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  Plan of the talk:
 Historical introduction

 Newton constant

 Entanglement entropy

 Can entanglement entropy explain entropy of 

    black holes?  
     

 

Talk is based on arXiv: 1502.03758
  PRD D91(2015) 8, 084028        



  

General Relativity (1915)

A. Einstein D. Hilbert



  

Gravitational Force is 
Manifestation of Curved Space-
time



  

Solution with Spherical 
Symmetry

Karl Schwarzschild (1915) 

Describes space-time 
outside massive spherical 
Body  of mass M and radius R



  

“Frozen Star”
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 its “boundary” 
is null-surface
   (horizon)

outside

inside

No light propagates to outside
If emitted from inside

Why it is Black?



  

No-hair for Black holes

Werner Israel (1967) 

Stationary Black Hole:
only parameters are
       Q, M, J



  

Black hole  has entropy 
proportional to area of horizon

Jacob Bekenstein 
          (1973) 



  

Black Hole Emits Thermal Radiation

Stephen Hawking
(1975)
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 Bekenstein-Hawking Entropy

Bekenstein (73), Hawking (75)

is area of horizon 

is  Newton constant as it appears in classical mechanics 

is important numerical factor 

In order to explain BH entropy we have to ``explain'' S, A, G and 4  
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Newton constant  

Quantum Effective Action :

 covariant operator acting on spin-s field  

Curvature expansion:

UV cut-off       
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Induced Newton Constant

is number of on-shell degrees of freedom 
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Contact terms

 s=1: D. Kabat (95)
 s=2: S.S. (2010)

also earlier work of Fradkin and Tseytlin (82)
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Remarks

       1.                is  not positive in general   (even if theory is unitary)

 2.                    is   a difference of two (positive) contributions 

 3.  In some cases                       may vanish (for instance for
 
                              SU(N)  super-Yang-Mills)

 4.  Matter fields (fermions) contribute positively  while
     mediators of interactions (bosons) contribute negatively 

  5. Why observed Newton constant is positive after all?
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A B

Entanglement entropy

S

| ( , )A By >
( , ) | |A Br y y= ><

Bombelli et el (86), Srednicki (93),
Frolov-Novikov (93)

( , )A BTr A Br r=
ln

A A A A
S Tr r r=-
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Properties

  
A BS S=

AS depends on local geometry:

i) intrinsic or extrinsic geometry of  S
ii) geometry of space-time near   S

(modulo Gauss-Codazzi)

if | ( , )A By > is pure state
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Properties

  
AS is non-zero due to short-distance 

correlations between A and B

S
A

B

e
AS depends on UV  regulator e
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Entanglement entropy of BH

  Defined naturally for black holes (BH)  

Reproduces universally area law

To leading order is same as in flat spacetime

Is a positive quantity due to physical degrees of freedom only
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Can             and               be 
equal?

Suppose that there are only matter fermions (no bosons) so that
contact terms vanish  and assume that there is no bare (tree-level)
Newton constant and entire newton constant is induced

Then two entropies are identical and UV cut-off defines Planck length  



 21

If all fields (fermions and  bosons) are present then contact terms
non-vanishing 

 1.

2.

3. 

is bare Newton constant

Question:    can we have 1.  ,  2.   and 3.  ?
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Answer:   yes !  

Provided a consistency condition is satisfied

So that 
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Interesting consequence: relation between UV cut-off and Planck mass

 is effective number of species

In agreement with earlier proposal of Dvali (2008) 
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Remarks

       1.     UV cut-off           still defines the Planck scale

 2.                    is   positive  !
 
  3.     Only physical degrees of freedom contribute to observed 

           Newton constant    and entropy
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Thank you !
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Replica method: wave function
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Replica method:  a reduced 
density matrix

Path integral on
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Replica Method: trace of 
density matrix

S
Path Integral on

Susskind (93), Callan-Wilczek (94)

%S ent=−Tr ρ̂ ln ρ̂=−[(n∂n−1)lnTr ρn]n=1

Trρn=
δ=2π(1−n)
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Uniqueness of analytic 
continuation n=1,2,. .→α , ℜ(α)>1

Regularized trace  of renormalized  density matrix                        is boundedρ̂=
ρ

Trρ
∣Trε ρ̂

α
∣<1 if ℜ(α>1)

Suppose we know Trερ
n=Z 0(n) for α=n , n=1,2,3,. .

The we can represent Z (α)=Trερ
α

in the form

Z (α)=Z 0(α)+sin (πα) g (α)

where             is analytic and g (α) ∣g (α=x+iy)∣<e−π∣y∣

By Carlson's theorem g (α)≡0



 30

Heat kernel and 
the Sommerfeld formula

(∂ s+D)K (s , x , x ' )=0
K (s=0, x , x ' )=δ(x , x ' )

2πα -periodic function from a        -periodic  is constructed by using  2π

Kα(s ,ϕ ,ϕ ' )=K (s ,ϕ−ϕ ' )+
i

4πα∫Γ
cot

w
2α

K (s ,ϕ−ϕ '+w)dw

Sommerfeld (1897)

In presence of abelian symmetry 
    
it is still a solution to heat equation  

ϕ→ϕ+w
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Useful mathematical tools (A):  
Riemann curvature and conical 
singularity

( ) ( )

( ) 2 (1 )[( )( ) ( )( )]

reg sing

sing

R R R

R n n n n n n n n

mn mn mn
ab ab ab

mn m n m n
ab a b b ap a dS

= +

= - -

1 2
1 2( )n n n n n nm m m

a a a= +

1n
2n

1n

S
Fursaev, SS (94)
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A consequence: 
the Euler number for a manifold 
with cone singularity

χ(M α)=
1

32π2∫M α/Σ
(R2−4Rμ ν

2 +Rμ ναβ
2 )+∑

i

(1−αi)χ (Σi)

Fursaev, SS (94)

 A special case is when             possesses a continuous Abelian isometry so
 that             are the fixed point sets of this isometry and             .
 

(Rediscovered by Atiyah, LeBrun (2012)) 

M α

Σi
αi=α

χ(M )=∑
i

χ(Σi)    Then we arrive at a reduction  formula

 Example: singular surface of                         is               so that             Sα
d (d⩾3) S d−2

χ(S d
)=χ(S d−2

)
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Useful mathematical tools (B):  
Heat kernel method

Coefficients in the expansion  decompose on 
the bulk (regular) and the surface (singular) parts:
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Heat kernel method: regular 
terms in the expansion

Scalar field operator:

    and do not contribute to the entropyThese terms are proportional to 
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Heat kernel method: surface 
terms in the expansion

Fursaev (94)
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Important remark:

These mathematical tools work only if there is

abelian isometry in subspace orthogonal to

entangling surface      .

This is not so for a surface (sphere, cylinder..) 

in flat Minkowski spacetime!

However: they work perfectly for Killing horizons!

 

Σ
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Entanglement entropy 
of black holes

( , )y j j+ -

( )j- ( )j+

Wave function of black hole is functional of modes

and modes outside

a -

inside black hole horizon

Partition function

is given by functional integral

over fold cover of Euclidean black hole instanton

(manifold with conical singularity at horizon)

Barvinsky, Frolov and Zelnikov (94)

,
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Entanglement entropy of 
4d black hole

S.S. (94)

      Scalar field operator: 
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Kerr-Newman black hole 
(m,a,q)

Mann, SS (96)

Horizon area

Entropy of  a minimal scalar field, ξ=0
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Interesting  limits:

 Schwarzschild black hole (q=a=0)

 Extreme charged black hole (a=0, q=m)

 Extreme Kerr black hole (q=0, a=m)



 41

 Renormalization

Bare gravitational action

Black hole entropy

Renormalization of  entropy:

The statement is valid for any field (fermionic and bosonic)
except gauge fields (s=2 and s=1)

Susskind and Uglum (94), Jacobson (94), Fursaev and SS (94)

Renormalization of action:
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Puzzle of non-minimal 
coupling

Renormalization of Newton constant

Entanglement entropy on Ricci flat metrics 
does not depend on 

Non-minimal field operator
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Gauge fields: s=1 and s=2

1
4Gren

=
1

4G
+

1

(4π)
d−2

2 (d−2)

(
Ds(d )

6
−cs(d ))

1

ε
d−2

Spin s=1: D1(d )=d−2, c1(d )=1

Spin s=2: D2(d )=
d (d−3)

2
, c2(d )=

(d 2
−d+4)

2

Entanglement Entropy: S=
D s(d )

6(d−2)(4π)
d−2

2

A(Σ)

ε
d−2
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Most intriguing question:
can entanglement entropy account for 
entire BH entropy?

 A  natural identification: UV cut-off at Planck scale 

 Do coefficients precisely agree?

 Entanglement entropy and induced gravity,

    problem of non-minimal coupling 

   
Jacobson(94), Frolov et al. (96), 
Hawking, Maldacena, Strominger (2000)

then
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SOME OTHER  DEVELOPMENTS
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  UV and IR modified theories

More general Lorentz invariant field operator

Examples:

(i) 4d brane in spacetime with compact fifth dimension

(ii) DGP model

(iii) Non-commutative field theory

(iv)  UV modified theory
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Entropy in UV(IR) modified 
theories

Heat kernel on space with conical singularity

Entanglement entropy

where

Nesterov, SS (2010)
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Entropy in UV modified 
theories

(i) No matter how fast function 

entanglement entropy is always UV divergent

(ii) The area law and the statement on renormalization of 
entropy   are valid for any

(iii) Example:

Nesterov, SS (2010)

grows for large
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Entropy in non-Lorentz 
invariant theories

D=−∂t
2
+F (−∇⃗2

)

- there is no rotational symmetry in (r,t) plane

- only                  periodicity is allowed

- it is enough to compute entropy

2π n

S=
A(Σ)

12(4π)(d−2)/2∫ε2

∞ ds
s
Pd−2(s)

  is the same as in Lorentz invariant caseP n(s)
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Entropy in non-Lorentz 
invariant  theories

        F (−∇⃗ 2
)=m2(1−n)

(−∇⃗
2
)
n

Heat operator

x⃗→λ x⃗ , t→λ
n t , s→λ

2n s

exp(−s D) is invariant under rescaling

and x⃗→β x⃗ , m→βn /(1−n)m

Structure of entanglement entropy is fixed by this invariance

S∼(
mn−1

ε )

d−2
n A(Σ)

Polynomial field operators:
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Logarithmic term in entropy of 
generic 4d CFT

Effective action

A and B type conformal anomaly

Duff (77)
Christensen, Duff (78)
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Logarithmic term in entropy of 
generic 4d CFT

Entanglement entropy of arbitrary surface

Surface anomaly 
(combination of conformal symmetry and holographic interpretation) 

SS (2008)

where  is extrinsic curvature of (vanishes for black hole horizon)
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Logarithmic term in entropy 
of generic 4d CFT: flat spacetime

S (A , B)=
A(Σ)

4πε2+
π
8
∫

Σ
[ARΣ+B(Tr k 2

−
1
2
k a k

a
)] ln ε

RΣ=k a k
a−Tr k 2
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Logarithmic term in entropy of 
generic 4d CFT: flat spacetime

     Round sphere  in Minkowski spacetime

For a scalar field

The logarithmic term is the same as for extreme black hole,

 near-horizon region is 

(Minkowski spacetime and                        are conformally related)

SS (2008)
Cassini-Huerta (2010)
Dowker (2010)
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Logarithmic term in entropy of 
generic 4d CFT: flat spacetime

             Cylinder in Minkowski spacetime

S (A , B)
cylinder

=
A(Σ)

4πε2+B π
2

8
L
a

ln (ε) SS (2008)

For a scalar field numerically verified by Huerta (2012)



 56

Logarithmic term in entropy of 
generic 4d CFT: black holes

Extreme charged black hole

The Schwarzschild black hole

For a generic 4d  CFT

Extreme Kerr black hole 



 57

Why log corrections are 
interesting?

 they are important at the final stage of    
evaporation

  consistency with microscopic calculation

    for extreme black holes Banerjee, Gupta, Sen (2010)
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  Some open questions

 - entanglement entropy in string theory

 - non-minimal coupling (gauge fields)

 - dynamical entangling surface (a brane?)

 - ...
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More work  has to be done..
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