. In the
subsequent section, we derive the cosmological equations for the extended Fab Four and show that
they satisfy the same self-tuning properties as the original Fab Four. We conclude in the final
section. In an appendix, we also give the ADM formulation of the extended John and Paul terms
in the uniform scalar field gauge.

II. BEYOND HORNDESKI LAGRANGIAN AND EQUATIONS OF MOTION

In this section, we show that the extended John and Paul Lagrangians where the functions VJ

and VP are replaced by functions of � and X can be rewritten as Lagrangians beyond Horndeski,
as first presented in [4], combined with standard Horndeski terms. We thus consider the following
two actions,

Sext
J =

Z
d4x

p�g FJ(�, X) Gµ⌫rµ�r⌫�, (5)

Sext
P =

Z
d4x

p�g FP (�, X) P↵�µ⌫r↵�rµ�r�r⌫�, (6)

where FJ and FP are two arbitrary functions of � and X. In the above expressions, Gµ⌫ is the
Einstein tensor and P↵�µ⌫ is the double dual of the Riemann tensor,

P↵�µ⌫ ⌘ �1

4
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= R↵�µ⌫ + g↵⌫R�µ � g↵µR�⌫ + g�µR↵⌫ � g�⌫R↵µ +
1

2
(g↵µg�⌫ � g↵⌫g�µ)R , (7)

where ✏↵�µ⌫ is the totally antisymmetric Levi-Civita tensor.
Using the Ricci identity and making use of integration by parts, one can derive from the action

(5), up to total derivative terms that are irrelevant, the new expression

Sext
J =

Z
d4x

p�g
n
FJ,X ✏µ�↵� ✏ �

⌫�⇢ �;µ�;⌫�;���;↵⇢
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� 1
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XFJR+ FJ,�

⇣
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,

(8)

where we use the notations F,X ⌘ @F/(@X) and F,� ⌘ @F/(@�) and (rr�)2 ⌘ �;↵��
;↵� . Notice

that the second line of (8) belongs to Horndeski Lagrangians, as it is a sum of two generalised
Galileon Lagrangians. The first term inside the integral of (8) coincides with the beyond Horndeski
term given in [4], with the identification FJ,X [here] = F4 [there]. Therefore, up to the Horndeski
terms, Eq. (5) corresponds to one of the two beyond Horndeski terms presented in [4].

There are extra Lagrangians which give 
higher order equations of motion, 

but the number of degrees of freedom does not increase !

Two extra pieces may be written as

Gleyzes, et al’14
+ many other works

Deffayet et al’15
Babichev et al’15

There are more of them. 
Beyond beyond Horndeski

Langlois, Noui’15
Crisostomi, Koyama, Tasinato’16



Black holes



Black holes are bald (?)

- Gravitational collapse...

- Black holes eat or expel surrounding matter

- Their stationary phase is characterised by a limited number of charges

- No details about collapse 

- Black holes are bald

No hair theorems/arguments dictate that adding degrees of freedom 
lead to trivial (General Relativity) or singular solutions.

E.g. in the standard scalar-tensor theories BH solutions are GR black 
holes with constant scalar.



Example of hairy black hole
BBMB solution Bocharova et al’70, Bekenstein’74

Conformally coupled scalar field:
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Static spherically symmetric (nontrivial) solution:
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Secondary scalar hair:
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NB. The geometry is of that of extremal RN. 
        The scalar field is unbounded at r=m



Shift-symmetric galileons

G2(X), G2(X), G4(X), G5(X)

Jµ =
�S

�(@µ�)

Arbitrary 

Conserved current because of shift-symmetry:



No hair for galileon

G2(X), G2(X), G4(X), G5(X)

Hui&Nicolis’12

Shift-symmetric galileon, with arbitrary 
Assume that:

(i) spacetime and scalar field is static spherically symmetric,

(ii) spacetime is asymptotically flat, and 
     and the norm of the current        is finite (at the horizon) 
(iii) there is a canonical kinetic term in the action and       are such that 
their derivatives                           contain only positive or zero powers of 

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2d⌦2
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3.1. A no-hair theorem

Hui and Nicolis were the first to consider and point out no-hair arguments for

shift symmetric galileon theories [43]. A specific way out to their argument was

discussed in [35], where an explicit solution method was found and generic solutions

were given. Sotiriou and Zhou looked in greater detail to the no-go theorem and

developed the arguments of Hui and Nicolis while providing another class of numerical

solutions [44, 42]. A straightforward generalization to the arguments of Hui and Nicolis

was developed by Maselli et al. [45] to extend to cases of linear time dependence (12)

but, as we will see in the next section, this case nicely bifurcates the no-hair theorem

by use of the field equations. Thus, given all these works and considerations, let us first

concentrate on the static q = 0 case giving the following no-go theorem.

Consider a shift symmetric galileon theory as (1) where G2, G3, G4, G5 are arbitrary

functions of X. We now suppose that:

(i) spacetime is spherically symmetric and static (10) while the scalar field is also

static (q = 0),

(ii) spacetime is asymptotically flat, �0
! 0 as r ! 1 and the norm of the current

J2 is finite on the horizon,

(iii) there is a canonical kinetic term X in the action and the Gi functions are such

that their X-derivatives contain only positive or zero powers of X.

Under these hypotheses, we conclude that � is constant and thus the only black hole

solution is locally isometric to Schwarzschild.

Indeed, using the symmetry assumptions, it is useful here to rewrite the line element

(10) as

ds2 = �A(r)dt2 +
dr2

A(r)
+ ⇢(r)2(d✓2 + sin2✓ d'2).

The norm of the current is JµJµ = (Jr)2/A. By assumption, the norm of the current does

not diverge on the horizon. Hence, when we are the horizon location A = 0, Jr can only

vanish. The conservation equation now gives rµJµ = ⇢�2(⇢2Jr)0 = 0 which implies that

⇢2Jr is constant. The quantity ⇢ is the areal radius, used to measure the area of constant

radius spheres. The latter should not be singular (zero or infinite), even at the horizon.

This means that ⇢2Jr vanishes at the horizon and hence it vanishes everywhere. Jr is

therefore zero everywhere. Now Jr can be put under the form Jr = A�0F (�0; g, g0, g00),
where the explicit expression of F is given in [42]. At any point, either F or �0 has
to vanish. Under assumption (iii) that was made on the Lagrangian and because of

asymptotic flatness, F ! �G2X = constant as r ! +1. Hence �0 is zero everywhere.

Then the only solution is locally isometric to the GR solution. We should emphasize

that the physical hypothesis in this theorem is that the norm of the current is finite as

it is associated to the shift symmetry of the Lagrangian.
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A no-hair theorem then follows: the metric is Schwarzschild and the 
scalar field is constant
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(to be fixed relative to the black hole mass). Therefore J2 is actually singular at the

horizon because Jr = �f�0
� 4↵h0

h
f(f�1)

r2 6= 0. At this point one needs to invoke extra

input to conclude about the physical relevance of solutions with divergent norm of the

current J . For this solution of the theory (15), the Noether current cannot be a physical

observable, in particular, it cannot be coupled to matter directly. This question requires

further study.

3.3. Explicit solutions of hairy black holes

We shall now concentrate on explicit black hole solutions for the theory (11) setting

⌘ = 1
2
. Although the method works for any shift symmetric theory, the advantage here

is that (11) is particularly elegant in giving explicit solutions. In fact, we have the

general solution which we turn to now.

The general solution of theory (11) to the metric (10) and � = �(t, r) is given as a

solution to the following third order algebraic equation with respect to
p

k(r):

(q�)2
✓

+
r2

2�

◆2

�

✓

2+ (1� 2�⇤)
r2

2�

◆

k(r) + C0k
3/2(r) = 0, (16)

where C0, q are integration constants and  = 1,�1, 0 is the horizon curvature. Once a



Constructing hairs

Jr = 0

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2d⌦2
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The variation of the action with respect to � yields

rµJ
µ = 0, Jµ = (⌘gµ⌫ � �Gµ⌫) @⌫�.

Here, the key term in the action is the John term from Fab 4 which has nice integrability

properties, as we will see. Although our discussion will be associated to the specific

action (11), the essential results go through quite generically. Sometimes integrability

has to be sacrificed on the way in the sense that one has to use numerical methods to

obtain solutions.

The e↵ective energy momentum tensor associated to the galileon is precisely

Tµ⌫ = �Eµ⌫ + Gµ⌫ + gµ⌫⇤. As we noted above, this tensor must obey the symmetries

of (10) but not the scalar itself. Note for example that the Einstein plus cosmological

constant term do not contribute to the Ttr = 0 equation but other terms in Etr do. This

equation generically describes the inflow of matter in a black hole geometry and will

inevitably constrain drastically the galileon field if it is not static. The first key result

is the following:

Consider the shift symmetric theory (11) with spacetime symmetry given by (10).

Starting with � = �(t, r) the only compatible ansatz with the field equations is

� = qt+  (r). (12)

Indeed, taking � = �(t, r), the flow equation Etr = 0 yields the general solution for � as

a separable function of t and r [35]. This function, when inserted in the remaining field

equations, gives (12) as the only possible ansatz (see the general discussion in [36]).

The only solution to escape the rule of linear time dependence imposed in (12) is

to consider self-tuning solutions for flat spacetime. For theory (11), this holds in the

case of ⌘ = 0 and ⇤ 6= 0 . This is a simple example of a time dependent scalar field

immersed in a static spacetime. Indeed, the solution reads

� = �0 + �1(r
2
� t2) (13)

with �0,�1 integration constants while f = h = 1 with  = 1 for (10). The self-tuning

condition reads VJohn�2
1 = ⇤ for arbitrary bulk ⇤, and constant VJohn [20, 36]¶.

We expect the linear time ansatz (12) to be true for generic shift symmetric

theories (the discussion in [36] includes the Paul term; solution (13) is also valid for this

term, see [20]). It is surprising and highly non trivial that there exist time dependent

configurations for a static spacetime. Mathematically, we can understand that if time

dependence is linear in t, we get explicitly ODE’s rather than PDE’s once we input (12)

in the field equations. It is worthwhile however to make a remark on the non-trivial

physical significance of (10) and (12).

¶ Note that the same solution in a cosmological coordinate system is a purely time dependent function,
� = �0 + �1T 2, where T is FRW proper time. This solution illustrates what we mentioned earlier, a
time dependent galileon yields generically a time and space dependent galileon in a static ansatz.

Time-dependent scalar !

The only consistent solution for this ansatz is when 
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3.2. The no-hair theorem and hairy black holes

There actually exist (at least) two ways to construct black hole solutions with a non-

trivial scalar field, summarized in Fig. 1. The first of these is to have such a theory

as to be able to set everywhere Jr = 0 without imposing that �0 = 0. Generically in

this case we will either give up asymptotic flatness or the presence of a canonical kinetic

term. The second is to include a Gauss-Bonnet term in the action coupled to a linear

scalar field. We now look at these methods in turn.

The first family amounts to necessarily taking higher derivative terms which allows

F = 0 without �0 = 0 in the notation of the above theorem. This case is naturally

realized for the time-dependent ansatz (12). The key result is the following [46]:

Consider an arbitrary shift symmetric Horndeski (or beyond Horndeski) theory and

a scalar-metric ansatz dictated by (10), (12) with q 6= 0. The only solution to the

scalar field equation E� = 0 and the “matter flow” metric equation Etr = 0 is given

by Jr = 0.

Indeed, as demonstrated in [46] we have that:

�qJr = Etrf,

and given that E� = rµJµ = 0, the result trivially follows. The current now reads

JµJµ = �A(J t)2 + (Jr)2/A,

and J t can even be singular like 1/
p

A while the current is regular on the horizon. We

emphasize that the physical requirement of the no-hair theorem above is now satisfied

by virtue of the field equations.

If the theory is of higher order there will be solutions other than the trivial case

�0 = 0 as we will see in a moment. In fact requiring that �0 = 0 and q 6= 0, in the case

of (11), always leads to singular solutions as was shown very recently in [47]. Although

a general proof for an arbitrary shift symmetric theory is not known, we expect it to

remain true. Under the assumption that q 6= 0, the field equations dictate regularity of

the current and indicate the presence only of non-trivial scalar field solutions.

On the other hand we note that the integration constant associated to the scalar

field equation is equal to zero since Jr = 0. Hence, the would be “primary charge” is set

to zero whenever time dependence is present and is replaced by the velocity parameter q.

If q = 0, then we have to go back to the no-hair argument and the regularity of J

in order to set Jr = 0 by hand.

Therefore, we see that imposing time dependence immediately renders the no-

hair theorem irrelevant, and a higher order Horndeski theory such as (11) immediately

imposes Jr = 0 with �0
6= 0. Furthermore, Jr = 0 simultaneously annihilates two of the

field equations and gives a mathematically consistent system of field equations as for

three variables f , h,  there are three remaining independent field equations: Jr = 0,

Err = 0 and Ett = 0. Therefore non trivial solutions to the field equations a priori exist.
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The norm of the current:

The physical requirement of no-hair theorem is 
automatically satisfied by virtue of EOMs.

Babichev, Charmousis’13
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The norm of the current is JµJµ = (Jr)2/A. By assumption, the norm of the current does

not diverge on the horizon. Hence, when we are the horizon location A = 0, Jr can only

vanish. The conservation equation now gives rµJµ = ⇢�2(⇢2Jr)0 = 0 which implies that

⇢2Jr is constant. The quantity ⇢ is the areal radius, used to measure the area of constant

radius spheres. The latter should not be singular (zero or infinite), even at the horizon.

This means that ⇢2Jr vanishes at the horizon and hence it vanishes everywhere. Jr is

therefore zero everywhere. Now Jr can be put under the form Jr = A�0F (�0; g, g0, g00),
where the explicit expression of F is given in [42]. At any point, either F or �0 has
to vanish. Under assumption (iii) that was made on the Lagrangian and because of

asymptotic flatness, F ! �G2X = constant as r ! +1. Hence �0 is zero everywhere.

Then the only solution is locally isometric to the GR solution. We should emphasize

that the physical hypothesis in this theorem is that the norm of the current is finite as

it is associated to the shift symmetry of the Lagrangian.
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3. Horndeski black holes in shift symmetric theories

We will now turn to black hole spacetimes of theories with shift symmetry. Here we

should note that although we are mainly interested in spherical horizon geometries for

the 4-dimensional solutions, we shall consider for generality, a constant curvature 2 space

with line element

dK2 =
d�2

1� �2
+ �2d�2, (9)

where for  = 1 we have spherical symmetry, for  = 0 planar symmetry and for  = �1

hyperbolic symmetry. The additional cases with  = �1, 0 are included here for they

appear naturally as black hole horizons for negative (e↵ective or bulk) cosmological

constant and for Lifshitz type geometries. Although such geometries do not have an

immediate interest in cosmology, we include these cases here for completeness as the

parameter  appears simply as some normalized parameter in the equations of motion.

Additionally we take a locally static spacetime and thus we have

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2dK2. (10)

The crucial point to note here is that since the scalar field appears only through its

derivatives in the Lagrangian, one a priori needs not impose staticity for the scalar.

In fact shift symmetric galileons naturally inherit some time dependence [32, 33] in

cosmological settings, which is translated to a space and time dependence in a spherically

symmetric setting (10). This is also true for self-tuning solutions [20] as we will see later

on in this section (see equation (13)). However, this dependence on time cannot be

arbitrary. Indeed, in order to have a well defined system of field equations, the 2 tensor

that is associated to the variation of the galileon terms with respect to the metric must

be static and spherically symmetric. In other words, the associated energy momentum

tensor of the galileon must obey the symmetries of spacetime, but not the galileon

itself!k

Treating the general case is possible but technically very tedious, so we will choose

to concentrate on specific sub-theories for which one can get analytic results. So let us

concentrate on a subset shift symmetric galileon theory notably,

L

⇤CGJ = R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤. (11)

This Lagrangian can be obtained by choosing G4 = 1 + �X and G2 = �2⇤ + 2⌘X.

Although the coupling ⌘ is canonically normalized to 1
2
, we keep it as ⌘ momentarily for

bookkeeping purposes. The field equations are

Eµ⌫ = Gµ⌫ � ⌘



@µ�@⌫��

1

2
gµ⌫(@�)

2

�

+ gµ⌫⇤

+
�

2

⇥

(@�)2Gµ⌫ + 2Pµ↵⌫�r
↵�r�� +gµ↵�

↵⇢�
⌫�� r

�
r⇢�r

�
r��

⇤

= 0,

k The same guiding principle is used in GR with a complex scalar field in order to construct a hairy
”Kerr” type solution by Herdeiro and Radu [34].
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k The same guiding principle is used in GR with a complex scalar field in order to construct a hairy
”Kerr” type solution by Herdeiro and Radu [34].
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(to be fixed relative to the black hole mass). Therefore J2 is actually singular at the

horizon because Jr = �f�0
� 4↵h0

h
f(f�1)

r2 6= 0. At this point one needs to invoke extra

input to conclude about the physical relevance of solutions with divergent norm of the

current J . For this solution of the theory (15), the Noether current cannot be a physical

observable, in particular, it cannot be coupled to matter directly. This question requires

further study.

3.3. Explicit solutions of hairy black holes

We shall now concentrate on explicit black hole solutions for the theory (11) setting

⌘ = 1
2
. Although the method works for any shift symmetric theory, the advantage here

is that (11) is particularly elegant in giving explicit solutions. In fact, we have the

general solution which we turn to now.

The general solution of theory (11) to the metric (10) and � = �(t, r) is given as a

solution to the following third order algebraic equation with respect to
p

k(r):
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◆

k(r) + C0k
3/2(r) = 0, (16)

where C0, q are integration constants and  = 1,�1, 0 is the horizon curvature. Once a
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solution to the above algebraic equation is given, the metric components are
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whereas the scalar field (12) reads
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)h0
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.

An explicit proof can be found in [35] where here for the master equation we have

rescaled C0 by � and set ⌘ = 1
2
with respect to [35]. We note that the algebraic

equation is parametrized by q�, �⇤ and C0 and the overall sign of �. We now work out

the di↵erent classes of solutions according to their asymptotic behavior for large r.

3.3.1. Class I: dS and adS asymptotics For dS or adS asymptotics it is easy to see

from (16) that k = ↵r4 = 1�2�⇤
2�C0

r4 as r ! 1. Since we want f = h for r ! 1

we get that C0 = 1�2�⇤p
�

. Therefore, once we fix C0 to this value, keeping q arbitrary,

we have asymptotically de Sitter or anti de Sitter solutions. The generic solution is

found as a solution to the algebraic solution, but a simple example is the self-tuned

Schwarzschild-(anti-)de Sitter spacetime which is given by

k0(r) =

✓

+
r2

2�

◆2

, (18)

where now the parameter q0 is fixed:

q20� = (1 + 2�⇤). (19)

For de Sitter asymptotics, we take  = 1 and the solution reads

f = h = 1�
µ

r
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3
r2,  0 = ±

q

h

p

1� h, (20)

where the e↵ective cosmological constant ⇤e↵ = �

1
2� and hence � < 0 for ⇤e↵ > 0.

This solution has self-tuning properties since the vacuum value of ⇤ does not interfere

with the spacetime geometry. It is tuned by the integration constant q0 via (19). It is

quite remarkable that this self-tuning solution, first noted for pure de Sitter [50], can be

extended for generic black holes [35]. A characteristic of this particular solution is that

the kinetic scalar X = q20/2 is a constant.

This self-tuning solution of de Sitter is therefore very special since q0 (and not only

C0) is fixed with respect to the parameters of the action (19). But in fact we will now

argue that self tuning remains beyond this particular value, q = q0, where of course X is

not constant. This would mean that a change in the bulk cosmological constant will not

change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where

k0 is given in (18). It is then easy from (16) to show that

k(r) = �

✓

1 +
r2

2�

◆2
 

1 +
2✏

1 + 6�⇤� (1� 2�⇤) r
2

2�

!

+O(✏2).
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change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where

k0 is given in (18). It is then easy from (16) to show that

k(r) = �

✓

1 +
r2

2�

◆2
 

1 +
2✏

1 + 6�⇤� (1� 2�⇤) r
2

2�

!

+O(✏2).

Babichev, Charmousis’13



Explicit solutions
Asymptotically dS/AdS:

Black holes and stars in Horndeski theory 15

solution to the above algebraic equation is given, the metric components are

h(r) = �

µ

r
+

1

�r

Z

k(r)

+ r2

2�

dr, f =
(+ r2

2� )
2�h

k(r)
, (17)

whereas the scalar field (12) reads

 0 = ±

p

r

h(+ r2

2� )

✓

q2(+
r2

2�
)h0

�

1 + 2�⇤

4�2
(h2r2)0

◆1/2

.

An explicit proof can be found in [35] where here for the master equation we have

rescaled C0 by � and set ⌘ = 1
2
with respect to [35]. We note that the algebraic

equation is parametrized by q�, �⇤ and C0 and the overall sign of �. We now work out

the di↵erent classes of solutions according to their asymptotic behavior for large r.

3.3.1. Class I: dS and adS asymptotics For dS or adS asymptotics it is easy to see

from (16) that k = ↵r4 = 1�2�⇤
2�C0

r4 as r ! 1. Since we want f = h for r ! 1

we get that C0 = 1�2�⇤p
�

. Therefore, once we fix C0 to this value, keeping q arbitrary,

we have asymptotically de Sitter or anti de Sitter solutions. The generic solution is

found as a solution to the algebraic solution, but a simple example is the self-tuned

Schwarzschild-(anti-)de Sitter spacetime which is given by

k0(r) =

✓

+
r2

2�

◆2

, (18)

where now the parameter q0 is fixed:

q20� = (1 + 2�⇤). (19)

For de Sitter asymptotics, we take  = 1 and the solution reads

f = h = 1�
µ

r
�

⇤e↵

3
r2,  0 = ±

q

h

p

1� h, (20)

where the e↵ective cosmological constant ⇤e↵ = �

1
2� and hence � < 0 for ⇤e↵ > 0.

This solution has self-tuning properties since the vacuum value of ⇤ does not interfere

with the spacetime geometry. It is tuned by the integration constant q0 via (19). It is
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quite remarkable that this self-tuning solution, first noted for pure de Sitter [50], can be
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the kinetic scalar X = q20/2 is a constant.

This self-tuning solution of de Sitter is therefore very special since q0 (and not only

C0) is fixed with respect to the parameters of the action (19). But in fact we will now

argue that self tuning remains beyond this particular value, q = q0, where of course X is

not constant. This would mean that a change in the bulk cosmological constant will not

change the self-tuning mechanism, in other words the e↵ective cosmological constant

remains the same. To see this, suppose that q2� = (1+ 2�⇤) + ✏, where ✏ is some small

number compared to 1+2�⇤. We now consider an expansion in ✏ to k = k0+ ✏k1 where
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Evaluating f and h, we see that the black hole solution remains unchanged

asymptotically and in particular that the e↵ective cosmological constant is not modified

to this order in ✏ [51]. In other words, the self-tuning mechanism remains true even if

the bare cosmological constant changes. The novel q = q0+ ✏ tunes to accommodate the

new value of the bulk cosmological constant, while the black hole solution is di↵erent

locally but has the same asymptotic behavior.

This class of solutions also includes the “static” q = 0 solutions. This condition was

first imposed by Rinaldi [52] to obtain exact solutions in asymptotically adS spacetimes,

although the scalar field could become imaginary beyond the black hole horizon. Indeed,

Eq.(8) of [52] implies imaginary scalar field inside the horizon. Rinaldi’s solution was

extended in [53, 54] who cured the problem by including a bare cosmological constant.

The scalar field was found to be divergent at the horizon even though the norm was

finite. At the end of the day, this is not necessarily a problem, since at the level of the

action, only derivatives of the galileon field itself are present and on-shell the action is

well behaved. Indeed, from (16) we obtain:

k(r) =
1

C2
0

✓

2+ (1� 2�⇤)
r2

2�

◆2

.

Executing the integral (17) we can evaluate directly h. We set for convenience  = 1,

i.e., spherical symmetry and � > 0. We also fix C0 accordingly, in order to avoid a solid

deficit angle. In other words, we set the constant term in h to be equal to 1. We then

get the “static” solution, first discovered in [52] for ⇤ = 0 and extended in [35, 53, 54]:

h(r) = 1�
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r
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⇤e↵(1� 2�⇤e↵)(2� + r2)3h(r)
,

(21)

with an e↵ective cosmological constant ⇤e↵ = 2�⇤�1
2�(2�⇤+3)

.

3.3.2. Class II: Static Universe From (16) we see that k ⇠ r2 as r ! 1 for

q2� = (1 � 2�⇤) while asymptotically h = 1 and f = r2

2� . A typical example in

this class of metrics is the black hole embedded in an Einstein static universe, which is

obtained with C0 = 0 and, for simplicity, 2�⇤ = �1. The solution reads

h = 1�
µ

r
, f =

⇣

1�
µ

r

⌘

✓

1 +
⌘r2

�

◆

, (22)

whereas the radial part of the scalar field is given by

 0 = ±

q

h

s

µ

r(1 + ⌘
� r

2)

An alternative way to obtain explicit solutions can be given in this class [51]. Let

us start with the de Sitter solution (18) k0 in Class II. Consider the Euclidean division

of the third order polynomial in (16) by
p

k �

p

k0 which is a factor of the third order
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q2� = (1 � 2�⇤) while asymptotically h = 1 and f = r2

2� . A typical example in
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whereas the radial part of the scalar field is given by
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An alternative way to obtain explicit solutions can be given in this class [51]. Let

us start with the de Sitter solution (18) k0 in Class II. Consider the Euclidean division

of the third order polynomial in (16) by
p
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p
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Let us terminate with asymptotically flat spacetimes where ⇤ = ⌘ = 0. We obtain

a unique solution, for k = constant:

f = h = 1�
µ

r
, (23)

and the metric is isometric to a Schwarzschild metric (BTZ stealth black holes were

found in 3 dimensional spacetimes [57]). However, the scalar field is not trivial and also

regular in the future black hole horizon [35],  0 = ±q
p

µr/(r � µ). The fact that we

take ⇤ = ⌘ = 0 may arguably lead to strong coupling in flat spacetime (µ = 0) for the

scalar field. Note however that the black hole solution that is found is identical to GR,

so strong coupling does not a priori create a phenomenological problem, as local gravity

tests remain indistinguishable relative to GR.

Furthermore, the stealth Schwarzschild metric has also the property X = q2/2

(kinetic term is constant on-shell). Because of this property it is easy to show that the

above stealth solution remains a solution of the beyond Horndeski theory:

L

bH = R + FJ(X)Gµ⌫@µ�@⌫�,

where FJ(X) is a function of X only [21]. It is unknown as yet if other X = contant

solutions can be extended in a similar way to beyond Horndeski theories.

3.4. Stability

As we discussed in the beginning, Horndeski theory avoids Ostrogradski ghosts, because

the field equations remain second order, and new degrees of freedom are not present. It

is however not clear if the existing propagating degrees of freedom — the scalar spin-

0 and the tensor spin-2 — are healthy degrees of freedom for each particular model.

Moreover, there are indications that galileon theory contains a nonlinear ghost instability

(which can be interpreted as a globally unbounded from below Hamiltonian), see e.g. a

discussion in [58]. This however is not an issue as such, since there may exist a local

minimum with a long-lived vacuum state. It is therefore more important to check if

relevant solutions for a particular model at hand form a locally stable vacuum. For

this it is convenient to use a perturbative approach, i.e., one studies whether small

perturbations around a specific solution are stable or not. There may exist di↵erent

types of pathologies, including ghost, gradient or tachyon instability⇤.

The question of stability of black hole solutions in Horndeski theory has not

been fully investigated up to now, although some works have been dedicated to the

topic. In particular, Kobayashi et al. [60, 61] focused on the stability of general

spherically symmetric black holes with static galileon field, using the Regge-Wheeler

formalism [62]. Necessary conditions were established to ensure absence of ghost and

gradient instabilities. Tachyon instability has been left out in this study. Particular

subclasses of Horndeski theory were also considered in [60, 61], including the John term

and the Gauss-Bonnet term coupled to galileon. It was shown that the static John

⇤ On the nonlinear level yet another pathology may manifest itself: formation of caustics, which is
generic for theories with nonlinear G2 as a function of X [59].
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L

bH = R + FJ(X)Gµ⌫@µ�@⌫�,

where FJ(X) is a function of X only [21]. It is unknown as yet if other X = contant

solutions can be extended in a similar way to beyond Horndeski theories.

3.4. Stability

As we discussed in the beginning, Horndeski theory avoids Ostrogradski ghosts, because

the field equations remain second order, and new degrees of freedom are not present. It

is however not clear if the existing propagating degrees of freedom — the scalar spin-

0 and the tensor spin-2 — are healthy degrees of freedom for each particular model.

Moreover, there are indications that galileon theory contains a nonlinear ghost instability

(which can be interpreted as a globally unbounded from below Hamiltonian), see e.g. a

discussion in [58]. This however is not an issue as such, since there may exist a local

minimum with a long-lived vacuum state. It is therefore more important to check if

relevant solutions for a particular model at hand form a locally stable vacuum. For

this it is convenient to use a perturbative approach, i.e., one studies whether small

perturbations around a specific solution are stable or not. There may exist di↵erent

types of pathologies, including ghost, gradient or tachyon instability⇤.

The question of stability of black hole solutions in Horndeski theory has not

been fully investigated up to now, although some works have been dedicated to the

topic. In particular, Kobayashi et al. [60, 61] focused on the stability of general

spherically symmetric black holes with static galileon field, using the Regge-Wheeler

formalism [62]. Necessary conditions were established to ensure absence of ghost and

gradient instabilities. Tachyon instability has been left out in this study. Particular

subclasses of Horndeski theory were also considered in [60, 61], including the John term

and the Gauss-Bonnet term coupled to galileon. It was shown that the static John

⇤ On the nonlinear level yet another pathology may manifest itself: formation of caustics, which is
generic for theories with nonlinear G2 as a function of X [59].
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The metric equation Etr = 0 implies zero influx onto a static metric. Naively,

one expects that a time dependent galileon field would accrete onto a black hole, thus

making it impossible to keep a static configuration for the metric. Indeed this is the case

for asymptotically flat Fab 4 self-tuning black holes. They are not known analytically

but we do know that they cannot be static spacetimes. This is because they are simply

not compatible with the (flat) self-tuning solution asymptotics for � [36] as one would

need � ⇠ r2 � t2 for large r. Furthermore, standard or phantom scalar field [37] or even

k-essence (which is a particular case of galileon with G3 = G4 = G5 = 0) [38] with the

time-dependent ansatz (12) do accrete onto black holes, rendering a non-zero inflow (or

outflow) on a black hole, see e.g. a review [39]. Finally, it has been found in [32] that,

in the test fluid approximation, galileons also allow accreting solutions, i.e., solutions

with a non-static metric. Clearly the solutions which we will describe below belong

to a di↵erent branch, which exists thanks to the non-trivial higher order structure of

galileons.

Summarizing, starting from � = �(t, r) and (10), we end up with � = qt+ (r) and

(10) as a starting ground in our search for scalar-tensor black hole solutions where q is

a (possibly vanishing) constant. This time dependence was first implemented in [35] in

order to find the general solution for spacetime (10). We will elaborate on this aspect

in paragraph 3.3. The results for theory (11) with (12) were nicely extended to the

framework of the shift symmetric Lagrangian [40] L = G2(X)+G4(X)R+G4X [(⇤�)2�
(rµr⌫�)2] without significant di↵erences with respect to [35]. The method for the

more general theory is identical to (11) and we refer the reader to the original paper

[40]. Furthermore, for theories without reflection symmetry � ! ��, in particular for

the case of the DGP-like Lagrangian G3 6= 0, the method can still be adapted although

it requires numerical integration [41].

The above represents a very general class of solutions for galileon theories, some

of which can be obtained analytically or otherwise numerically. A second important

and distinct class involves the Gauss-Bonnet term (3) which is a topological invariant

in 4 dimensions. This means that if this term is not coupled to the galileon field � in

the action, it yields no term in the field equations. Indeed, this stems from the first

Lovelock identity, valid only in 4 spacetime dimensions:

Hµ⌫ = �2PµcdeR⌫
cde +

gµ⌫
2

Ĝ = 0 , (14)

which basically tells us that the metric variation of (3) is trivial in 4 dimensions. Here

we have noted Hµ⌫ the Lovelock 2-tensor obtained from the metric variation of the

Gauss-Bonnet term (3). When this term couples linearly to the scalar field as �Ĝ, it

recovers shift symmetry. As we will see, such a term gives, whenever present, a distinct

class of numerical solutions with q = 0 [42]. But first we shall start by establishing

a no-hair theorem with its precise hypotheses, which will in turn indicate the possible

ways to obtain non trivial hairy solutions.
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Let us terminate with asymptotically flat spacetimes where ⇤ = ⌘ = 0. We obtain

a unique solution, for k = constant:

f = h = 1�
µ

r
, (23)

and the metric is isometric to a Schwarzschild metric (BTZ stealth black holes were

found in 3 dimensional spacetimes [57]). However, the scalar field is not trivial and also

regular in the future black hole horizon [35],  0 = ±q
p

µr/(r � µ). The fact that we

take ⇤ = ⌘ = 0 may arguably lead to strong coupling in flat spacetime (µ = 0) for the

scalar field. Note however that the black hole solution that is found is identical to GR,

so strong coupling does not a priori create a phenomenological problem, as local gravity

tests remain indistinguishable relative to GR.
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see, they provide an elegant way to bifurcate no-hair theorems and also present local

screening features which are essential for the theory to pass weak gravity tests [9].

Following the work of Lovelock in 1971 [10], who established the most general metric

theory to acquire second order field equations in an arbitrary number of dimensions,

Horndeski in 1974 [11], posed and answered the following important question: what is

the most general scalar-tensor theory in 4-dimensional spacetime yielding second order

field equations? Let us consider a theory LH involving a real scalar � and a metric tensor

gµ⌫ endowed with a Levi-Civita connection and a locally regular Lorentzian manifold of

spacetime. Consider that the theory in question depends only on these two fields and

an arbitrary number of their derivatives,

LH = LH(gµ⌫ , gµ⌫,i1 , ..., gµ⌫,i1...ip ,�,�,i1 , ...,�,i1...iq),

with p, q � 2. The finite number of derivatives signifies that we have a finite number of

degrees of freedom and hence an a priori e↵ective theory of gravity. Horndeski required

that the theory has second order field equations. The resulting theory proposed avoids

Ostrogradski instabilities [12] and is a priori eligible to have ghost free vacua. Note that

the requirement to have up to two second derivatives is a su�cient condition to avoid

the Ostrorgadski instability, but not necessary. Indeed, recent works [13] have shown

that the presence of higher than second derivatives does not always lead to theories that

are plagued by ghosts. The key is to note that certain higher order gravity theories can

be degenerate and thus evade additional ghost degrees of freedom; in other words, they

acquire the same number of degrees of freedom as Horndeski theory. This puts them

on the same footing as Horndeski theories, thus as a priori healthy theories. Although

we will not refer to these theories in detail, we will comment on some of their hairy

solutions later on.

In its modern reformulation, Horndeski theory is written as a generalized galileon

Lagrangian,

L = L2 + L3 + L4 + L5,

L2 = G2,

L3 = �G3⇤�,

L4 = G4R +G4X

⇥

(⇤�)2 � (rµr⌫�)
2
⇤

,

L5 = G5Gµ⌫r
µ
r

⌫��

1

6
G5X [(⇤�)3 � 3⇤�(rµr⌫�)

2

+ 2(rµr⌫�)
3],

(1)

where G2, G3, G4, G5 are arbitrary functions of � and X = �@µ�@µ�/2, the canonical

kinetic term. Additionally, in our notation, fX stands for @f(X)/@X, R is the Ricci

scalar, Gµ⌫ is the Einstein tensor, (rµr⌫�)2 = rµr⌫�r⌫
r

µ� and (rµr⌫�)3 =

rµr⌫�r⌫
r

⇢�r⇢r
µ�. The Horndeski terms are also called generalized galileons. The

scalar field (or galileon) has the property of admitting a special symmetry in flat

(nondynamical) spacetime for G2 ⇠ G3 ⇠ X and G4 ⇠ G5 ⇠ X2 , which resembles

the Galilean symmetry, hence the name galileon [14]. Galileon symmetry is broken for

motivations to consider Horndeski theory is to explain Dark Energy. Put precisely, a black
hole solution should have the asymptotes corresponding to some cosmological solution of a
particular Galileon model.

In [14], such an idea has been realized, allowing the scalar field to depend on time, while
keeping a static metric. The theorem is then redundant since the field equations themselves
dictate regularity of the Noether current and a non trivial scalar field [10]. The full class
of solutions has been found for a particular Galileon model, containing the “John” term, by
classification of [13]. Such a construction is not reserved to the presence of the John term. As
it has been shown later [15], the ansatz used in [14] leads to a consistent system of ODEs, i.e.
the number of independent variables is equal to the number of equations. Per se this does
not guarantee the existence of a solution, but shows self-consistency of the method. Indeed,
in a number of works [16–18], other black hole solutions with a time-dependent Galileon have
been found.

In this paper, we follow the method suggested in [14, 15] to study black hole solutions
in the shift-symmetric theory entailing the cubic Galileon term. Our motivation is three-fold.
First, the technique for constructing black hole solutions of Refs. [14, 15] has been applied to
a particular Lagrangian, whose higher-order derivative part is of the “John” type. Although
later it was generalized to black hole solutions for a larger group of Lagrangians which have
reflection symmetry [17], the question is still unsettled for theories without this symmetry,
see e.g. a comment on this point in [20]. Secondly, the cubic Galileon can be viewed as
the simplest Galileon with higher-order derivatives. It arises in various contexts, e.g. in
the well-known Dvali-Gabadadze-Porrati (DGP) brane model [21], as a particular limit [22].
The third reason is that the cubic Galileon has been extensively studied in the cosmological
context [23] as dark energy with well behaved perturbations, and – for the same model – in
the context of local Solar system physics [24].

The paper is organized as follows. In Sec. 2 we start with the Lagrangian, equations of
motion and the ansatz. Then, in Sec. 3, as a warm up, we study solutions for black holes in
the cubic Galileon model in 3D. The equations of motion in 3D allow for analytic black hole
solutions with Bañados-Teitelboim-Zanelli (BTZ) metric and nontrivial scalar configuration,
which can be interpreted as secondary hair. Section 4 is devoted to analytic properties of
black hole solutions in 4D and Sec. 5 to the numerical integration of the field equations and
subsequent analysis of the solutions. We conclude in Sec. 6.

2 Setup: action, equations of motion and ansatz

Throughout the paper we consider the following action:

S =

Z
dDx

p�g

⇥
⇣ (R� 2 ⇤)� ⌘ (@�)2 + � ⇤� (@�)2

⇤
, (2.1)

where D is the number of dimensions (we will consider 3- and 4-dimensional cases), ⇣, ⌘, �
and ⇤ are constant parameters of the Lagrangian. The third term in (2.1) is the DGP-like
non-canonical Galileon term [22] and ⇤ is the bare cosmological constant.

The variation of (2.1) with respect to the metric gives

�⇣(Gµ⌫ + ⇤ gµ⌫)� ⌘


1

2
gµ⌫(@�)

2 � @µ� @⌫�

�
+

+�


�⇤� @µ� @⌫�+ @(µ� @⌫)(@�)

2 � 1

2
gµ⌫@

⇢
� @⇢

⇥
(@�)2

⇤�
= 0.

(2.2)

– 2 –

Kobayashi, Tanahashi’14

Babichev et al’15

Babichev et al’16



Gauss-Bonnet term

Black holes and stars in Horndeski theory 13

A last important remark here is that time dependence renders the scalar field regular

in the future black hole horizon, something which is never true for q = 0 (for details see

[35]). Again, a proof of this is only known for theory (11), but we expect it to remain

true in general. We will summarize the open problems for the reader in the last section.

Our discussion above has been quite general; the integrability requirement applies

even to beyond Horndeski theories [21]. To make the points stressed above clearer let

us consider our example theory, (11). Here, Jr = �0(⌘grr � �Grr) and F = ⌘grr � �Grr

in the notation of the theorem above. So we can have either � = constant and q = 0

corresponding to the usual GR black holes with trivial scalar field, or ⌘grr � �Grr = 0.

The case �0 = 0 and q 6= 0 has been ruled out in [47].

The second family of solutions involves the Gauss-Bonnet invariant Ĝ. The no-hair

theorem assumes that the X-derivatives GiX contain only positive or zero powers of

X. But now suppose that the GiX contain terms that are G5 / ln|X| and therefore

G5X / 1/X. In fact, this along with Gi = 0 for i = 2, 3, 4 is the term ↵�Ĝ involving the

Gauss-Bonnet invariant (3). Since this is a topological term in 4 spacetime dimensions

it does not contribute to the metric field equations with Lovelock tensor Hµ⌫ = 0 (14).

Such a Lagrangian still has shift-symmetry, because Ĝ is locally a total divergence from

Poincaré’s lemma. For simplicity, consider a Lagrangian built of the usual Ricci scalar,

a minimal kinetic term and the Gauss-Bonnet term:

L

GB =
R

2
�

1

2
@µ�@

µ�+ ↵�Ĝ. (15)

One gets the following scalar equation:

⇤�+ ↵Ĝ = 0.

Therefore, here it is essential that we keep the minimal kinetic term. Now this theory

because of the Gauss-Bonnet term does not satisfy requirement iii) of the theorem.

Furthermore, the Gauss-Bonnet term becomes a geometric source of d’Alembert’s

equation for � on a curved background. It becomes necessary that � is non trivial

in such a setup in a very natural way. Sotiriou and Zhou insist that any theory where

this Gauss-Bonnet term is not forbidden must have hairy black holes [44, 42]. They go

on to find a particular solution with q = 0 to the above theory (15) using numerical

and perturbative methods.+. They found that there exists a finite radius singularity

which can be hidden behind the horizon if the black hole is massive enough. They also

remarked that corrections to observables in this model are expected to be small with

respect to GR.

A relation in between the scalar charge and the mass of the black hole is fixed in

order for the scalar to be regular on the event horizon. The black hole constructed is

then with secondary hair. This solution is therefore clearly separate from the previous

class for two reasons: it acquires q = 0 and, more importantly, a non zero scalar charge

+ The perturbative solution was first obtained in a remarkable paper involving a charged rotating black
hole dressed with an axion and a dilaton by Campbell et al. [48]. Numerical solutions of a very similar
theory (�G ! e�G) were found early on in Mavromatos et al. [49].
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Figure 1. Hair versus no-hair

(to be fixed relative to the black hole mass). Therefore J2 is actually singular at the

horizon because Jr = �f�0
� 4↵h0

h
f(f�1)

r2 6= 0. At this point one needs to invoke extra

input to conclude about the physical relevance of solutions with divergent norm of the

current J . For this solution of the theory (15), the Noether current cannot be a physical

observable, in particular, it cannot be coupled to matter directly. This question requires

further study.

3.3. Explicit solutions of hairy black holes

We shall now concentrate on explicit black hole solutions for the theory (11) setting

⌘ = 1
2
. Although the method works for any shift symmetric theory, the advantage here

is that (11) is particularly elegant in giving explicit solutions. In fact, we have the

general solution which we turn to now.

The general solution of theory (11) to the metric (10) and � = �(t, r) is given as a

solution to the following third order algebraic equation with respect to
p

k(r):

(q�)2
✓

+
r2

2�

◆2

�

✓

2+ (1� 2�⇤)
r2

2�

◆

k(r) + C0k
3/2(r) = 0, (16)

where C0, q are integration constants and  = 1,�1, 0 is the horizon curvature. Once a

diverges at the horizon => violation of the condition ii) as well

Sotiriou, Zhou’13
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The variation of the action with respect to � yields

rµJ
µ = 0, Jµ = (⌘gµ⌫ � �Gµ⌫) @⌫�.

Here, the key term in the action is the John term from Fab 4 which has nice integrability

properties, as we will see. Although our discussion will be associated to the specific

action (11), the essential results go through quite generically. Sometimes integrability

has to be sacrificed on the way in the sense that one has to use numerical methods to

obtain solutions.

The e↵ective energy momentum tensor associated to the galileon is precisely

Tµ⌫ = �Eµ⌫ + Gµ⌫ + gµ⌫⇤. As we noted above, this tensor must obey the symmetries

of (10) but not the scalar itself. Note for example that the Einstein plus cosmological

constant term do not contribute to the Ttr = 0 equation but other terms in Etr do. This

equation generically describes the inflow of matter in a black hole geometry and will

inevitably constrain drastically the galileon field if it is not static. The first key result

is the following:

Consider the shift symmetric theory (11) with spacetime symmetry given by (10).

Starting with � = �(t, r) the only compatible ansatz with the field equations is

� = qt+  (r). (12)

Indeed, taking � = �(t, r), the flow equation Etr = 0 yields the general solution for � as

a separable function of t and r [35]. This function, when inserted in the remaining field

equations, gives (12) as the only possible ansatz (see the general discussion in [36]).

The only solution to escape the rule of linear time dependence imposed in (12) is

to consider self-tuning solutions for flat spacetime. For theory (11), this holds in the

case of ⌘ = 0 and ⇤ 6= 0 . This is a simple example of a time dependent scalar field

immersed in a static spacetime. Indeed, the solution reads

� = �0 + �1(r
2
� t2) (13)

with �0,�1 integration constants while f = h = 1 with  = 1 for (10). The self-tuning

condition reads VJohn�2
1 = ⇤ for arbitrary bulk ⇤, and constant VJohn [20, 36]¶.

We expect the linear time ansatz (12) to be true for generic shift symmetric

theories (the discussion in [36] includes the Paul term; solution (13) is also valid for this

term, see [20]). It is surprising and highly non trivial that there exist time dependent

configurations for a static spacetime. Mathematically, we can understand that if time

dependence is linear in t, we get explicitly ODE’s rather than PDE’s once we input (12)

in the field equations. It is worthwhile however to make a remark on the non-trivial

physical significance of (10) and (12).

¶ Note that the same solution in a cosmological coordinate system is a purely time dependent function,
� = �0 + �1T 2, where T is FRW proper time. This solution illustrates what we mentioned earlier, a
time dependent galileon yields generically a time and space dependent galileon in a static ansatz.

Stealth solution

Deviation from GR solution 
inside the star.

4

FIG. 2. The mass-radius relation for various values of Q∞

and η = +1, −1. The thick black curve is the GR prediction
while the dashed one has Q∞ = 0. The black dots are the
points where the solutions cease to exist. Note that, for η > 0,
the curves with Q∞ = 0.016 and Q∞ = 0.032 do not reach
such a point in the chosen range of central pressures.

FIG. 3. Lines of constant Q∞ in the (Pc, Q) plan. The legend
indicates the value of Q∞. The scalar field is no longer real for
Q > 1/(12π). All curves except for Q∞ = 0 reach a maximal
value.

instabilities. However, in the present case, the situation
is less clear due to the coupling of the kinetic term to
the Einstein tensor. The stability of these configurations
with imaginary field is an interesting and open question.

Conclusion. — In this letter, we investigated the
effect of a scalar field with a non-minimal kinetic cou-
pling to gravity. This model is a sector of the general
Horndeski model, and has a deep connection with the
Galileon model. We focused on the case with a purely
non-minimally coupled scalar field, and no cosmological
constant, since this case admits exact Schwarzschild so-
lutions. When the scalar field is linear in time we find
that neutron stars exist for some range of the only free
parameter of the theory ηQ2. We derived a constraint
on this parameter from the existence of compact config-
urations, and argued that less dense stars such as white
dwarfs are supported by this model. This is to date the

FIG. 4. Plot of F ′2 for η > 0 and η < 0. For small values of
Q2

∞, and in the case η < 0, the scalar field is complex close
to the origin, and becomes real for larger values of r, while it
is always real for η > 0.

first constraint and astrophysical viability check of this
model.
A very interesting feature of these solutions is that

the external solution is the same as in general relativity,
even with the presence of the scalar field degree of free-
dom. From an observational point of view, this makes
Horndeski’s stars pass all Solar System test. In this re-
spect, the model is similar to Palatini f(R) or Eddington-
inspired Born Infeld models [25] (with similar effects on
compact configurations [26, 27]). In fact, also these the-
ories are indistinguishable from GR in vacuum, but they
are modified in the presence of matter fields [28].
Our calculations show that the Horndeski’s neutron

star is a sound astrophysical model, which requires a min-
imal modification of GR and does not violate any Solar
System tests. The chosen equation of state captures very
well the main effects of these modifications. In particular,
the reality conditions on the scalar field are independent
of the equation of state so we do not expect large devia-
tions if one chooses more realistic ones.
We think that our model deserves further investi-

gations to address questions such as the formation of
these objects, their gravitational wave spectrum during
a merger or the pulsar emission in the presence of strong
magnetic fields. We hope to report soon on these issues.
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correct asymptotic limit i.e. that space-time is asymptotically de Sitter. Finally, we derive
and numerically solve the TOV system for relativistic stars using polytropic and realistic
equations of state. We discuss our results and conclude in section 4.

2 Model and cosmological de Sitter solution

For simplicity and concreteness, we will study one of the simplest models which exhibit
Vainshtein breaking inside matter, characterized by the action

S =

Z
d4x

p�g


M2

pl

✓
R

2
� ⇤

◆
� k2L2 + f4L4,bH

�
, (2.1)

with

L2 = X (2.2)

L4,bH = �X
⇥
(⇤�)2 � (�µ⌫)

2
⇤
+ 2�µ�⌫ [�µ⌫⇤�� �µ��

�
⌫ ] , (2.3)

where ⇤ is a (positive) cosmological constant and k2 and f4 are constant coe�cients. We
note that M2

pl = (8⇡G)�1 where G is not Newton’s constant GN but must be related to it by
matching to the weak field limit. The Lagrangian L4,bH is one of the two beyond Horndeski
terms introduced in [7]. It leads to higher order equations of motion, but without su↵ering
from an Ostrogradsky instability. The theory (2.1) corresponds to the model studied by [22]
augmented by a cosmological constant.

Matter, characterized by the energy-momentum tensor Tµ⌫ , is assumed to be minimally
coupled to the metric gµ⌫ that appears in the action (2.1). As a consequence, the energy-
momentum tensor satisfies the usual conservation equation

rµT
µ
⌫ = 0 . (2.4)

The tensor equations of motion, which generalize Einstein’s equations, can be written in the
form

M2
plGµ⌫ +Hµ⌫ + ⇤gµ⌫ = Tµ⌫ , (2.5)

where Gµ⌫ is the familiar Einstein tensor. Hµ⌫ represents the new terms that are derived
from L2 and L4,bH. Finally, since the scalar sector of the theory is shift-symmetric, the
equation of motion for the scalar field can be written in the form

rµJ
µ = 0 . (2.6)

The explicit expressions for Hµ⌫ and Jµ are rather involved and we will not write here
their general form but simply give their relevant components in a static spherical symmetric
geometry (see [21] for the general equation in beyond Horndeski theories).

We now seek vacuum (i.e. no matter energy-momentum tensor in addition to the cos-
mological constant) de Sitter cosmological solutions, expressed in FLRW coordinates,

ds2 = � d⌧2 + e2H⌧ dr02 + r02 d⌦2
2, (2.7)

with H and �̇ = v0 constant. One finds that the current time component is given

J⌧ = �2�̇
⇣
k2 + 12f4H

2�̇2
⌘
= 0 (2.8)
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An example of a relativistic star:

Outside the star : GR with an effective Lambda
Inside the star : deviation from GR

Figure 1. The mass-radius relation for the polytropic model (top left), SLy4 EOS (top right panel),
BSK20 EOS (bottom left panel) for varying values of ⌥ indicated in the plots and the extreme case
⌥ = �0.1 using the SLy4 and BSK20 equations of state (bottom right panel). The region between
the gray dashed lines represents the highest mass neutron star observed (M = 2.01± 0.04M�). Note
that the axes on each plot have di↵erent scales.

reason, we use two realistic equations of state: SLy4 [51] (see [52] for the fitting function)
and BSK20 [53, 54] (see [55] for the fitting function).

In fig. 1 we plot the mass-radius relation for both the SLY4 and BSK20 equations of state
when the theory of gravity is GR and beyond Horndeski with ⌥ = �0.03 and ⌥ = �0.05.
One can see qualitatively similar features to the polytropic case, namely a higher maximum
mass and a shift to larger radii. Observationally, the most massive neutron star thus far
observed is PSR J0348+0432 with a mass M = 2.01 ± 0.04M� [56], and both of these give
stable neutron stars that are consistent with this observation when the theory of gravity is
GR. One can see that even mild deviations from GR (⌥ = �0.05) predict stars as massive
as 3M�. Of course, such predictions are consistent with the highest mass observed neutron
star and so one may hope to get constraints by looking at smaller mass objects. Indeed,
one can see that beyond Horndeski theories predict radii that can be 1 km or larger than
the GR prediction at fixed mass. Typically, fits to neutron star masses and radii predict
radii less than 14 km at 2� for masses between 1 and 2M� [57] and one can see that the
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